Diversifying the Flavor of Black Rice Wines through Three Different Regional Xiaoqus in China and Unraveling Their Core Functional Microorganisms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Xiaoqu Samples and Black Rice
2.2. BRW Fermentation and Sample Collection
2.3. Physiochemical Property Determination
2.4. Measurement of Flavor Compounds
2.5. DNA Extraction and PCR Amplification
2.6. Illumina MiSeq Sequencing and Bioinformatic Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Physiochemical Property Analysis
3.2. Volatile Compound Analysis of Black Rice Wine
3.2.1. Dynamic Changes in Volatile Components during Fermentation
3.2.2. Characteristic Flavor Substances of Black Rice Wine
3.3. Microbial Analysis
3.3.1. Alpha Diversity Analysis
3.3.2. Microbial Composition
3.3.3. Beta Diversity Analysis
3.4. Microbial Succession during Black Rice Wine Fermentation
3.5. Correlations between Core Functional Microbial Community and Characteristic Flavor Compounds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Liu, Y.; Xiao, C.; Liu, L.; Hao, M.; Wang, J.; Liu, X. Simultaneous Determination of 15 Phenolic Constituents of Chinese Black Rice Wine by Hplc-Ms/Ms with Spe. J. Food Sci. 2014, 79, C1100–C1105. [Google Scholar] [CrossRef]
- Jiang, L.; Mu, Y.; Wei, S.; Mu, Y.; Zhao, C. Study on the Dynamic Changes and Formation Pathways of Metabolites During the Fermentation of Black Waxy Rice Wine. Food Sci. Nutr. 2020, 8, 2288–2298. [Google Scholar] [CrossRef]
- Ito, V.C.; Lacerda, L.G. Black Rice (Oryza Sativa L.): A Review of Its Historical Aspects, Chemical Composition, Nutritional and Functional Properties, and Applications and Processing Technologies. Food Chem. 2019, 301, 125304. [Google Scholar] [CrossRef]
- Zheng, R.; Jingyi, S.; Chengtuo, N.; Feiyun, Z.; Chonghua, Y.; Diqing, S.; Jinjing, W.; Qi, L.; Chunfeng, L. Application of Purple or Black Rice in Brewing Industry. Food Ferment. Ind. 2020, 46, 263–268. [Google Scholar]
- Ito, V.C.; Acacio, A.F.Z.; Ivo, M.D.; Marta, S.; Alessandro, N.; Luiz, G.L. Effects of Gamma Radiation on the Stability and Degradation Kinetics of Phenolic Compounds and Antioxidant Activity During Storage of (Oryza Sativa L.) Black Rice Flour. Braz. Arch. Biol. Technol. 2019, 62, e19180470. [Google Scholar] [CrossRef]
- Peng, B.; Aoxing, T.; Ming, Z. A Method of Brewing Fully Fermented Black Rice Wine Rich in Anthocyanins; China National Intellectual Property Administration: Beijing, China, 2021.
- Tian, S.; Zeng, W.; Fang, F.; Zhou, J.; Du, G. The Microbiome of Chinese Rice Wine (Huangjiu). Cur. Res. Food Sci. 2022, 5, 325–335. [Google Scholar] [CrossRef]
- Yu, H.; Guo, W.; Xie, T.; Ai, L.; Tian, H.; Chen, C. Aroma Characteristics of Traditional Huangjiu Produced around Winter Solstice Revealed by Sensory Evaluation, Gas Chromatography-Mass Spectrometry and Gas Chromatography-Ion Mobility Spectrometry. Food Res. Int. 2021, 145, 110421. [Google Scholar] [CrossRef]
- Zhao, C.; Su, W.; Mu, Y.; Jiang, L.; Mu, Y. Correlations between Microbiota with Physicochemical Properties and Volatile Flavor Components in Black Glutinous Rice Wine Fermentation. Food Res. Int. 2020, 138, 109800. [Google Scholar] [CrossRef]
