Assessment of Chemical, Physico-Chemical and Sensory Properties of Low-Sodium Beef Burgers Formulated with Flours from Different Mushroom Types
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mushroom Flour
2.2. Elaboration of Low-Sodium Beef Burgers
2.3. Chemical Composition
2.4. Physico-Chemical Properties
2.4.1. pH
2.4.2. Water Activity
2.4.3. Color Analysis
2.4.4. Texture Analysis
2.5. Cooking Properties
2.6. Lipid Oxidation
2.7. Sensory Evaluation
2.8. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition
3.2. Physico-Chemical Properties
3.3. Cooking Properties
3.4. Lipid Oxidation
3.5. Sensorial Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, Y.; He, F.J.; Sun, Q.; Yuan, C.; Kieneker, L.M.; Curhan, G.C.; MacGregor, G.A.; Bakker, S.J.L.; Campbell, N.R.C.; Wang, M.; et al. 24-Hour urinary sodium and potassium excretion and cardiovascular risk. N. Eng. J. Med. 2022, 386, 252–263. [Google Scholar] [CrossRef] [PubMed]
- WHO. World Health Organization. Salt Reduction. 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/salt-reduction (accessed on 5 June 2023).
- Santos, J.A.; Tekle, D.; Rosewarne, E.; Flexner, N.; Cobb, L.; Al-Jawaldeh, A.; Kim, W.J.; Breda, J.; Whiting, S.; Campbell, N.; et al. A Systematic Review of Salt Reduction Initiatives Around the World: A midterm evaluation of progress towards the 2025 global non-communicable diseases salt reduction target. Adv. Nutr. 2021, 12, 1768–1780. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.K.; Yong, H.I.; Jung, S.; Kim, H.W.; Choi, Y.S. Effect of reducing sodium chloride based on the sensory properties of meat products and the improvement strategies employed: A review. J. An. Sci. Technol. 2021, 63, 725–739. [Google Scholar] [CrossRef] [PubMed]
- Emorine, M.; Septier, C.; Martin, C.; Cordelle, S.; Sémon, E.; Thomas-Danguin, T.; Salles, C. Salt and aroma compound distributions influence flavour release and temporal perception while eating hot-served flans. Molecules 2021, 26, 1300. [Google Scholar] [CrossRef] [PubMed]
- Pateiro, M.; Munekata, P.E.; Cittadini, A.; Domínguez, R.; Lorenzo, J.M. Metallic-based salt substitutes to reduce sodium content in meat products. Curr. Opin. Food Sci. 2021, 38, 21–31. [Google Scholar] [CrossRef]
- Tangwatcharin, P.; Teemeesuk, W. Control of pathogenic bacteria in cooked duck blood curd using sodium diacetate and sodium chloride. Curr. Appl. Sci. Technol. 2019, 19, 306–312. [Google Scholar] [CrossRef]
- Patinho, I.; Saldaña, E.; Selani, M.M.; de Camargo, A.C.; Merlo, T.C.; Menegali, B.S.; de Souza Silva, A.P.; Contreras-Castillo, C.J. Use of Agaricus bisporus mushroom in beef burgers: Antioxidant, flavor enhancer and fat replacing potential. Food Prod. Process. Nutr. 2019, 1, 7. [Google Scholar] [CrossRef]
- Wong, K.M.; Corradini, M.G.; Autio, W.; Kinchla, A.J. Sodium reduction strategies through use of meat extenders (white button mushrooms vs. textured soy) in beef patties. Food Sci. Nutr. 2019, 7, 506–518. [Google Scholar] [CrossRef]
- Manninen, H.; Rotola-Pukkila, M.; Aisala, H.; Hopia, A.; Laaksonen, T. Free amino acids and 5′-nucleotides in Finnish forest mushrooms. Food Chem. 2018, 247, 23–28. [Google Scholar] [CrossRef]
- Yang, F.; Lv, S.; Liu, Y.; Bi, S.; Zhang, Y. Determination of umami compounds in edible fungi and evaluation of salty enhancement effect of Antler fungus enzymatic hydrolysate. Food Chem. 2022, 387, 132890. [Google Scholar] [CrossRef]
- Kozarski, M.; Klaus, A.; van Griensven, L.; Jakovljevic, D.; Todorovic, N.; Wan-Mohtar, W.A.A.Q.I.; Vunduk, J. Mushroom β-glucan and polyphenol formulations as natural immunity boosters and balancers: Nature of the application. Food Sci. Human. Wellness 2023, 12, 378–396. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, D.; Chen, Y.; Liu, T.; Zhang, S.; Fan, H.; Liu, H.; Li, Y. Healthy function and high valued utilization of edible fungi. Food Sci. Hum. Wellness 2021, 10, 408–420. [Google Scholar] [CrossRef]
- França, F.; Harada-Padermo, S.S.; Frasceto, R.A.; Saldaña, E.; Lorenzo, J.M.; Vieira, T.M.F.S.; Selani, M.M. Umami ingredient from shiitake (Lentinula edodes) by-products as a flavor enhancer in low-salt beef burgers: Effects on physicochemical and technological properties. LWT-Food Sci. Technol. 2022, 154, 112724. [Google Scholar] [CrossRef]
- Cerón-Guevara, M.I.; Rangel-Vargas, E.; Lorenzo, J.M.; Bermúdez, R.; Pateiro, M.; Rodríguez, J.A.; Sánchez-Ortega, I.; Santos, E.M. Effect of the addition of edible mushroom flours (Agaricus bisporus and Pleurotus ostreatus) on physicochemical and sensory properties of cold-stored beef patties. J. Food Process. Preserv. 2020, 44, e14351. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; Association of Official Analytical Chemistry: Rockville, MD, USA, 2010. [Google Scholar]
- Jeong, K.; Hyeonbin, O.; Shin, S.Y.; Kim, Y.S. Effects of different marination conditions on quality microbiological properties and sensory characteristics of pork ham cooked by the sous-vide method. Korean J. Food Sci. Anim. Resour. 2018, 38, 506–514. [Google Scholar] [CrossRef]
- American Meat Science Association AMSA. Meat Color Measurement Guidelines, 1st ed.; Hunt, M., King, A., Eds.; American Meat Science Association: Champaign, IL, USA, 2012; pp. 46–49. [Google Scholar]
- Claus, J.R. Methods for the Objective Measurement of Meat Product Texture. In Proceedings of the 48th Reciprocal Meat Conference, Reciprocal Meat Conference Proceeding, San Antonio, TX, USA, 20–25 August 1995; pp. 96–101. [Google Scholar]
- Sobral, M.M.C.; Casal, S.; Faria, M.A.; Cunha, S.C.; Ferreira, I.M.P.L.V.O. Influence of culinary practices on protein and lipid oxidation of chicken meat burgers during cooking and in vitro gastrointestinal digestion. Food Chem. Toxicol. 2020, 141, 111401. [Google Scholar] [CrossRef]
- Chen, X.; Tume, R.K.; Xu, X.; Zhou, G. Solubilization of myofibrillar proteins in water or low ionic strength media: Classical techniques, basic principles, and novel functionalities. Crit. Rev. Food Sci. Nutr. 2017, 57, 3260–3280. [Google Scholar] [CrossRef]
