Flavonoid Extracts from Lemon By-Products as a Functional Ingredient for New Foods: A Systematic Review
Abstract
:1. Background
2. Lemon By-Products and Their Functional Quality
3. Methods
4. Results and Discussion
4.1. Flavonoid Extraction
4.2. Application
Enriched Product | Q6 | Q7 | Q8 | Q9 | Q10 | Main Findings | Adherence to Our Purpose | Ref. |
---|---|---|---|---|---|---|---|---|
Fresh British-style pork sausages | No | No | No | Yes | No | 7% of citrus fiber extract reduced the shrinkage and the cooking loss, increased lightness (L*), and maintained their antioxidant effect as well as the overall acceptance of cooked sausages | Bad | [56] |
Swedish-style beef meatballs | Yes | No | Yes | Yes | No | Citrus extracts reduced the rancidity of meat products by 50% | Good | [66] |
Osmodehydrated fruits | No | No | Yes | Yes | No | Microbially stable for 3 months at 4 °C | Bad | [57] |
Meat emulsion systems | No | No | No | Yes | No | Lemon albedo addition did not change the flow properties and improved the texture, acting as a source of fiber | Bad | [67] |
Fermented milk | No | No | Yes | Yes | No | Enhanced survival of the tested probiotic bacteria and bacterial growth, maintaining the acceptability | Bad | [58] |
Dough and Mantou (steamed bread) | Yes | No | No | Yes | No | 3 or 6 g per 100 g of flour produced acceptable Mantou with higher antioxidant capacity and total phenolic content | Bad | [68] |
Frankfurters | Yes | No | No | Yes | No | Incorporation of shaddock albedo increased hardness and decreased chewiness; hence, it can be a potential emulsifier | Bad | [69] |
Oat–fruit juice mixed beverage | Yes | No | Yes | Yes | No | Antimicrobial effect against Salmonella typhimurium and E. coli of all the extracts at 5 °C | Good | [70] |
Food flavoring | No | No | Yes | No | No | Extracts thermally stable and safe | Bad | [71] |
Lemon oil | No | No | Yes | Yes | No | Nanoemulsions of lemon and fish oil by-products (8% lemon oil, 2% fish by-product oil, 10% surfactant, and 27.7% cosurfactants) inhibited 7 Gram-positive and 7 Gram-negative bacterial strains | Bad | [72] |
Biscuits | Yes | No | No | Yes | No | Higher phenolic content and antioxidant activity with suitable acceptability | Bad | [59] |
Cake | No | Yes | No | Yes | No | Greater acceptability by a 10% fat replacement, which presented an increase in dietary fiber | Bad | [60] |
Sunflower oil | Yes | No | No | Yes | Yes | The antioxidant effects of citrus extracts (mandarin, orange, and lemon) were comparable to BHT, with lemon being the most antioxidant against lipid oxidation | Good | [73] |
Ultra-low-fat chicken patties | Yes | No | No | Yes | Yes | Lemon albedo decreased fat and cholesterol content, increased cooking yield, and showed good acceptability | Good | [61] |
Salad dressing | Yes | No | Yes | Yes | Yes | Increased the bioaccessibility of hydroxycinnamic acids and flavonols by 0.3- to 5.8-fold | Excellent | [62] |
Fresh-cut radish | Yes | No | Yes | Yes | No | Lower color variation and mesophilic aerobic count, proving a shelf-life of 7 days at 3 °C | Good | [63] |
Cake | Yes | Yes | Yes | Yes | No | Nanoencapsulated lemon reports lower antioxidant activity and yield compared to orange; no significant difference in sensory quality or acceptability | Excellent | [51] |
Chicken emulsion | No | No | No | Yes | No | 2% added citrus peel fiber reported the best quality (viscosity, cooking loss, and emulsion stability) | Bad | [74] |
5. Future Perspective and Main Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. The State of Food and Agriculture, 2019: Moving Forward on Food Loss and Waste Reduction; FAO: Rome, Italy, 2019; ISBN 9789251317891. [Google Scholar]
- FAO. FAOSTAT Statistics Database. Available online: http://www.fao.org/faostat/en/#data/QC/visualize (accessed on 8 March 2022).
- Al-Jaleel, A.; Zekri, M.; Hammam, Y. Yield, Fruit Quality, and Tree Health of “Allen Eureka” Lemon on Seven Rootstocks in Saudi Arabia. Sci. Hortic. 2005, 105, 457–465. [Google Scholar] [CrossRef]
- Artés-Hernández, F.; Martínez-Zamora, L.; Cano-Lamadrid, M.; Hashemi, S.; Castillejo, N. Genus Brassica By-Products Revalorization with Green Technologies to Fortify Innovative Foods: A Scoping Review. Foods 2023, 12, 561. [Google Scholar] [CrossRef]
- Cano-Lamadrid, M.; Artés–Hernández, F. By-Products Revalorization with Non-Thermal Treatments to Enhance Phytochemical Compounds of Fruit and Vegetables Derived Products: A Review. Foods 2022, 11, 59. [Google Scholar] [CrossRef]
- Cano-Lamadrid, M.; Martínez-Zamora, L.; Castillejo, N.; Artés-Hernández, F. From Pomegranate Byproducts Waste to Worth: A Review of Extraction Techniques and Potential Applications for Their Revalorization. Foods 2022, 11, 2596. [Google Scholar] [CrossRef]
- Artés-Hernández, F.; Castillejo, N.; Martínez-Zamora, L.; Martínez-Hernández, G.B. Phytochemical Fortification in Fruit and Vegetable Beverages with Green Technologies. Foods 2021, 10, 2534. [Google Scholar] [CrossRef]
- Carrillo, C.; Nieto, G.; Martínez-Zamora, L.; Ros, G.; Kamiloglu, S.; Munekata, P.E.S.; Pateiro, M.; Lorenzo, J.M.; Fernández-López, J.; Viuda-Martos, M.; et al. Novel Approaches for the Recovery of Natural Pigments with Potential Health Effects. J. Agric. Food Chem. 2022, 70, 6864–6883. [Google Scholar] [CrossRef]
- Magalhães, D.; Vilas-Boas, A.A.; Teixeira, P.; Pintado, M. Functional Ingredients and Additives from Lemon By-Products and Their Applications in Food Preservation: A Review. Foods 2023, 12, 1095. [Google Scholar]
- Liu, S.; Li, S.; Ho, C.T. Dietary Bioactives and Essential Oils of Lemon and Lime Fruits. Food Sci. Hum. Wellness 2022, 11, 753–764. [Google Scholar] [CrossRef]
- Klimek-szczykutowicz, M.; Szopa, A.; Ekiert, H. Citrus limon (Lemon) Phenomenon—A Review of the Chemistry, Pharmacological Properties, Applications in the Modern Pharmaceutical, Food, and Cosmetics Industries, and Biotechnological Studies. Plants 2020, 9, 119. [Google Scholar] [CrossRef]
- Minzanova, S.T.; Mironov, V.F.; Arkhipova, D.M.; Khabibullina, A.V.; Mironova, L.G.; Zakirova, Y.M.; Milyukov, V.A. Biological Activity and Pharmacological Application of Pectic Polysaccharides: A Review. Polymers 2018, 10, 1407. [Google Scholar] [CrossRef]
- Li, B.B.; Smith, B.; Hossain, M.M. Extraction of Phenolics from Citrus Peels: II. Enzyme-Assisted Extraction Method. Sep. Purif. Technol. 2006, 48, 189–196. [Google Scholar] [CrossRef]
- Li, B.B.; Smith, B.; Hossain, M.M. Extraction of Phenolics from Citrus Peels: I. Solvent Extraction Method. Sep. Purif. Technol. 2006, 48, 182–188. [Google Scholar] [CrossRef]
- Masmoudi, M.; Besbes, S.; Chaabouni, M.; Robert, C.; Paquot, M.; Blecker, C.; Attia, H. Optimization of Pectin Extraction from Lemon By-Product with Acidified Date Juice Using Response Surface Methodology. Carbohydr. Polym. 2008, 74, 185–192. [Google Scholar] [CrossRef]
- Masmoudi, M.; Besbes, S.; Ben Thabet, I.; Blecker, C.; Attia, H. Pectin Extraction from Lemon By-Product with Acidified Date Juice: Rheological Properties and Microstructure of Pure and Mixed Pectin Gels. Food Sci. Technol. Int. 2010, 16, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Masmoudi, M.; Besbes, S.; Abbes, F.; Robert, C.; Paquot, M.; Blecker, C.; Attia, H. Pectin Extraction from Lemon By-Product with Acidified Date Juice: Effect of Extraction Conditions on Chemical Composition of Pectins. Food Bioprocess Technol. 2012, 5, 687–695. [Google Scholar] [CrossRef]
- Gómez, B.; Gullón, B.; Yáñez, R.; Parajó, J.C.; Alonso, J.L. Pectic Oligosacharides from Lemon Peel Wastes: Production, Purification, and Chemical Characterization. J. Agric. Food Chem. 2013, 61, 10043–10053. [Google Scholar] [CrossRef] [PubMed]
- Boluda-Aguilar, M.; López-Gómez, A. Production of Bioethanol by Fermentation of Lemon (Citrus limon L.) Peel Wastes Pretreated with Steam Explosion. Ind. Crops Prod. 2013, 41, 188–197. [Google Scholar] [CrossRef]
- Gómez, B.; Yáñez, R.; Parajó, J.C.; Alonso, J.L. Production of Pectin-Derived Oligosaccharides from Lemon Peels by Extraction, Enzymatic Hydrolysis and Membrane Filtration. J. Chem. Technol. Biotechnol. 2016, 91, 234–247. [Google Scholar] [CrossRef]
- Chávez-González, M.L.; López-López, L.I.; Rodríguez-Herrera, R.; Contreras-Esquivel, J.C.; Aguilar, C.N. Enzyme-Assisted Extraction of Citrus Essential Oil. Chem. Pap. 2016, 70, 412–417. [Google Scholar] [CrossRef]
- Yilmaz, E.; Güneşer, B.A. Cold Pressed versus Solvent Extracted Lemon (Citrus limon L.) Seed Oils: Yield and Properties. J. Food Sci. Technol. 2017, 54, 1891–1900. [Google Scholar] [CrossRef]
- Ndayishimiye, J.; Lim, D.J.; Chun, B.S. Impact of Extraction Conditions on Bergapten Content and Antimicrobial Activity of Oils Obtained by a Co-Extraction of Citrus by-Products Using Supercritical Carbon Dioxide. Biotechnol. Bioprocess Eng. 2017, 22, 586–596. [Google Scholar] [CrossRef]
- Kapsaski-Kanelli, V.N.; Evergetis, E.; Michaelakis, A.; Papachristos, D.P.; Myrtsi, E.D.; Koulocheri, S.D.; Haroutounian, S.A. “gold” Pressed Essential Oil: An Essay on the Volatile Fragment from Citrus Juice Industry By-Products Chemistry and Bioactivity. Biomed. Res. Int. 2017, 2017, 2761461. [Google Scholar] [CrossRef] [PubMed]
- Papoutsis, K.; Vuong, Q.V.; Tesoriero, L.; Pristijono, P.; Stathopoulos, C.E.; Gkountina, S.; Lidbetter, F.; Bowyer, M.C.; Scarlett, C.J.; Golding, J.B. Microwave Irradiation Enhances the in Vitro Antifungal Activity of Citrus By-Product Aqueous Extracts against Alternaria Alternata. Int. J. Food Sci. Technol. 2018, 53, 1510–1517. [Google Scholar] [CrossRef]
- Papoutsis, K.; Pristijono, P.; Golding, J.B.; Stathopoulos, C.E.; Bowyer, M.C.; Scarlett, C.J.; Vuong, Q.V. Optimizing a Sustainable Ultrasound-Assisted Extraction Method for the Recovery of Polyphenols from Lemon by-Products: Comparison with Hot Water and Organic Solvent Extractions. Eur. Food Res. Technol. 2018, 244, 1353–1365. [Google Scholar] [CrossRef]
- Karaman, E.; Karabiber, E.B.; Yilmaz, E. Physicochemical and Functional Properties of the Cold Press Lemon, Orange, and Grapefruit Seed Meals. Qual. Assur. Saf. Crops Foods 2018, 10, 233–243. [Google Scholar] [CrossRef]
- Mansour, M.S.M.; Abdel-Shafy, H.I.; Mehaya, F.M.S. Valorization of Food Solid Waste by Recovery of Polyphenols Using Hybrid Molecular Imprinted Membrane. J. Environ. Chem. Eng. 2018, 6, 4160–4170. [Google Scholar] [CrossRef]
- Özkaynak Kanmaz, E. Humic Acid Formation during Subcritical Water Extraction of Food By-Products Using Accelerated Solvent Extractor. Food Bioprod. Process. 2019, 115, 118–125. [Google Scholar] [CrossRef]
- Peiró, S.; Luengo, E.; Segovia, F.; Raso, J.; Almajano, M.P. Improving Polyphenol Extraction from Lemon Residues by Pulsed Electric Fields. Waste Biomass Valorization 2019, 10, 889–897. [Google Scholar] [CrossRef]
- Rosa, A.; Era, B.; Masala, C.; Nieddu, M.; Scano, P.; Fais, A.; Porcedda, S.; Piras, A. Supercritical CO2 Extraction of Waste Citrus Seeds: Chemical Composition, Nutritional and Biological Properties of Edible Fixed Oils. Eur. J. Lipid Sci. Technol. 2019, 121, 1800502. [Google Scholar] [CrossRef]
- Kurtulbaş, E.; Yazar, S.; Makris, D.; Şahin, S. Optimization of Bioactive Substances in the Wastes of Some Selective Mediterranean Crops. Beverages 2019, 5, 42. [Google Scholar] [CrossRef]
- Rahmani, Z.; Khodaiyan, F.; Kazemi, M.; Sharifan, A. Optimization of Microwave-Assisted Extraction and Structural Characterization of Pectin from Sweet Lemon Peel. Int. J. Biol. Macromol. 2020, 147, 1107–1115. [Google Scholar] [CrossRef]
- Liu, Y.; Benohoud, M.; Galani Yamdeu, J.H.; Gong, Y.Y.; Orfila, C. Green Extraction of Polyphenols from Citrus Peel By-Products and Their Antifungal Activity against Aspergillus Flavus. Food Chem. X 2021, 12, 100144. [Google Scholar] [CrossRef]
- Tunç, M.T.; Odabaş, H.İ. Single-Step Recovery of Pectin and Essential Oil from Lemon Waste by Ohmic Heating Assisted Extraction/Hydrodistillation: A Multi-Response Optimization Study. Innov. Food Sci. Emerg. Technol. 2021, 74, 102850. [Google Scholar] [CrossRef]
- Fathollahy, I.; Farmani, J.; Kasaai, M.R.; Hamishehkar, H. Characteristics and Functional Properties of Persian Lime (Citrus latifolia) Seed Protein Isolate and Enzymatic Hydrolysates. LWT 2021, 140, 110765. [Google Scholar] [CrossRef]
- Song, L.W.; Qi, J.R.; Liao, J.S.; Yang, X.Q. Enzymatic and Enzyme-Physical Modification of Citrus Fiber by Xylanase and Planetary Ball Milling Treatment. Food Hydrocoll. 2021, 121, 107015. [Google Scholar] [CrossRef]
- Putri, N.I.; Celus, M.; Van Audenhove, J.; Nanseera, R.P.; Van Loey, A.; Hendrickx, M. Functionalization of Pectin-Depleted Residue from Different Citrus by-Products by High Pressure Homogenization. Food Hydrocoll. 2022, 129, 107638. [Google Scholar] [CrossRef]
- Imeneo, V.; Romeo, R.; De Bruno, A.; Piscopo, A. Green-Sustainable Extraction Techniques for the Recovery of Antioxidant Compounds from “Citrus limon” by-Products. J. Environ. Sci. Health Part B 2022, 57, 220–232. [Google Scholar] [CrossRef]
- Kalogiouri, N.P.; Palaiologou, E.; Papadakis, E.N.; Makris, D.P.; Biliaderis, C.G.; Mourtzinos, I. Insights on the Impact of Deep Eutectic Solvents on the Composition of the Extracts from Lemon (Citrus limon L.) Peels Analyzed by a Novel RP-LC–QTOF-MS/MS Method. Eur. Food Res. Technol. 2022, 248, 2913–2927. [Google Scholar] [CrossRef]
- Toprakçı, G.; Toprakçı, İ.; Şahin, S. Highly Clean Recovery of Natural Antioxidants from Lemon Peels: Lactic Acid-Based Automatic Solvent Extraction. Phytochem. Anal. 2022, 33, 554–563. [Google Scholar] [CrossRef]
- Chaves, J.O.; Sanches, V.L.; Viganó, J.; de Souza Mesquita, L.M.; de Souza, M.C.; da Silva, L.C.; Acunha, T.; Faccioli, L.H.; Rostagno, M.A. Integration of Pressurized Liquid Extraction and In-Line Solid-Phase Extraction to Simultaneously Extract and Concentrate Phenolic Compounds from Lemon Peel (Citrus limon L.). Food Res. Int. 2022, 157, 111252. [Google Scholar] [CrossRef]
- Vellaiyan, S.; Kandasamy, M.; Subbiah, A.; Devarajan, Y. Energy, Environmental and Economic Assessment of Waste-Derived Lemon Peel Oil Intermingled with High Intense Water and Cetane Improver. Sustain. Energy Technol. Assess. 2022, 53, 102659. [Google Scholar] [CrossRef]
- Myrtsi, E.D.; Koulocheri, S.D.; Evergetis, E.; Haroutounian, S.A. Agro-Industrial Co-Products Upcycling: Recovery of Carotenoids and Fine Chemicals from Citrus Sp. Juice Industry Co-Products. Ind. Crops Prod. 2022, 186, 115190. [Google Scholar] [CrossRef]
- Gavahian, M.; Yang, Y.H.; Tsai, P.J. Power Ultrasound for Valorization of Citrus limon (Cv. Eureka) Waste: Effects of Maturity Stage and Drying Method on Bioactive Compounds, Antioxidant, and Anti-Diabetic Activity. Innov. Food Sci. Emerg. Technol. 2022, 79, 103052. [Google Scholar] [CrossRef]
- El Fihry, N.; El Mabrouk, K.; Eeckhout, M.; Schols, H.A.; Filali-Zegzouti, Y.; Hajjaj, H. Physicochemical and Functional Characterization of Pectin Extracted from Moroccan Citrus Peels. LWT 2022, 162, 113508. [Google Scholar] [CrossRef]
- Song, Y.T.; Qi, J.R.; Yang, X.Q.; Liao, J.S.; Liu, Z.W.; Ruan, C.W. Hydrophobic Surface Modification of Citrus Fiber Using Octenyl Succinic Anhydride (OSA): Preparation, Characterization and Emulsifying Properties. Food Hydrocoll. 2022, 132, 107832. [Google Scholar] [CrossRef]
- Alasalvar, H.; Kaya, M.; Berktas, S.; Basyigit, B.; Cam, M. Pressurised Hot Water Extraction of Phenolic Compounds with a Focus on Eriocitrin and Hesperidin from Lemon Peel. Int. J. Food Sci. Technol. 2022, 58, 2060–2066. [Google Scholar] [CrossRef]
- Durmus, N.; Kilic-Akyilmaz, M. Bioactivity of Non-Extractable Phenolics from Lemon Peel Obtained by Enzyme and Ultrasound Assisted Extractions. Food Biosci. 2023, 53, 102571. [Google Scholar] [CrossRef]
- Al Chami, Z.; Alwanney, D.; De Pascali, S.A.; Cavoski, I.; Fanizzi, F.P. Extraction and Characterization of Bio-Effectors from Agro-Food Processing by-Products as Plant Growth Promoters. Chem. Biol. Technol. Agric. 2014, 1, 17. [Google Scholar] [CrossRef]
- Mahmoud, K.F.; Ibrahim, M.A.; Mervat, E.D.; Shaaban, H.A.; Kamil, M.M.; Hegazy, N.A. Nano-Encapsulation Efficiency of Lemon and Orange Peels Extracts on Cake Shelf Life. Am. J. Food Technol. 2016, 11, 63–75. [Google Scholar] [CrossRef]
- Nanda, B.; Sailaja, M.; Mohapatra, P.; Pradhan, R.K.; Nanda, B.B. Green Solvents: A Suitable Alternative for Sustainable Chemistry. Mater. Today Proc. 2021, 47, 1234–1240. [Google Scholar] [CrossRef]
- Torres-Valenzuela, L.S.; Ballesteros-Gómez, A.; Rubio, S. Green Solvents for the Extraction of High Added-Value Compounds from Agri-Food Waste. Food Eng. Rev. 2020, 12, 83–100. [Google Scholar]
- De los Ángeles Fernández, M.; Espino, M.; Gomez, F.J.V.; Silva, M.F. Novel Approaches Mediated by Tailor-Made Green Solvents for the Extraction of Phenolic Compounds from Agro-Food Industrial by-Products. Food Chem. 2018, 239, 671–678. [Google Scholar] [CrossRef]
- Winterton, N. The Green Solvent: A Critical Perspective. Clean Technol. Environ. Policy 2021, 23, 2499–2522. [Google Scholar]
- Aleson-Carbonell, L.; Fernández-López, J.; Pérez-Alvarez, J.A.; Kuri, V. Functional and Sensory Effects of Fibre-Rich Ingredients on Breakfast Fresh Sausages Manufacture. Food Sci. Technol. Int. 2005, 11, 89–97. [Google Scholar] [CrossRef]
- Masmoudi, M.; Besbes, S.; