Enhancing Bread’s Benefits: Investigating the Influence of Boosted Native Sourdough on FODMAP Modulation and Antioxidant Potential in Wheat Bread
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Flour Quality
2.3. Sample Preparation
2.4. Bread Quality
2.5. FODMAP Content
2.6. Antioxidant Properties
2.7. Statistical Analysis
3. Results and Discussion
3.1. Flour Quality
3.2. Bread Quality
3.3. FODMAP Content
3.4. Antioxidant Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Menezes, L.A.A.; Minervini, F.; Filannino, P.; Sardaro, M.L.S.; Gatti, M.; De Dea Lindner, J. Effects of Sourdough on FODMAPs in Bread and Potential Outcomes on Irritable Bowel Syndrome Patients and Healthy Subjects. Front. Microbiol. 2018, 9, 1972. [Google Scholar] [CrossRef] [PubMed]
- El-Salhy, M.; Gundersen, D. Diet in irritable bowel syndrome. Nutr. J. 2015, 14, 36. [Google Scholar] [PubMed]
- Shah, S.L.; Lacy, B.E. Dietary Interventions and Irritable Bowel Syndrome: A Review of the Evidence. Curr. Gastroenterol. Rep. 2016, 18, 41. [Google Scholar] [CrossRef] [PubMed]
- Whelan, K.; Abrahmsohn, O.; David, G.J.P.; Staudacher, H.; Irving, P.; Lomer, M.C.E.; Ellis, P.R. Fructan content of commonly consumed wheat, rye and gluten-free breads. Int. J. Food Sci. Nutr. 2011, 62, 498–503. [Google Scholar] [CrossRef] [PubMed]
- Nyyssölä, A.; Ellilä, S.; Nordlund, E.; Poutanen, K. Reduction of FODMAP content by bioprocessing. Trends Food Sci. Technol. 2020, 99, 257–272. [Google Scholar]
- Laatikainen, R.; Koskenpato, J.; Hongisto, S.M.; Loponen, J.; Poussa, T.; Hillilä, M.; Korpela, R. Randomised clinical trial: Low-FODMAP rye bread vs. regular rye bread to relieve the symptoms of irritable bowel syndrome. Aliment. Pharmacol. Ther. 2016, 44, 460–470. [Google Scholar] [CrossRef]
- Schmidt, M.; Sciurba, E. Determination of FODMAP contents of common wheat and rye breads and the effects of processing on the final contents. Eur. Food Res. Technol. 2020, 247, 395–410. [Google Scholar] [CrossRef]
- Ziegler, J.U.; Steiner, D.; Longin, C.F.H.; Würschum, T.; Schweiggert, R.M.; Carle, R. Wheat and the irritable bowel syndrome—FODMAP levels of modern and ancient species and their retention during bread making. J. Funct. Foods 2016, 25, 257–266. [Google Scholar] [CrossRef]
- Gänzle, M.G.; Vermeulen, N.; Vogel, R.F. Carbohydrate, peptide and lipid metabolism of lactic acid bacteria in sourdough. Food Microbiol. 2007, 24, 128–138. [Google Scholar] [CrossRef]
- Fraberger, V.; Call, L.-M.; Domig, K.J.; D’Amico, S. Applicability of Yeast Fermentation to Reduce Fructans and Other FODMAPs. Nutrients 2018, 10, 1247. [Google Scholar] [CrossRef]
- Loponen, J.; Gänzle, M.G. Use of Sourdough in Low FODMAP Baking. Foods 2018, 7, 96. [Google Scholar] [CrossRef] [PubMed]
- Pirkola, L.; Laatikainen, R.; Loponen, J.; Hongisto, S.; Hillilä, M.; Nuora, A.; Yang, B.; Linderborg, K.M.; Freese, R. Low-FODMAP vs regular rye bread in irritable bowel syndrome: Randomized SmartPill® study. World J. Gastroenterol. 2018, 24, 1259–1268. [Google Scholar] [CrossRef] [PubMed]
- Rašević, V.; Vranac, A.; Oručević-Žuljević, S. Impact of Sourdough addition on the bread quality. Work. Fac. Agric. Food Sci. 2018, 67, 401–410. [Google Scholar]
- Banu, I.; Vasilean, I.; Aprodu, I. Effect of Lactic Fermentation on Antioxidant Capacity of Rye Sourdough and Bread. Food Sci. Technol. Res. 2010, 16, 571–576. [Google Scholar] [CrossRef]
- Colosimo, R.; Gabriele, M.; Cifelli, M.; Longo, V.; Domenici, V.; Pucci, L. The effect of sourdough fermentation on Triticum dicoccum from Garfagnana: 1H NMR characterization and analysis of the antioxidant activity. Food Chem. 2020, 305, 125510. [Google Scholar] [CrossRef]
- American Association of Cereal Chemists. AACC 2000 Approved Methods of the American Association of Cereal Chemists, 10th ed.; Methods 44-15 A, 44-40; AACC: St. Paul, MN, USA, 2000; Available online: https://books.google.pl/books/about/Approved_Methods_of_the_American_Associa.html?id=xJwQAQAAMAAJ&redir_esc=y (accessed on 15 August 2023).