- González, A.; Cruz, M.; Losoya, C.; Nobre, C.; Loredo, A.; Rodríguez, R.; Contreras, J.; Belmares, R. Edible mushrooms as a novel protein source for functional foods. Food Funct. 2020, 11, 7400–7414. [Google Scholar] [CrossRef]
- European Parliament. Regulation 1924/2006 of the European Parliament and of the council of 20 December 2006 on nutrition and health claims made on foods. Off. J. Eur. Union 2006, L12, 3–8. [Google Scholar]
- WHO. World Health Organization. Guideline: Sodium Intake for Adults and Children; World Health Organization: Geneva, Switzerland, 2012. [Google Scholar]
- Sissons, J.; Davila, M.; Du, X. Sautéing and roasting effect on free amino acid profiles in portobello and shiitake mushrooms, and the effect of mushroom- and cooking-related volatile aroma compounds on meaty flavor enhancement. Int. J. Gastron. Food Sci. 2022, 28, 100550. [Google Scholar] [CrossRef]
- Taormina, P.J. Implications of Salt and Sodium Reduction on Microbial Food Safety. Crit. Rev. Food Sci. Nutr. 2010, 50, 209–227. [Google Scholar] [CrossRef] [PubMed]
- Corlett, M.T.; Pethick, D.W.; Kelman, K.R.; Jacob, R.H.; Gardner, G.E. Consumer perceptions of meat redness were strongly influenced by storage and display times. Foods 2021, 10, 540. [Google Scholar] [CrossRef] [PubMed]
- King, D.A.; Hunt, M.C.; Barbut, S.; Claus, J.R.; Cornforth, D.P.; Joseph, P.; Kim, Y.H.; Lindahl, G.; Mancini, R.A.; Nair, M.N.; et al. American Meat Science Association Guidelines for Meat Color Measurement. Meat Muscle Biol. 2023, 6, 12473. [Google Scholar] [CrossRef]
- Goswami, D.; Gupta, R.K.; Mridula, D.; Sharma, M.; Tyagi, S.K. Barnyard millet based muffins: Physical, textural and sensory properties. LWT-Food Sci. Technol. 2015, 64, 374–380. [Google Scholar] [CrossRef]
- Mattar, T.V.; Gonçalves, C.S.; Pereira, R.C.; Faria, M.A.; de Souza, V.R.; Souza Carneiro, J.D. A shiitake mushroom extract as a viable alternative to NaCl for a reduction in sodium in beef burgers. Br. Food J. 2018, 120, 1366–1380. [Google Scholar] [CrossRef]
- Fellendorf, S.; Kerry, J.P.; Hamill, R.M.; O’Sullivan, M.G. Impact on the physicochemical and sensory properties of salt-reduce corned beef formulated with and without the use of salt replacers. LWT-Food Sci. Technol. 2018, 92, 584–592. [Google Scholar] [CrossRef]
- Rios-Mera, J.D.; Saldaña, E.; Cruzado-Bravo, M.L.M.; Patinho, I.; Selani, M.M.; Valentin, D.; Contreras-Castillo, C.J. Reducing the sodium content without modifying the quality of beef burgers by adding micronized salt. Food Res. Int. 2019, 121, 288–295. [Google Scholar] [CrossRef]
- Lee, C.H.; Chin, K.B. Influence of the pH and salt concentrations on physicochemical properties of pork myofibrillar protein gels added with corn starch. Food Sci. Anim. Resour. 2020, 40, 254–261. [Google Scholar] [CrossRef]