- Gui-Mei, C.; Huang, Z.-R.; Wu, L.; Wu, Q.; Guo, W.-L.; Zhao, W.-H.; Liu, B.; Zhang, W.; Rao, P.-F.; Lv, X.-C.; et al. Microbial Diversity and Flavor of Chinese Rice Wine (Huangjiu): An Overview of Current Research and Future Prospects. Cur. Opin. Food Sci. 2021, 42, 37–50. [Google Scholar]
- Zhao, C.; Wei, S.; Yingchun, M.; Lixin, L.; Mouming, Z.; Shuyi, Q.; Guowan, S.; Li, J. Effects of Jiuqu Inoculating Rhizopus Oryzae Q303 and Saccharomyces Cerevisiae on Chemical Components and Microbiota during Black Glutinous Rice Wine Fermentation. Int. J. Food Microbiol. 2023, 385, 110012. [Google Scholar] [CrossRef]
- Jiang, L.; Su, W.; Mu, Y.; Mu, Y. Major Metabolites and Microbial Community of Fermented Black Glutinous Rice Wine with Different Starters. Front. Microbiol. 2020, 11, 593. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Xia, Q.; Chen, J.; Jin, Z. Understanding of Microbial Diversity in Three Representative Qu in China and Characterization of the Volatile Compounds in the Corresponding Chinese Rice Wine. LWT—Food Sci. Technol. 2022, 164, 113680. [Google Scholar]
- Wrolstad, R.E.; Terry, E.; Acree, E.A.; Decker, M.H.; Penner, D.S.; Reid, S.J.; Schwartz, C.F.; Shoemaker, D.S.; Sporns, P. Characterization and Measurement of Anthocyanins by Uv-Visible Spectroscopy; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2001. [Google Scholar]
- Chen, C.; Liu, Y.; Tian, H.; Ai, L.; Yu, H. Metagenomic Analysis Reveals the Impact of Jiuyao Microbial Diversity on Fermentation and the Volatile Profile of Shaoxing-Jiu. Food Microbiol. 2020, 86, 103326. [Google Scholar] [CrossRef] [PubMed]
- Xiao, R.; Shanquan, C.; Xiaoqi, W.; Kaiqin, C.; Jue, H.; Ke, W.; Yi, N.; Tao, X.; Fangguo, L. Microbial Community Starters Affect the Profiles of Volatile Compounds in Traditional Chinese Xiaoqu Rice Wine: Assement Via High-Throughput Sequencing and Gas Chromatography-Ion Mobility Spectrometry. Lwt—Food Sci. Technol. 2022, 170, 114000. [Google Scholar] [CrossRef]
- Huang, Z.R.; Guo, W.L.; Zhou, W.B.; Li, L.; Xu, J.X.; Hong, J.L.; Liu, H.P.; Zeng, F.; Bai, W.D.; Liu, B.; et al. Microbial Communities and Volatile Metabolites in Different Traditional Fermentation Starters Used for Hong Qu Glutinous Rice Wine. Food Res. Int. 2019, 121, 593–603. [Google Scholar] [CrossRef]
- Wenhong, Z.; Qian, M.; Dong, H.; Liu, X.; Bai, W.; Liu, G.; Lv, X.-c. Effect of Hong Qu on the Flavor and Quality of Hakka Yellow Rice Wine (Huangjiu) Produced in Southern China. Lwt—Food Sci. Technol. 2022, 160, 113264. [Google Scholar]
- Mayr, C.M.; Geue, J.P.; Holt, H.E.; Pearson, W.P.; Jeffery, D.W.; Francis, I.L. Characterization of the Key Aroma Compounds in Shiraz Wine by Quantitation, Aroma Reconstitution, and Omission Studies. J. Agric. Food Chem. 2014, 62, 4528–4536. [Google Scholar] [CrossRef]
- Li, S.; Bi, P.; Sun, N.; Gao, Z.; Chen, X.; Guo, J. Characterization of Different Non-Saccharomyces Yeasts Via Mono-Fermentation to Produce Polyphenol-Enriched and Fragrant Kiwi Wine. Food Microbiol. 2022, 103, 103867. [Google Scholar] [CrossRef]
- Van Gemert, L.J. Compilations of Odour Threshold Values in Air, Water and Other Media; Oliemans Punter & Partners BV: Utrecht, The Netherlands, 2011. [Google Scholar]
- Porto, M.C.; Kuniyoshi, T.M.; Azevedo, P.O.; Vitolo, M.; Oliveira, R.P. Pediococcus spp.: An Important Genus of Lactic Acid Bacteria and Pediocin Producers. Biotechnol. Adv. 2017, 35, 361–374. [Google Scholar] [CrossRef]
- Jia, Y.; Niu, C.T.; Lu, Z.M.; Zhang, X.J.; Chai, L.J.; Shi, J.S.; Xu, Z.H.; Li, Q. A Bottom-up Approach to Develop a Synthetic Microbial Community Model: Application for Efficient Reduced-Salt Broad Bean Paste Fermentation. Appl. Environ. Microbiol. 2020, 86, e00306-20. [Google Scholar] [CrossRef]
- Varela, C.; Bartel, D.C.; Espinase Nandorfy, E.; Bilogrevic, T.; Tran, A.; Heinrich, T.; Balzan, K.B.; Borneman, A. Volatile Aroma Composition and Sensory Profile of Shiraz and Cabernet Sauvignon Wines Produced with Novel Metschnikowia Pulcherrima Yeast Starter Cultures. Aus. J. Grape Wine Res. 2021, 27, 406–418. [Google Scholar] [CrossRef]
- Wolfe, B.; Julie, E.; Button, E.; Santarelli, M.; Dutton, R.J. Cheese Rind Communities Provide Tractable Systems for in Situ and in Vitro Studies of Microbial Diversity. Cell 2014, 158, 422–433. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Mou, J.; Niu, J.; Yang, S.; Chen, L.; Xia, M.; Wang, M. Succession Sequence of Lactic Acid Bacteria Driven by Environmental Factors and Substrates Throughout the Brewing Process of Shanxi Aged Vinegar. Appl. Microbiol. Biotechnol. 2018, 102, 2645–2658. [Google Scholar]
- Zang, J.; Yanshun, X.; Wenshui, X.; Dawei, Y.; Pei, G.; Qixing, J.; Fang, Y. Dynamics and Diversity of Microbial Community Succession During Fermentation of Suan Yu, a Chinese Traditional Fermented Fish, Determined by High Throughput Sequencing. Food Res. Int. 2018, 111, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Haoxin, L.; Zhongfang, T.; Ya, L.; Yanping, W.; Huili, P.; Zongwei, L.; Zhen, J.; Qingsheng, J. Improving the Fermentation Quality of Wheat Straw Silage Stored at Low Temperature by Psychrotrophic Lactic Acid Bacteria. Anim. Sci. J. 2017, 88, 277–285. [Google Scholar] [CrossRef]
- Chi, Z.; Zhe, C.; Guanglei, L.; Fang, W.; Liang, J.; Tong, Z. Saccharomycopsis Fibuligera and Its Applications in Biotechnology. Biotechnol. Adv. 2009, 27, 423–431. [Google Scholar] [CrossRef]
- Banerjee, S.; Klaus, S.; Marcel, G.; van der Heijden, A. Keystone Taxa as Drivers of Microbiome Structure and Functioning. Nat. Rev. Microbiol. 2018, 16, 567–576. [Google Scholar] [CrossRef]
- Li, Q.; Shuo, C.; Yongdi, L.; Jianan, H.; Yu, L.; Lizheng, X.; Zhonghua, L. Biochemical Components Associated with Microbial Community Shift During the Pile-Fermentation of Primary Dark Tea. Front. Microbiol. 2018, 9, 1509. [Google Scholar] [CrossRef]
- Ren, Q.; Leping, S.; Huijun, W.; Yousheng, W.; Zhiwei, W.; Fuping, Z.; Xin, L.; Jialiang, X. The Changes of Microbial Community and Flavor Compound in the Fermentation Process of Chinese Rice Wine Using Fagopyrum Tataricum Grain as Feedstock. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef]
- Rantalainen, M.; Cloarec, O.; Beckonert, O.; Wilson, I.D.; Jackson, D.; Tonge, R.; Rowlinson, R.; Rayner, S.; Nickson, J.; Wilkinson, R.W.; et al. Statistically Integrated Metabonomic-Proteomic Studies on a Human Prostate Cancer Xenograft Model in Mice. J. Proteom. Res. 2006, 5, 2642–2655. [Google Scholar] [CrossRef]
- Zhibin, L.; Wang, Z.; Sun, J.; Ni, L. The Dynamics of Volatile Compounds and Their Correlation with the Microbial Succession During the Traditional Solid-State Fermentation of Gutian Hong Qu Glutinous Rice Wine. Food Microbiol. 2020, 86, 103347. [Google Scholar]
- Wenmeng, H.; Chung, H.Y. Exploring Core Functional Microbiota Related with Flavor Compounds Involved in the Fermentation of a Natural Fermented Plain Sufu (Chinese Fermented Soybean Curd). Food Microbiol. 2020, 90, 103408. [Google Scholar]
- Guan, Q.; Tao, H.; Fei, P.; Jinqing, H.; Zhanggen, L.; Zhen, P.; Mingyong, X.; Tao, X. The Microbial Succession and Their Correlation with the Dynamics of Flavor Compounds Involved in the Natural Fermentation of Suansun, a Traditional Chinese Fermented Bamboo Shoots. Food Res. Int. 2022, 157, 111216. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Li, Y.; Luo, Y.; Zhang, Y.; Chen, Y.; Lin, H.; Wang, K.; Huang, J.; Liu, Z. Shifts in Diversity and Function of the Bacterial Community During the Manufacture of Fu Brick Tea. Food Microbiol. 2019, 80, 70–76. [Google Scholar] [CrossRef]
- Stribny, J.; Gamero, A.; Pérez-Torrado, R.; Querol, A. Saccharomyces Kudriavzevii and Saccharomyces Uvarum Differ from Saccharomyces Cerevisiae During the Production of Aroma-Active Higher Alcohols and Acetate Esters Using Their Amino Acidic Precursors. Int. J. Food Microbiol. 2015, 205, 41–46. [Google Scholar] [CrossRef]
- Wang, Z.-M.; Zhen-Ming, L.; Jin-Song, S.; Zheng-Hong, X. Exploring Flavour-Producing Core Microbiota in Multispecies Solid-State Fermentation of Traditional Chinese Vinegar. Sci. Rep. 2016, 6, 26818. [Google Scholar] [CrossRef]
- Oro, L.; Feliziani, E.; Ciani, M.; Romanazzi, G.; Comitini, F. Volatile Organic Compounds from Wickerhamomyces Anomalus, Metschnikowia Pulcherrima and Saccharomyces Cerevisiae Inhibit Growth of Decay Causing Fungi and Control Postharvest Diseases of Strawberries. Int. J. Food Microbiol. 2018, 265, 18–22. [Google Scholar] [CrossRef]
- Fei, Y.; Li, L.; Chen, L.; Zheng, Y.; Yu, B. High-Throughput Sequencing and Culture-Based Approaches to Analyze Microbial Diversity Associated with Chemical Changes in Naturally Fermented Tofu Whey, a Traditional Chinese Tofu-Coagulant. Food Microbiol. 2018, 76, 69–77. [Google Scholar] [CrossRef]
- Xiao, M.; Xiong, T.; Peng, Z.; Liu, C.; Huang, T.; Yu, H.; Xie, M. Correlation between Microbiota and Flavours in Fermentation of Chinese Sichuan Paocai. Food Res. Int. 2018, 114, 123–132. [Google Scholar] [CrossRef]
- Cappello, M.S.; Zapparoli, G.; Logrieco, A.; Bartowsky, E.J. Linking Wine Lactic Acid Bacteria Diversity with Wine Aroma and Flavour. Int. J. Food Microbiol. 2017, 243, 16–27. [Google Scholar] [CrossRef]
- Castellano, P.; Belfiore, C.; Fadda, S.; Vignolo, G. A Review of Bacteriocinogenic Lactic Acid Bacteria Used as Bioprotective Cultures in Fresh Meat Produced in Argentina. Meat Sci. 2008, 79, 483–499. [Google Scholar] [CrossRef] [PubMed]
- Franco, W.; Pérez-Díaz, I.M. Role of Selected Oxidative Yeasts and Bacteria in Cucumber Secondary Fermentation Associated with Spoilage of the Fermented Fruit. Food Microbiol. 2012, 32, 338–344. [Google Scholar] [CrossRef] [PubMed]
Compounds | Q1-336 | Q2-336 | Q3-336 | Odor Description | T b (μg/L) | |
---|---|---|---|---|---|---|