- Lachowicz, S.; Świeca, M.; Pejcz, E. Biological activity, phytochemical parameters, and potential bioaccessibility of wheat bread enriched with powder and microcapsules made from Saskatoon berry. Food Chem. 2021, 338, 128026. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing Ability of plasma (FRAP) as a measure of ‘‘Antioxidant Power”, The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Harati, H.; Bekes, F.; Howell, K.; Noonan, S.; Florides, C.; Beasley, J.; Diepeveen, D.; Appels, R. Signatures for torque variation in wheat dough structure are affected by enzymatic treatments and heating. Food Chem. 2020, 316, 126357. [Google Scholar] [CrossRef]
- Crowley, P.; Schober, T.J.; Clarke, C.I.; Arendt, E.K. The effect of storage time on textural and crumb grain characteristics of sourdough wheat bread. Eur. Food Res. Technol. 2002, 214, 489–496. [Google Scholar] [CrossRef]
- Struyf, N.; Laurent, J.; Lefevere, B.; Verspreet, J.; Verstrepen, K.J.; Courtin, C.M. Establishing the relative importance of damaged starch and fructan as sources of fermentable sugars in wheat flour and whole meal bread dough fermentations. Food Chem. 2017, 218, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Dal Bello, F.; Clarke, C.I.; Ryan, L.A.M.; Ulmer, H.; Schober, T.J.; Ström, K.; Sjögren, J.; Van Sinderen, D.; Schnürer, J.; Arendt, E.K. Improvement of the quality and shelf life of wheat bread by fermentation with the antifungal strain Lactobacillus plantarum FST 1.7. J. Cereal Sci. 2007, 45, 309–318. [Google Scholar] [CrossRef]
- Gänzle, M.G. Enzymatic and bacterial conversions during sourdough fermentation. Food Microbiol. 2014, 37, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Un-Nisa, Z.; Ur-Rehman, S.; Huma, N.; Shahid, M. Impact of mixed Lactic Acid Bacterial (LAB) Culture on flavoring profile and quality attributes of spring wheat sourdough bread. Pak. J. Agric. Sci. 2016, 53, 225–231. [Google Scholar]
- Grausgruber, H.; Lovegrove, A.; Shewry, P.; Bekes, F. FODMAPs in Wheat. In Wheat Quality for Improving Processing and Human Health; Igrejas, G., Ikeda, T.M., Guzman, C., Eds.; Springer: Cham, Switzerland, 2020; pp. 517–534. [Google Scholar]
- Chiș, M.S.; Păucean, A.; Stan, L.; Mureșan, V.; Vlaic, R.A.; Man, S.; Biriș-Dorhoi, E.S.; Muste, S. Lactobacillus plantarum ATCC 8014 in quinoa sourdough adaptability and antioxidant potential. Rom. Biotechnol. Lett. 2018, 23, 13581–13591. [Google Scholar]
- Curiel, A.; Curri, N.; Curiel, J.A.; Di Cagno, R.; Pontonio, E.; Cavoski, I.; Gobbetti, M.; Rizzello, C.G. Exploitation of Albanian wheat cultivars: Characterization of the flours and lactic acid bacteria microbiota and selection of starters for sourdough fermentation. Food Microbiol. 2014, 44, 96–107. [Google Scholar]
- Rizzello, C.G.; Lorusso, A.; Russo, V.; Pinto, D.; Marzani, B.; Gobbetti, M. Improving the antioxidant properties of quinoa flour through fermentation with selected autochthonous lactic acid bacteria. Int. J. Food Microbiol. 2017, 241, 252. [Google Scholar] [CrossRef]