- Jo, K.; Lee, J.; Jung, S. Quality characteristics of low-salt chicken sausage supplemented with a winter mushroom powder. Korean J. Food Sci. Anim. Res. 2018, 38, 768–779. [Google Scholar] [CrossRef]
- Inguglia, E.S.; Zhang, Z.; Tiwari, B.K.; Kerry, J.P.; Burgess, C.M. Salt reduction strategies in processed meat products—A review. Trends Food Sci. Technol. 2017, 59, 70–78. [Google Scholar] [CrossRef]
- Besbes, S.; Attia, H.; Deroanne, C.; Makni, S.; Blecker, C. Partial replacement of meat by pea fiber and wheat fiber: Effect on the chemical composition, cooking characteristics and sensory properties of beef burgers. J. Food Qual. 2008, 31, 480–489. [Google Scholar] [CrossRef]
- Georgantelis, D.; Blekas, G.; Katikou, P.; Ambrosiadis, I.; Fletouris, D.J. Effect of rosemary extract, chitosan, and α-tocopherol on lipid oxidation and colour stability during frozen storage of beef burgers. Meat Sci. 2007, 75, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Alnoumani, H.; Ataman, Z.A.; Were, L. Lipid and protein antioxidant capacity of dried Agaricus bisporus in salted cooked ground beef. Meat Sci. 2017, 129, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Pachekrepapo, U.; Thangrattana, M.; Kitikangsadan, A. Impact of oyster mushroom (Pleurotus ostreatus) on chemical, physical, microbiological and sensory characteristics of fish burger prepared from salmon and striped catfish filleting by-product. Int. J. Gastron. Food Sci. 2022, 30, 100598. [Google Scholar] [CrossRef]
CS | BOM | BBM | BPM | |
---|---|---|---|---|
Beef | 78 | 78 | 78 | 78 |
Pork backfat | 15 | 15 | 15 | 15 |
Water | 5 | 5 | 5 | 5 |
Sodium chloride | 1.8 | 0.45 | 0.45 | 0.45 |
Black pepper | 0.2 | 0.2 | 0.2 | 0.2 |
OM | 0 | 1.35 | 0 | 0 |
BM | 0 | 0 | 1.35 | 0 |
PM | 0 | 0 | 0 | 1.35 |
RAW | COOKED | |||||||
---|---|---|---|---|---|---|---|---|
CS | BBM | BOM | BPM | CS | BBM | BOM | BPM | |
Moisture | 64.37 ± 0.72 a | 66.87 ± 0.48 a | 65.17 ± 1.73 a | 64.94 ± 1.83 a | 61.30 ± 0.08 a | 59.55 ± 0.29 b | 59.83 ± 0.16 b | 59.45 ± 0.46 b |
Protein | 15.04 ± 0.14 c | 15.72 ± 0.05 b | 15.61 ± 0.23 b | 16.57 ± 0.37 a | 17.44 ± 0.15 b | 19.55 ± 0.48 a | 18.72 ± 0.33 a | 19.36 ± 0.09 a |
Fat | 12.67 ± 0.50 a | 12.51 ± 0.27 a | 12.38 ± 0.67 b | 12.13 ± 0.52 a | 13.69 ± 0.35 a | 13.13 ± 0.22 a | 13.22 ± 0.11 a | 13.26 ± 0.25 a |
Ash | 2.52 ± 0.10 a | 1.53 ± 0.01 b | 1.43 ± 0.02 b | 1.52 ± 0.10 b | 2.89 ± 0.09 a | 1.80 ± 0.12 b | 1.69 ± 0.11 b | 1.67 ± 0.05 b |
Sodium | 824.25 ± 18.94 a | 302.22 ± 0.54 c | 372.25 ± 17.69 b | 361.13 ± 7.37 b | 1026.16 ± 16.78 a | 459.60 ± 6.06 b | 462.01 ± 26.12 b | 400.61 ± 5.75 c |
Potassium | 169.79 ± 3.19 c | 223.66 ± 4.75 b | 224.64 ± 1.99 b | 235.58 ± 6.43a | 184.20 ± 3.46 c | 283.89 ± 2.65 a | 271.52 ± 4.54 b | 264.64 ± 4.70 b |
Calcium | 24.27 ± 0.22 a | 21.87 ± 0.53 b | 16.91 ± 0.20 d | 18.17 ± 0.57 c | 22.31 ± 0.17 b | 23.10 ± 0.11 a | 20.44 ± 0.43 c | 23.13 ± 0.31 a |
Cupper | Traces | Traces | Traces | Traces | Traces | Traces | Traces | Traces |
Iron | 1.46 ± 0.03 d | 1.56 ± 0.03 c | 1.69 ± 0.02 a | 1.62 ± 0.02 b | 1.70 ± 0.05 b | 1.55 ± 0.02 c | 1.97 ± 0.13 a | 1.77 ± 0.05 b |
