Research on Defect Detection in Kubo Peach Based on Hyperspectral Imaging Technology Combined with CARS-MIV-GA-SVM Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Hyperspectral Imaging System
2.3. Main Data Processing Methods
2.3.1. CARS-MIV Feature Variable Extraction Method
2.3.2. GA-SVM Modeling Method
2.4. Model Evaluation Index
3. Results and Discussion
3.1. Average Spectral Curves of Four Types of Kubo Peach Samples
3.2. Spectrum Pretreatment
3.3. Selection of Characteristic Wavelength Variables
3.3.1. CARS Competitive Adaptive Weighting Algorithm
3.3.2. Feature Wavelength Extraction Using the CARS-MIV Method
3.3.3. Feature Wavelength Extraction Using the CARS-SPA Method
3.3.4. Feature Wavelength Extraction Using the CARS-UVE Method
3.4. Modeling Results and Analysis
3.4.1. Least-Squares Support Vector Machine (LS-SVM) Model
3.4.2. Support Vector Machine (GA-SVM) Parameter Optimization Model Based on the Genetic Algorithm
3.5. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, X.D. New varieties of mid–ripening cold–resistant peach: Zhongnong Hanxiang Honey. China Fruit Ind. Inf. 2023, 40, 68. (In Chinese) [Google Scholar]
- Tian, Y.; Sun, J.; Zhou, X.; Yao, K.; Tang, N. Detection of Soluble Solid Content in Apples Based on Hyperspectral Technology Combined with Deep Learning Algorithm. J. Food. Preserv. 2022, 46, 16414. [Google Scholar] [CrossRef]
- Teerachaichayut, S.; Ho, H.T. Non–destructive Prediction of Total Soluble Solids, Titratable Acidity and Maturity Index of Limes by near Infrared Hyperspectral Imaging. Postharvest Biol. Technol. 2017, 133, 20–25. [Google Scholar] [CrossRef]
- Zhong, Y.; Li, H.H.; Yuan, H.Y.; Xu, R.; Zhu, Y.Q.; Dai, X.J.; Zhou, Y.; Li, K.; Li, H.J. Effect of different grading methods on mechanical injury of Hongyang Kiwifruit. Sichuan Agric. Sci. Technol. 2018, 10, 41–43. (In Chinese) [Google Scholar]
- Hu, M.; Dong, Q.; Liu, B.; Opara, U.; Chen, L. Estimating Blueberry Mechanical Properties Based on Random Frog Selected Hyperspectral Data. Postharvest Biol. Technol. 2015, 106, 1–10. [Google Scholar] [CrossRef]
- Shao, Y.; Wang, Y.; Xuan, G.; Gao, Z.; Hu, Z.; Gao, C.; Wang, K. Assessment of Strawberry Ripeness Using Hyperspectral Imaging. Anal. Lett. 2020, 54, 1547–1560. [Google Scholar] [CrossRef]
- Baranowski, P.; Mazurek, W.; Wozniak, J.; Majewska, U. Detection of Early Bruises in Apples Using Hyperspectral Data and Thermal Imaging. J. Food Eng. 2012, 110, 345–355. [Google Scholar] [CrossRef]
- Mehl, P.; Chen, Y.; Kim, M.; Chan, D. Development of Hyperspectral Imaging Technique for the Detection of Apple Surface Defects and Contaminations. J. Food Eng. 2004, 61, 67–81. [Google Scholar] [CrossRef]
- Babellahi, F.; Paliwal, J.; Erkinbaev, C.; Amodio, M.L.; Chaudhr, M.M.A.; Colelli, G. Early Detection of Chilling Injury in Green Bell Peppers by Hyperspectral Imaging and Chemometrics. Postharvest Biol. Technol. 2022, 162, 111100. [Google Scholar] [CrossRef]
- Li, J.; Huang, W.; Tian, X.; Wang, C.; Fan, S.; Zhao, C. Fast Detection and Visualization of Early Decay in Citrus Using Vis–NIR Hyperspectral Imaging. Comput. Electron. Agric. 2016, 127, 582–592. [Google Scholar] [CrossRef]
- Zheng, Z.; An, Z.; Yang, Y.; Chen, J.; Liu, X.; Lu, L. Metabolic profiling of blueberries (Vaccinium Spp.) to quantitatively and qualitatively assess bruise damage and fruit deterioration. Postharvest Biol. Technol. 2023, 195, 112135. [Google Scholar] [CrossRef]