- Pejcz, E.; Lachowicz-Wiśniewska, S.; Nowicka, P.; Wojciechowicz-Budzisz, A.; Spychaj, R.; Gil, Z. Effect of Inoculated Lactic Acid Fermentation on the Fermentable Saccharides and Polyols, Polyphenols and Antioxidant Activity Changes in Wheat Sourdough. Molecules 2021, 26, 4193. [Google Scholar] [CrossRef]
Fraction Size [μm] | Falling Number [s] | Protein Content [%] | Water Absorption [%] | Dough Development Time [min] | Dough Stability [min] | Dough Softening (C2) [Nm] | Peak Visosity (C3) [Nm] | Activity of Amylolytic Enzymes (C4) [Nm] | Retrogradation (C5) [Nm] |
---|---|---|---|---|---|---|---|---|---|
93 ± 0.2 | 390.5 ± 4.6 | 14.72 ± 0.20 | 59.10 ± 0.57 | 3.38 ± 0.177 | 8.40 ± 0.141 | 0.424 ± 0.001 | 1.656 ± 0.003 | 1.770 ± 0.034 | 2.892 ± 0.042 |
Factors | Loaf Volume [cm3/100 g] | L* | a* | b* | ΔE | Hue | Chroma | BI | |
---|---|---|---|---|---|---|---|---|---|
Fermentation time | 0 h | 456.2 d | 72.33 a | −2.98 d | 22.06 a | 0.00 d | 277.66 a | 22.25 a | 0.01 d |
24 h | 505.3 a | 66.60 b | −1.41 c | 20.46 c | 43.21 c | 273.90 b | 20.50 c | 1.50 c | |
48 h | 474.0 c | 65.79 c | −1.16 b | 21.12 b | 53.54 b | 273.10 c | 21.15 b | 1.89 b | |
72 h | 480.6 b | 64.75 d | −0.89 a | 20.49 c | 70.57 a | 272.45 d | 20.50 c | 2.13 a | |
Sourdough type | Spontaneous fermentation | 450.0 b | 67.84 a | −1.74 b | 21.54 a | 34.93 c | 274.58 a | 21.62 a | 1.30 c |
L. casei | 502.6 a | 67.37 b | −1.56 a | 20.68 c | 42.01 b | 274.19 b | 20.75 c | 1.38 b | |
L. plantarum | 507.3 a | 66.89 c | −1.52 a | 20.86 b | 48.80 a | 274.06 b | 20.93 b | 1.47 a |
Factors | TPC [mgGA/100 g DM.] | ABTS [mmol Trolox/100 g DM.] | FRAP [mmol Trolox/100 g DM | |
---|---|---|---|---|
Fermentation time | 0 h | 62.32 c | 0.44 a | 0.39 b |
24 h | 131.76 b | 0.38 b | 0.51 a | |
48 h | 130.51 b | 0.44 a | 0.53 a | |
72 h | 157.28 a | 0.40 b | 0.50 a | |
Sourdough type | spontaneous | 122.31 ab | 0.38 b | 0.45 b |
L. casei | 114.35 b | 0.44 a | 0.51 a | |
L. plantarum | 124.74 a | 0.43 a | 0.50 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pejcz, E.; Lachowicz-Wiśniewska, S.; Nowicka, P.; Wojciechowicz-Budzisz, A.; Harasym, J. Enhancing Bread’s Benefits: Investigating the Influence of Boosted Native Sourdough on FODMAP Modulation and Antioxidant Potential in Wheat Bread. Foods 2023, 12, 3552. https://doi.org/10.3390/foods12193552
Pejcz E, Lachowicz-Wiśniewska S, Nowicka P, Wojciechowicz-Budzisz A, Harasym J. Enhancing Bread’s Benefits: Investigating the Influence of Boosted Native Sourdough on FODMAP Modulation and Antioxidant Potential in Wheat Bread. Foods. 2023; 12(19):3552. https://doi.org/10.3390/foods12193552
Chicago/Turabian StylePejcz, Ewa, Sabina Lachowicz-Wiśniewska, Paulina Nowicka, Agata Wojciechowicz-Budzisz, and Joanna Harasym. 2023. "Enhancing Bread’s Benefits: Investigating the Influence of Boosted Native Sourdough on FODMAP Modulation and Antioxidant Potential in Wheat Bread" Foods 12, no. 19: 3552. https://doi.org/10.3390/foods12193552
APA StylePejcz, E., Lachowicz-Wiśniewska, S., Nowicka, P., Wojciechowicz-Budzisz, A., & Harasym, J. (2023). Enhancing Bread’s Benefits: Investigating the Influence of Boosted Native Sourdough on FODMAP Modulation and Antioxidant Potential in Wheat Bread. Foods, 12(19), 3552. https://doi.org/10.3390/foods12193552