Magnesium | 19.57 ± 0.29 c | 21.33 ± 0.24 b | 22.67 ± 0.15 a | 22.23 ± 0.24 a | 21.83 ± 0.52 d | 26.95 ± 0.46 b | 29.25 ± 1.23 a | 24.89 ± 0.65 c |
Manganese | Traces | Traces | Traces | Traces | Traces | Traces | Traces | Traces |
Zinc | 3.07 ± 0.04 c | 3.39 ± 0.06 a | 3.22 ± 0.02 b | 3.02 ± 0.05 c | 2.92 ± 0.09 c | 3.36 ± 0.03 a | 3.12 ± 0.05 b | 3.15 ± 0.05 b |
Sample | pH | Aw | L* | a* | b* | RI | NBS |
---|---|---|---|---|---|---|---|
CS | 5.67 ± 0.03 b | 0.964 ± 0.00 b | 47.47 ± 3.13 a | 13.53 ± 2.53 a | 14.91 ± 1.94 a | 0.91 ± 0.15 a | - |
BBM | 5.73 ± 0.01 a | 0.975 ± 0.00 a | 46.93 ± 2.37 a | 8.35 ± 0.98 b | 13.56 ± 1.57 a | 0.62 ± 0.05 b | 4.95 ± 0.84 a |
BOM | 5.66 ± 0.03 b | 0.976 ± 0.00 a | 50.18 ± 3.65 a | 9.48 ± 3.40 b | 14.75 ± 2.77 a | 0.63 ± 0.09 b | 4.48 ± 0.63 a |
BPM | 5.73 ± 0.01 a | 0.976 ± 0.00 a | 47.81 ± 2.28 a | 9.24 ± 2.22 b | 15.32 ± 1.73 a | 0.60 ± 0.12 b | 4.01 ± 0.69 a |
Sample | Visual Aspect | Color | Hardness | Flavor | Salty Taste | Rancidity | Acceptability |
---|---|---|---|---|---|---|---|
CS | 5.67 ± 0.03 b | 0.964 ± 0.00 b | 47.47 ± 3.13 a | 13.53 ± 2.53 a | 14.91 ± 1.94 a | 0.91 ± 0.15 a | - |
BBM | 5.73 ± 0.01 a | 0.975 ± 0.00 a | 46.93 ± 2.37 a | 8.35 ± 0.98 b | 13.56 ± 1.57 a | 0.62 ± 0.05 b | 4.95 ± 0.84 a |
BOM | 5.66 ± 0.03 b | 0.976 ± 0.00 a | 50.18 ± 3.65 a | 9.48 ± 3.40 b | 14.75 ± 2.77 a | 0.63 ± 0.09 b | 4.48 ± 0.63 a |
BPM | 5.73 ± 0.01 a | 0.976 ± 0.00 a | 47.81 ± 2.28 a | 9.24 ± 2.22 b | 15.32 ± 1.73 a | 0.60 ± 0.12 b | 4.01 ± 0.69 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Botella-Martínez, C.; Muñoz-Tebar, N.; Lucas-González, R.; Pérez-Álvarez, J.A.; Fernández-López, J.; Viuda-Martos, M. Assessment of Chemical, Physico-Chemical and Sensory Properties of Low-Sodium Beef Burgers Formulated with Flours from Different Mushroom Types. Foods 2023, 12, 3591. https://doi.org/10.3390/foods12193591
Botella-Martínez C, Muñoz-Tebar N, Lucas-González R, Pérez-Álvarez JA, Fernández-López J, Viuda-Martos M. Assessment of Chemical, Physico-Chemical and Sensory Properties of Low-Sodium Beef Burgers Formulated with Flours from Different Mushroom Types. Foods. 2023; 12(19):3591. https://doi.org/10.3390/foods12193591
Chicago/Turabian StyleBotella-Martínez, Carmen, Nuria Muñoz-Tebar, Raquel Lucas-González, José A. Pérez-Álvarez, Juana Fernández-López, and Manuel Viuda-Martos. 2023. "Assessment of Chemical, Physico-Chemical and Sensory Properties of Low-Sodium Beef Burgers Formulated with Flours from Different Mushroom Types" Foods 12, no. 19: 3591. https://doi.org/10.3390/foods12193591
APA StyleBotella-Martínez, C., Muñoz-Tebar, N., Lucas-González, R., Pérez-Álvarez, J. A., Fernández-López, J., & Viuda-Martos, M. (2023). Assessment of Chemical, Physico-Chemical and Sensory Properties of Low-Sodium Beef Burgers Formulated with Flours from Different Mushroom Types. Foods, 12(19), 3591. https://doi.org/10.3390/foods12193591