Discovery of ACE Inhibitory Peptides Derived from Green Coffee Using In Silico and In Vitro Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Samples
2.2. Protein Extraction
2.3. Protein Digestions
2.4. LC-MS/MS Identification of Peptides
2.5. In Silico Prediction and Analysis of Bioactive Peptides
2.6. Peptide Synthesis and ACE Inhibitory Activity
2.7. Gastrointestinal Digestion Simulation Study
2.8. Molecular Docking
3. Results
3.1. Peptide Identification
3.2. In Silico Screening
3.3. In Vitro Evaluation of ACE Inhibitory Capacity
3.4. Inhibition Kinetics of Bioactive Peptides
3.5. Molecular Docking Studies
3.6. In Vitro Gastrointestinal Digestion Stability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Geldsetzer, P.; Manne-Goehler, J.; Marcus, M.E.; Ebert, C.; Zhumadilov, Z.; Wesseh, C.S.; Tsabedze, L.; Supiyev, A.; Sturua, L.; Bahendeka, S.K.; et al. The state of hypertension care in 44 low-income and middle-income countries: A cross-sectional study of nationally representative individual-level data from 1.1 million adults. Lancet 2019, 394, 652–662. [Google Scholar] [CrossRef]
- Masuyer, G.; Schwager, S.L.; Sturrock, E.D.; Isaac, R.E.; Acharya, K.R. Molecular recognition and regulation of human angiotensin-I converting enzyme (ACE) activity by natural inhibitory peptides. Sci. Rep. 2012, 2, 717. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Wang, J.; Liao, W.; Jiang, X.; Wu, J. Identification and Characterization of Gastrointestinal-Resistant Angiotensin-Converting Enzyme Inhibitory Peptides from Egg White Proteins. J. Agric. Food Chem. 2019, 67, 7147–7156. [Google Scholar] [CrossRef] [PubMed]
- Asoodeh, A.; Homayouni-Tabrizi, M.; Shabestarian, H.; Emtenani, S.; Emtenani, S. Biochemical characterization of a novel antioxidant and angiotensin I-converting enzyme inhibitory peptide from Struthio camelus egg white protein hydrolysis. J. Food Drug Anal. 2016, 24, 332–342. [Google Scholar] [CrossRef] [PubMed]
- Ngoh, Y.Y.; Gan, C.Y. Identification of Pinto bean peptides with inhibitory effects on alpha-amylase and angiotensin converting enzyme (ACE) activities using an integrated bioinformatics-assisted approach. Food Chem. 2018, 267, 124–131. [Google Scholar] [CrossRef]
- Shobako, N.; Ogawa, Y.; Ishikado, A.; Harada, K.; Kobayashi, E.; Suido, H.; Kusakari, T.; Maeda, M.; Suwa, M.; Matsumoto, M.; et al. A Novel Antihypertensive Peptide Identified in Thermolysin-Digested Rice Bran. Mol. Nutr. Food Res. 2018, 62, 1700732. [Google Scholar] [CrossRef]
- Chay, S.Y.; Salleh, A.; Sulaiman, N.F.; Zainal Abidin, N.; Hanafi, M.A.; Zarei, M.; Saari, N. Blood-pressure lowering efficacy of winged bean seed hydrolysate in spontaneously hypertensive rats, peptide characterization and a toxicity study in Sprague-Dawley rats. Food Funct. 2018, 9, 1657–1671. [Google Scholar] [CrossRef]
- Ko, J.-Y.; Kang, N.; Lee, J.-H.; Kim, J.-S.; Kim, W.-S.; Park, S.-J.; Kim, Y.-T.; Jeon, Y.-J. Angiotensin I-converting enzyme inhibitory peptides from an enzymatic hydrolysate of flounder fish (Paralichthys olivaceus) muscle as a potent anti-hypertensive agent. Process Biochem. 2016, 51, 535–541. [Google Scholar] [CrossRef]