- Tang, Y.; Gao, S.; Zhuang, J.; Hou, C.; He, Y.; Chu, X.; Miao, A.; Luo, S. Apple Bruise Grading Using Piecewise Nonlinear Curve Fitting for Hyperspectral Imaging Data. IEEE Access 2020, 8, 147494–147506. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, D.; Sun, Z.; Ying, Y. Application status and prospect of spatial frequency domain imaging in agricultural product quality detection. Trans. Chin. Soc. Agric. Eng. 2021, 37, 275–288. (In Chinese) [Google Scholar]
- Li, Y.; Ma, B.; Li, C.; Yu, G. Accurate prediction of soluble solid content in dried Hami jujube using SWIR hyperspectral imaging with comparative analysis of model. Comput. Electron. Agric. 2022, 193, 106655. [Google Scholar] [CrossRef]
- Xu, D.; Wang, H.; Ji, H.; Zhang, X.; Wang, Y.; Zhang, Z.; Zheng, H. Hyperspectral Imaging for Evaluating Impact Damage to Mango According to Changes in Quality Attributes. Sensors 2018, 18, 3920. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yin, Y.; Yu, H.; Yuan, Y. Fast detection of water loss and hardness for cucumber using hyperspectral imaging technology. J. Food Meas. Charact. 2022, 16, 76–84. [Google Scholar] [CrossRef]
- Pullanagari, R.R.; Li, M. Uncertainty assessment for firmness and total soluble solids of sweet cherries using hyperspectral imaging and multivariate statistics. J. Food. Eng. 2021, 289, 110177. [Google Scholar] [CrossRef]
- Wang, K.; Guo, D.; Zhang, G.; Deng, L.; Xin, R.; Lv, Q.; Yi, S.; Zheng, Y.; Ma, Y.; He, S. Detection of Huanglongbing (citrus greening) based on hyperspectral image analysis and PCR. Front. Agric. Sci. Eng. 2019, 6, 172–180. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, Y.; Liu, X.; Huang, Y.; Zhan, B.; Luo, W. Identification of Common Skin Defects and Classification of Early Decayed Citrus Using Hyperspectral Imaging Technique. Food Anal. Methods 2021, 14, 1176–1193. [Google Scholar] [CrossRef]
- Heo, S.; Choi, J.; Kim, J.; Moon, K. Prediction of moisture content in steamed and dried purple sweet potato using hyperspectral imaging analysis. Food Sci. Biotechnol. 2021, 30, 783–791. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, J.; He, Y. Nondestructive detection of citrus defect based on hyperspectral imaging. Trans. Chin. Soc. Agric. Mach. 2013, 44, 177–181. (In Chinese) [Google Scholar]
- Chen, S. Research on Surface Defect Detection Method of Peach Based on Hyperspectral Image Technology. Doctoral Thesis, Zhejiang University, Hangzhou, China, 2013. (In Chinese). [Google Scholar]
- Wang, D.; Wang, K.; Wu, J.; Han, P. Research progress of non–destructive rapid measurement of seed quality based on spectral and imaging techniques. Spectrosc. Spect. Anal. 2021, 41, 52–59. [Google Scholar]
- Song, S.; Yang, Y.; Wang, H.; Wang, X.; Rong, S.; Zhou, H. Anomaly detection method of hyperspectral image sparse constraint combined with autoencoder feature extraction. J. Surv. Mapp. 2019, 52, 932–943. (In Chinese) [Google Scholar]
- Hu, H.; Wei, Y.; Xu, H.; Zhang, L.; Mao, X.; Zhao, Y. Identification of the age of rodenticle based on hyperspectral imaging and principal component analysis. Spectrosc. Spect. Anal. 2023, 43, 1953–1960. [Google Scholar]
- Zhu, C.; Liu, Y.; Li, X.; Gong, W.; Guo, W. Hyperspectral detection of the freshness of Litopenaeus vannamei. Spectrosc. Spect. Anal. 2023, 43, 107–110. [Google Scholar]
- Song, H.; Yan, Y.; Song, Z.; Sun, J.; Li, Y.; Li, F. Nondestructive testing model for maize grain moisture content established by screening dielectric parameters and variables. Trans. Chin. Soc. Agric. Eng. 2019, 35, 262–272. (In Chinese) [Google Scholar]
- Chen, D.; Yan, M.; Li, Q.; Yu, L.; Jin, Y.; Xu, K. Development of a novel nonlinear variable selection strategy for spectral analysis. Nanotechnol. Precis. Eng. 2015, 13, 226–231. [Google Scholar]
- Hou, J.; Li, Z.; Cao, X.; Song, X. Integrating genetic algorithm and support vector machine for polymer flooding production performance prediction. J. Pet. Sci. Eng. 2009, 68, 29–39. [Google Scholar] [CrossRef]
- Harper, R.; Taylor, A. Genetic Algorithm Based Optimization of One–class Support Vector Machine for Abnormality Detection in Oilfield Centrifugal Pump Injection Stations. Sci. Technol. Eng. 2023, 23, 283–289. (In Chinese) [Google Scholar]
- Lu, W.; Cai, M.; Zhang, Q.; Li, S. Rapid classification method of black Wolfberry based on hyperspectral and ensemble learning. Spectrosc. Spect. Anal. 2019, 41, 2196–2204. [Google Scholar]
- Yang, Q.Z.; Feng, W. Effect of polyvinylpyrrolidone on the quality and storage of ‘Okubo’ peach fruits. Food Sci. 2016, 37, 264–269. (In Chinese) [Google Scholar]
- Wang, W.; Feng, W.; Chang, N.; Liu, Q.; Li, Z.; Chen, Y.; Li, C.; Chen, X.; Zhang, Y. Prediction of chlorophyll content in flue–cured tobacco based on spectral pretreatment and machine learning algorithm. Chin. J. Soil Fertil. 2023, 60, 194–201. (In Chinese) [Google Scholar]
- Yuan, L.; Shi, B.; Yu, J.; Tang, T.; Yuan, Y.; Tang, Y. Application of different smooth integrated CARS algorithms in the spectral identification of black tea grades. Spectrosc. Spect. Anal. 2020, 40, 3254–3259. [Google Scholar]
- Xia, Y.; Feng, Q.; Yang, S.; Guo, F. Soil moisture estimation of Apple orchard based on hyperspectral remote sensing. For. Mach. Woodwork. Equip. 2019, 51, 24–32. (In Chinese) [Google Scholar]
- Gao, S.; Xu, J.H. Prediction and visualization of total acid and hardness of red extract by hyperspectral imaging. Food Sci. 2023, 44, 327–336. (In Chinese) [Google Scholar]
- Tan, H.Y. Research on classification and recognition of Chinese tea based on THz–TDS and PSO–LS–SVM. Res. China Sci. Technol. J. Database 2022, 14, 289–293. (In Chinese) [Google Scholar]
- Xu, L.; Chen, M.; Wang, Y.; Chen, X.; Lei, X. Nondestructive detection of sugar content of kiwifruit using hyperspectral imaging. Spectrosc. Spect. Anal. 2019, 41, 2188–2195. [Google Scholar]
- Su, J.; Rao, Y.; Zhang, J.; Li, S. Dry jujube variety classification based on GA optimization SVM. J. Luoyang Inst. Technol. 2018, 28, 65–69+93. (In Chinese) [Google Scholar]
- Dan, S.J. Study on NIR spectral identification model of citrus origin based on SVM and GA–SVM. J. Hunan Polytech. Ind. 2021, 22, 30–35+46. (In Chinese) [Google Scholar]
Name | Parameter |
---|---|
Model number | ZOLIX Gaia Sorter-type “Gaia” hyperspectral sorter |
Main instrument parts | Image-lambda-n17e spectral camera, camera obscura, electronic control platform, bromo-tungsten lamp (4), external computer |
Sample exposure time | 20 ms |
Lens distance from sample height | 22 cm |
Forward speed of the electronically controlled mobile platform | 2 cm/s |
Pretreatment Method | Correction Set | Prediction Set | ||
---|---|---|---|---|
RC2 | RMSEC | RP2 | RMSEP | |
Primary spectrum | 0.72 | 0.60 | 0.86 | 0.45 |
DGS | 0.74 | 0.57 | 0.83 | 0.47 |
DSG | 0.75 | 0.56 | 0.85 | 0.45 |
Baseline | 0.71 | 0.61 | 0.82 | 0.51 |