OVA > 1 | Isoamyl acetate | 201.77 | 125.65 | 66.16 | Banana | 3 |
Octanoic acid ethyl ester | 71.45 | 61.48 | 52.97 | Fruity | 5 | |
2-Octenal (E)- | 25.80 | 17.72 | 14.66 | Green | 3 | |
Decanoic acid ethyl ester | 16.76 | 15.31 | 13.58 | Fruity | 20 | |
2-Decenal | 6.46 | 8.65 | 14.10 | Green | 2 | |
Heptanoic acid ethyl ester | 5.27 | 2.90 | 5.27 | Flowery | 2 | |
Butanoic acid ethyl ester | 5.24 | 5.41 | 2.47 | Fruity | 20 | |
Nonanal | 3.87 | 3.66 | 6.70 | Pungent | 1 | |
Guaicol | 1.39 | 3.87 | 3.44 | Cooked black rice | 10 | |
Pentanoic acid ethyl ester | 1.70 | - | - | Peach | 3 | |
2-Heptenal | 1.63 | - | 3.64 | Green | 5 | |
Butyric acid 2-methyl- ethyl ester | 1.49 | 1.00 | - | Fruity | 18 | |
Benzeneacetaldehyde | 1.21 | - | - | Honey | 4 | |
Isobutyric acid | - | - | 2.43 | Sour | 20 | |
1 > OVA > 0.1 | Hexadecanoic acid ethyl ester | 0.51 | 0.44 | 0.60 | Waxy | 1500 |
Acetic acid 2-phenylethyl ester | 0.47 | 0.54 | 0.11 | Flowery | 250 | |
Phenylethyl Alcohol | 0.42 | 0.33 | 0.39 | Flowery | 10,000 | |
Limonene | 0.38 | 0.33 | 0.44 | Lemon | 15 | |
Ethyl Acetate | 0.28 | 0.24 | 0.77 | Fruity, sweet | 7500 | |
Phenol 4-ethyl-2-methoxy- | 0.20 | 0.12 | 0.35 | Buckwheat | 20 | |
Isopentyl alcohol | 0.09 | 0.07 | 0.11 | Fusel | 65,000 | |
Butyrolactone | 0.15 | 0.16 | 0.20 | Alcohol | 35 | |
Tetradecanoic acid ethyl ester | 0.11 | 0.10 | 0.16 | Ether | 2000 | |
Isobutyric acid | 0.40 | - a | - | Sour | 20 | |
Benzeneacetic acid ethyl ester | 0.18 | - | - | Flowery | 73 | |
2-Octen-1-ol | - | - | 0.36 | Mushroom | 20 | |
Decanal | - | 0.21 | 0.29 | Orange | 10 | |
Caryophyllene | - | 0.25 | 0.13 | Woody | 64 | |
Pentanoic acid ethyl ester | - | 0.86 | - | Fruity | 3 | |
2-Heptenal | - | 0.86 | - | Green | 5 | |
Benzeneacetaldehyde | - | 0.88 | 0.75 | Honey | 4 | |
Butyric acid 2-methyl-ethyl ester | - | - | 0.74 | Fruity | 18 |
O2PLS-VIP > 1 and Spearman–Node Degree > 10 | Q1 | Q2 | Q3 |
---|---|---|---|
Fungi | Wickerhamomyces | Wickerhamomyces | Schizosaccharomyces |
Saccharomyces | Wallemia | Saccharomyces | |
Issatchenkia | Wickerhamomyces | ||
Candida | |||
Cyberlindnera | |||
Wallemia | |||
Clavispora | |||
Bacteria | Pediococcus | Pediococcus | Pediococcus |
Weissella | |||
Lactobacillus |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, A.; Peng, B. Diversifying the Flavor of Black Rice Wines through Three Different Regional Xiaoqus in China and Unraveling Their Core Functional Microorganisms. Foods 2023, 12, 3576. https://doi.org/10.3390/foods12193576
Tang A, Peng B. Diversifying the Flavor of Black Rice Wines through Three Different Regional Xiaoqus in China and Unraveling Their Core Functional Microorganisms. Foods. 2023; 12(19):3576. https://doi.org/10.3390/foods12193576
Chicago/Turabian StyleTang, Aoxing, and Bangzhu Peng. 2023. "Diversifying the Flavor of Black Rice Wines through Three Different Regional Xiaoqus in China and Unraveling Their Core Functional Microorganisms" Foods 12, no. 19: 3576. https://doi.org/10.3390/foods12193576
APA StyleTang, A., & Peng, B. (2023). Diversifying the Flavor of Black Rice Wines through Three Different Regional Xiaoqus in China and Unraveling Their Core Functional Microorganisms. Foods, 12(19), 3576. https://doi.org/10.3390/foods12193576