- Liao, P.; Lan, X.; Liao, D.; Sun, L.; Zhou, L.; Sun, J.; Tong, Z. Isolation and Characterization of Angiotensin I-Converting Enzyme (ACE) Inhibitory Peptides from the Enzymatic Hydrolysate of Carapax Trionycis (the Shell of the Turtle Pelodiscus sinensis). J. Agric. Food Chem. 2018, 66, 7015–7022. [Google Scholar] [CrossRef]
- Ko, S.-C.; Jang, J.; Ye, B.-R.; Kim, M.-S.; Choi, I.-W.; Park, W.-S.; Heo, S.-J.; Jung, W.-K. Purification and molecular docking study of angiotensin I-converting enzyme (ACE) inhibitory peptides from hydrolysates of marine sponge Stylotella aurantium. Process Biochem. 2017, 54, 180–187. [Google Scholar] [CrossRef]
- Wu, Q.; Cai, Q.-F.; Yoshida, A.; Sun, L.-C.; Liu, Y.-X.; Liu, G.-M.; Su, W.-J.; Cao, M.-J. Purification and characterization of two novel angiotensin I-converting enzyme inhibitory peptides derived from R-phycoerythrin of red algae (Bangia fusco-purpurea). Eur. Food Res. Technol. 2016, 243, 779–789. [Google Scholar] [CrossRef]
- Sun, S.; Xu, X.; Sun, X.; Zhang, X.; Chen, X.; Xu, N. Preparation and Identification of ACE Inhibitory Peptides from the Marine Macroalga Ulva intestinalis. Mar. Drugs 2019, 17, 179. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, Q.; Ji, Z.; Shu, G.; Chen, H. Production and fermentation characteristics of angiotensin-I-converting enzyme inhibitory peptides of goat milk fermented by a novel wild Lactobacillus plantarum 69. LWT 2018, 91, 532–540. [Google Scholar] [CrossRef]
- Nawaz, K.A.A.; David, S.M.; Murugesh, E.; Thandeeswaran, M.; Kiran, K.G.; Mahendran, R.; Palaniswamy, M.; Angayarkanni, J. Identification and in silico characterization of a novel peptide inhibitor of angiotensin converting enzyme from pigeon pea (Cajanus cajan). Phytomedicine 2017, 36, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Muttenthaler, M.; King, G.F.; Adams, D.J.; Alewood, P.F. Trends in peptide drug discovery. Nat. Rev. Drug Discov. 2021, 20, 309–325. [Google Scholar] [CrossRef]
- Cheung, H.S.; Wang, F.L.; Ondetti, M.A.; Sabo, E.F.; Cushman, D.W. Binding of peptide substrates and inhibitors of angiotensin-converting enzyme. Importance of the COOH-terminal dipeptide sequence. J. Biol. Chem. 1980, 255, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Vukic, V.R.; Vukic, D.V.; Milanovic, S.D.; Ilicic, M.D.; Kanuric, K.G.; Johnson, M.S. In silico identification of milk antihypertensive di- and tripeptides involved in angiotensin I-converting enzyme inhibitory activity. Nutr. Res. 2017, 46, 22–30. [Google Scholar] [CrossRef]
- Sosalagere, C.; Adesegun Kehinde, B.; Sharma, P. Isolation and functionalities of bioactive peptides from fruits and vegetables: A reviews. Food Chem. 2022, 366, 130494. [Google Scholar] [CrossRef]
- International Coffee Organization. Coffee Market Report (January 2022). 2022. Available online: http://www.ico.org/documents/cy2021-22/cmr-0122-e.pdf (accessed on 1 January 2022).