SMF | 0.72 | 0.60 | 0.85 | 0.45 |
SNV | 0.65 | 0.67 | 0.72 | 0.62 |
GA-SVM | Model | LS-SVM | ||||||
---|---|---|---|---|---|---|---|---|
Good Peach | Internal Injury Peach | Scab Peach | Rotten Peach | Classification | Good Peach | Internal Injury Peach | Scab Peach | Rotten Peach |
49 | 0 | 0 | 0 | Good peach | 49 | 0 | 0 | 0 |
0 | 7 | 1 | 1 | Internal injury peach | 0 | 4 | 5 | 0 |
0 | 0 | 16 | 1 | Scab peach | 0 | 6 | 11 | 0 |
0 | 0 | 2 | 11 | Rotten peach | 0 | 0 | 3 | 10 |
49 | 9 | 17 | 13 | Total | 49 | 9 | 17 | 13 |
100 | 77.7 | 94.12 | 84.62 | Discriminant Rate | 100 | 44.44 | 64.71 | 76.92 |
89.11 | Total Discriminant rate | 71.52 |
GA-SVM | Model | LS-SVM | ||||||
---|---|---|---|---|---|---|---|---|
Good Peach | Internal Injury Peach | Scab Peach | Rotten Peach | Classification | Good Peach | Internal Injury Peach | Scab Peach | Rotten Peach |
49 | 0 | 0 | 0 | Good peach | 49 | 0 | 0 | 0 |
0 | 8 | 1 | 0 | Internal injury peach | 0 | 4 | 5 | 0 |
0 | 1 | 16 | 0 | Scab peach | 0 | 5 | 12 | 0 |
0 | 0 | 1 | 12 | Rotten peach | 0 | 0 | 3 | 10 |
49 | 9 | 17 | 13 | Total | 49 | 9 | 17 | 13 |
100 | 88.9 | 91.4 | 92.3 | Discriminant Rate | 100 | 44.44 | 70.59 | 76.92 |
93.15 | Total Discriminant rate | 71.52 |
GA-SVM | Model | LS-SVM | ||||||
---|---|---|---|---|---|---|---|---|
Good Peach | Internal Injury Peach | Scab Peach | Rotten Peach | Classification | Good Peach | Internal Injury Peach | Scab Peach | Rotten Peach |
49 | 0 | 0 | 0 | Good peach | 49 | 0 | 0 | 0 |
2 | 6 | 0 | 1 | Internal injury peach | 0 | 4 | 5 | 0 |
1 | 1 | 15 | 0 | Scab peach | 0 | 6 | 11 | 0 |
0 | 0 | 0 | 13 | Rotten peach | 0 | 0 | 2 | 11 |
49 | 9 | 17 | 13 | Total | 49 | 9 | 17 | 13 |
100 | 66.67 | 88.24 | 100 | Discriminant Rate | 100 | 44.44 | 64.71 | 84.62 |
88.73 | Total Discriminant rate | 73.44 |
GA-SVM | Model | LS-SVM | ||||||
---|---|---|---|---|---|---|---|---|
Good Peach | Internal Injury Peach | Scab Peach | Rotten Peach | Classification | Good Peach | Internal Injury Peach | Scab Peach | Rotten Peach |
49 | 0 | 0 | 1 | Good peach | 49 | 0 | 0 | 0 |
0 | 6 | 2 | 0 | Internal injury peach | 0 | 7 | 2 | 0 |
0 | 0 | 17 | 12 | Scab peach | 0 | 4 | 13 | 0 |
0 | 0 | 1 | 13 | Rotten peach | 0 | 0 | 4 | 9 |
49 | 9 | 17 | 13 | Total | 49 | 9 | 17 | 13 |
100 | 66.67 | 100 | 92.31 | Discriminant rate | 100 | 77.77 | 76.47 | 69.23 |
89.75 | Total Discriminant rate | 80.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Nie, P.; Zhang, S.; Zhang, L.; Sun, T. Research on Defect Detection in Kubo Peach Based on Hyperspectral Imaging Technology Combined with CARS-MIV-GA-SVM Method. Foods 2023, 12, 3593. https://doi.org/10.3390/foods12193593
Zhang L, Nie P, Zhang S, Zhang L, Sun T. Research on Defect Detection in Kubo Peach Based on Hyperspectral Imaging Technology Combined with CARS-MIV-GA-SVM Method. Foods. 2023; 12(19):3593. https://doi.org/10.3390/foods12193593
Chicago/Turabian StyleZhang, Lixiu, Pengcheng Nie, Shujuan Zhang, Liying Zhang, and Tianyuan Sun. 2023. "Research on Defect Detection in Kubo Peach Based on Hyperspectral Imaging Technology Combined with CARS-MIV-GA-SVM Method" Foods 12, no. 19: 3593. https://doi.org/10.3390/foods12193593
APA StyleZhang, L., Nie, P., Zhang, S., Zhang, L., & Sun, T. (2023). Research on Defect Detection in Kubo Peach Based on Hyperspectral Imaging Technology Combined with CARS-MIV-GA-SVM Method. Foods, 12(19), 3593. https://doi.org/10.3390/foods12193593