- Hu, G.L.; Wang, X.; Zhang, L.; Qiu, M.H. The sources and mechanisms of bioactive ingredients in coffee. Food Funct. 2019, 10, 3113–3126. [Google Scholar] [CrossRef] [PubMed]
- Chu, R.; Wan, L.S.; Peng, X.R.; Yu, M.Y.; Zhang, Z.R.; Zhou, L.; Li, Z.R.; Qiu, M.H. Characterization of New Ent-kaurane Diterpenoids of Yunnan Arabica Coffee Beans. Nat. Prod. Bioprospect. 2016, 6, 217–223. [Google Scholar] [CrossRef]
- Wang, X.; Meng, Q.; Peng, X.; Hu, G.; Qiu, M. Identification of new diterpene esters from green Arabica coffee beans, and their platelet aggregation accelerating activities. Food Chem. 2018, 263, 251–257. [Google Scholar] [CrossRef]
- Oestreich-Janzen, S.H. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; CAFEA GmbH Press: Hamburg, Germany, 2013; pp. 1085–1117. ISBN 9780124095472. [Google Scholar]
- Sandra, M.T.; Baú, P.M.; Santoro, L.G. Seed Storage Protein in Coffee. Fisiol. Veg. 2001, 13, 7. [Google Scholar] [CrossRef]
- Ribeiro, E.; Rocha, T.S.; Prudencio, S.H. Potential of green and roasted coffee beans and spent coffee grounds to provide bioactive peptides. Food Chem. 2021, 348, 129061. [Google Scholar] [CrossRef] [PubMed]
- Valdes, A.; Castro-Puyana, M.; Marina, M.L. Isolation of proteins from spent coffee grounds. Polyphenol removal and peptide identification in the protein hydrolysates by RP-HPLC-ESI-Q-TOF. Food Res. Int. 2020, 137, 109368. [Google Scholar] [CrossRef]
- Ramírez, K.; Pineda-Hidalgo, K.V.; Rochín-Medina, J.J. Fermentation of spent coffee grounds by Bacillus clausii induces release of potentially bioactive peptides. LWT 2021, 138, 110685. [Google Scholar] [CrossRef]
- Pérez-Míguez, R.; Marina, M.L.; Castro-Puyana, M. High resolution liquid chromatography tandem mass spectrometry for the separation and identification of peptides in coffee silverskin protein hydrolysates. Microchem. J. 2019, 149, 103951. [Google Scholar] [CrossRef]
- Esteve, C.; Marina, M.L.; Garcia, M.C. Novel strategy for the revalorization of olive (Olea europaea) residues based on the extraction of bioactive peptides. Food Chem. 2015, 167, 272–280. [Google Scholar] [CrossRef]
- Jehmlich, N.; Golatowski, C.; Murr, A.; Salazar, G.; Dhople, V.M.; Hammer, E.; Volker, U. Comparative evaluation of peptide desalting methods for salivary proteome analysis. Clin. Chim. Acta 2014, 434, 16–20. [Google Scholar] [CrossRef]
- Cox, J.; Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008, 26, 1367–1372. [Google Scholar] [CrossRef] [PubMed]
- Tyanova, S.; Temu, T.; Carlson, A.; Sinitcyn, P.; Mann, M.; Cox, J. Visualization of LC-MS/MS proteomics data in MaxQuant. Proteomics 2015, 15, 1453–1456. [Google Scholar] [CrossRef]
- Kumar, R.; Chaudhary, K.; Singh Chauhan, J.; Nagpal, G.; Kumar, R.; Sharma, M.; Raghava, G.P. An in silico platform for predicting, screening and designing of antihypertensive peptides. Sci. Rep. 2015, 5, 12512. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Miao, J.; Guo, J.; Liu, J.; Xia, Z.; Chen, B.; Ma, F.; Cao, Y. Two Novel Angiotensin I-Converting Enzyme (ACE) Inhibitory Peptides from Rice (Oryza sativa L.) Bran Protein. J. Agric. Food Chem. 2023, 71, 4153–4162. [Google Scholar] [CrossRef]
- Hu, G.; Peng, X.; Dong, D.; Nian, Y.; Gao, Y.; Wang, X.; Hong, D.; Qiu, M. New ent-kaurane diterpenes from the roasted arabica coffee beans and molecular docking to alpha-glucosidase. Food Chem. 2021, 345, 128823. [Google Scholar] [CrossRef] [PubMed]
- Tacias-Pascacio, V.G.; Morellon-Sterling, R.; Siar, E.H.; Tavano, O.; Berenguer-Murcia, A.; Fernandez-Lafuente, R. Use of Alcalase in the production of bioactive peptides: A review. Int. J. Biol. Macromol. 2020, 165, 2143–2196. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ma, M.; Yu, Z.; Du, S.K. Preparation and identification of antioxidant peptides from cottonseed proteins. Food Chem. 2021, 352, 129399. [Google Scholar] [CrossRef] [PubMed]
- van den Burg, B.; Eijsink, V. Thermolysin and Related Bacillus Metallopeptidases. In Handbook of Proteolytic Enzymes; Academic Press: Cambridge, MA, USA, 2013; pp. 540–553. [Google Scholar]
- Chen, J.; Sun, S.; Li, Y.; Liu, R. Proteolysis of tilapia skin collagen: Identification and release behavior of ACE-inhibitory peptides. LWT 2021, 139, 110502. [Google Scholar] [CrossRef]
- Abdelhedi, O.; Nasri, M. Basic and recent advances in marine antihypertensive peptides: Production, structure-activity relationship and bioavailability. Trends Food Sci. Technol. 2019, 88, 543–557. [Google Scholar] [CrossRef]
- Puchalska, P.; Marina Alegre, M.L.; Garcia Lopez, M.C. Isolation and characterization of peptides with antihypertensive activity in foodstuffs. Crit. Rev. Food Sci. Nutr. 2015, 55, 521–551. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Li, Y.; Peng, K.; Wang, X.L.; Ding, Z.; Liu, L.; Xu, P.; Liu, G.Q. Isolation and Characterization of Three Antihypertension Peptides from the Mycelia of Ganoderma lucidum (Agaricomycetes). J. Agric. Food Chem. 2019, 67, 8149–8159. [Google Scholar] [CrossRef] [PubMed]
- Ling, Y.; Liping, S.; Yongliang, Z. Preparation and identification of novel inhibitory angiotensin-I-converting enzyme peptides from tilapia skin gelatin hydrolysates: Inhibition kinetics and molecular docking. Food Funct. 2018, 9, 5251–5259. [Google Scholar] [CrossRef]
- Zarei, M.; Ghanbari, R.; Zainal, N.; Ovissipour, R.; Saari, N. Inhibition kinetics, molecular docking, and stability studies of the effect of papain-generated peptides from palm kernel cake proteins on angiotensin-converting enzyme (ACE). Food Chem. 2022, 5, 100147. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Su, J.; Chen, M.; Chen, J.; Ding, W.; Li, Y.; Yin, H. Two novel potent ACEI peptides isolated from Pinctada fucata meat hydrolysates using in silico analysis: Identification, screening and inhibitory mechanisms. RSC Adv. 2021, 11, 12172–12182. [Google Scholar] [CrossRef] [PubMed]
- Iroyukifujita, H.; Eiichiyokoyama, K.; Yoshikawa, M. Classification and Antihypertensive Activity of Angiotensin I-Converting Enzyme Inhibitory Peptides Derived from Food Proteins. J. Food Sci. 2000, 65, 564–569. [Google Scholar] [CrossRef]
No. | Peptide Sequence | Score | Hydrophobicity (kcal/mol) | Isoelectric Point | SVM Score |
---|---|---|---|---|---|
1. | SENIGLPQ | 189.5 | 12.53 | 3.12 | 0.00 |
2. | ILLPGFTQ | 187.6 | 4.88 | 5.44 | −0.75 |
3. | VVINPGNPTGQ | 186.4 | 11.16 | 5.44 | −0.38 |
4. | GLPSGGAPSGY | 185.1 | 12.24 | 5.45 | 1.47 |
5. | TNDNAMINPL | 166.5 | 11.94 | 3.12 | −0.94 |
6. | FEDNAGVIVNPK | 157.7 | 17.71 | 4.00 | −0.05 |
7. | SPVAPLAPVTL | 155.9 | 6.61 | 5.50 | 0.18 |
8. | GESFWGGQ | 152.4 | 12.41 | 3.12 | 0.58 |
9. | EGDGGVGTIKL | 150.6 | 19.99 | 4.01 | −1.57 |
10. | GIESVPAALIGL | 138.8 | 10.23 | 3.20 | −1.14 |
11. | RAIPEEVL | 134.7 | 14.78 | 4.09 | 0.07 |
12. | SAERGFLY | 133.6 | 11.78 | 6.58 | −0.43 |
13. | AFNVDLK | 129.4 | 12.27 | 6.76 | −1.15 |
14. | GLPASPGAAVGQ | 128.4 | 12.65 | 5.44 | 0.80 |
15. | VADPDKLPTIPGQ | 126.0 | 18.24 | 3.92 | 0.47 |
16. | NLGSIPTQ | 125.8 | 9.15 | 5.25 | −0.43 |
17. | ADLSRIDL | 125.5 | 14.33 | 3.93 | −0.46 |
18. | SAFRAIPE | 124.1 | 12.11 | 6.61 | −1.15 |
19. | ALDPGLTY | 122.2 | 10.37 | 3.05 | 0.49 |
20. | IQIIFPE | 120.9 | 7.37 | 3.09 | −0.53 |
21. | APIAVGDVIPDGTL | 120.9 | 14.60 | 2.94 | −1.23 |
22. | GQLIIVPQ | 119.3 | 6.78 | 5.44 | −1.04 |
23. | ILMIGTQ | 117.6 | 5.91 | 5.44 | −1.80 |
24. | GVKSVEIL | 116.5 | 12.65 | 6.83 | −0.27 |
25. | TNEILIGK | 114.5 | 13.09 | 6.55 | −1.30 |
26. | APILDEVAVSL | 113.5 | 12.23 | 2.98 | −0.31 |
27. | ALRALPE | 111.3 | 11.98 | 6.98 | −0.41 |
28. | ADSLDLRL | 107.4 | 14.20 | 3.93 | 0.10 |
29. | AKDPVRVL | 105.1 | 14.62 | 10.20 | 0.20 |
30. | KNPNIPDPNTL | 105.0 | 15.19 | 6.44 | 0.72 |
31. | SDVGLERQ | 103.8 | 17.65 | 4.00 | −1.13 |
32. | AGPGGWNDPDML | 103.8 | 16.25 | 2.94 | 0.12 |
33. | TVDKRLL | 103.0 | 13.44 | 9.82 | −0.75 |
34. | KNPNIPDPNTLM | 102.1 | 14.52 | 6.44 | 0.17 |
35. | SALRAIPE | 101.5 | 12.57 | 6.61 | −1.11 |
36. | GYIPGIIY | 100.9 | 5.56 | 5.43 | −0.53 |
37. | RVDSIPIL | 100.1 | 10.00 | 6.42 | −1.47 |
38. | GDAPRVL | 98.4 | 13.43 | 6.76 | −0.27 |
39. | VASGNVL | 98.0 | 8.69 | 5.58 | −0.93 |
40. | VIEGDLL | 97.6 | 12.24 | 2.98 | −1.55 |
41. | ALATPLL | 96.3 | 5.54 | 5.59 | −0.30 |
42. | AITPPVMLPPL | 94.7 | 4.46 | 5.59 | 0.51 |
43. | LILGPDSPAVQ | 93.3 | 10.62 | 3.04 | 0.60 |
44. | IPLDLNY | 71.4 | 8.20 | 3.05 | 0.31 |
45. | DIIEFIQ | 70.0 | 10.87 | 2.91 | −1.40 |
46. | IIPNEVY | 67.0 | 9.11 | 3.14 | 1.04 |
47. | GGKADVL | 67.0 | 15.43 | 6.73 | −0.79 |
48. | VGHTDTARMLL | 63.6 | 14.20 | 7.89 | −1.26 |
49. | METSNSVPSIL | 62.0 | 10.65 | 3.20 | −0.54 |
50. | AATLPLM | 61.3 | 6.12 | 5.41 | −1.60 |
No. | Peptide Sequence | Score | Hydrophobicity (kcal/mol) | Isoelectric Point | SVM Score |
---|---|---|---|---|---|
1. | LITMEPNSL | 176.0 | 8.94 | 3.20 | −0.80 |
2. | IFDPFPSD | 164.0 | 11.38 | 2.78 | 0.33 |
3. | ITPPVMLPP | 163.3 | 5.21 | 5.23 | 1.33 |
4. | VLETPDGPL | 148.2 | 13.89 | 2.98 | 1.42 |
5. | FVDPDGWKT | 141.5 | 15.26 | 3.92 | 0.29 |
6. | FWDSNNPE | 141.0 | 13.67 | 2.87 | −0.74 |
7. | FLPEYSEQ | 128.6 | 12.86 | 2.96 | −0.26 |
8. | LFPSPSPPPP | 128.6 | 6.70 | 5.23 | 0.21 |
9. | IGLPQEAD | 128.2 | 15.36 | 2.82 | 0.51 |
10. | AVNHPNFPST | 117.9 | 11.25 | 7.95 | −0.34 |
11. | VMKNRPISEE | 107.0 | 18.97 | 6.98 | 0.28 |
12. | VKNPNPIPIP | 104.4 | 10.26 | 10.14 | 2.31 |
13. | VVGDPLDPNSHHGPQ | 99.8 | 22.47 | 4.98 | 0.86 |
14. | LLERGPTPEP | 98.2 | 16.29 | 4.08 | 0.75 |
15. | IDWKETPEAHV | 90.1 | 21.15 | 4.32 | 0.35 |
16. | YSPDGEEGFPGNL | 88.1 | 20.17 | 2.90 | 0.97 |
17. | FHPPGSDRVD | 81.3 | 19.04 | 5.14 | −0.27 |
18. | VMDDTSESKPQHPSR | 80.5 | 27.30 | 5.27 | 0.38 |
19. | IDWKETPEAH | 78.9 | 21.61 | 4.31 | 0.43 |
20. | FDDEVKQGQL | 72.6 | 20.88 | 3.69 | −1.29 |
21. | FRFPSEAG | 67.0 | 12.17 | 6.65 | 0.28 |
Enzyme | ACE Inhibition Rate (%) | |
---|---|---|
CP2 (IIPNEVY) | CP3 (ITPPVMLPP) | |
Control a | 49.3 | 53.3 |
Pepsin | 36.6 | 54.9 |
Pepsin-Pancreatin | 9.8 | 69.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, H.; He, M.; Hu, G.; Li, Z.; Al-Romaima, A.; Wu, Z.; Liu, X.; Qiu, M. Discovery of ACE Inhibitory Peptides Derived from Green Coffee Using In Silico and In Vitro Methods. Foods 2023, 12, 3480. https://doi.org/10.3390/foods12183480
Dai H, He M, Hu G, Li Z, Al-Romaima A, Wu Z, Liu X, Qiu M. Discovery of ACE Inhibitory Peptides Derived from Green Coffee Using In Silico and In Vitro Methods. Foods. 2023; 12(18):3480. https://doi.org/10.3390/foods12183480
Chicago/Turabian StyleDai, Haopeng, Min He, Guilin Hu, Zhongrong Li, Abdulbaset Al-Romaima, Zhouwei Wu, Xiaocui Liu, and Minghua Qiu. 2023. "Discovery of ACE Inhibitory Peptides Derived from Green Coffee Using In Silico and In Vitro Methods" Foods 12, no. 18: 3480. https://doi.org/10.3390/foods12183480
APA StyleDai, H., He, M., Hu, G., Li, Z., Al-Romaima, A., Wu, Z., Liu, X., & Qiu, M. (2023). Discovery of ACE Inhibitory Peptides Derived from Green Coffee Using In Silico and In Vitro Methods. Foods, 12(18), 3480. https://doi.org/10.3390/foods12183480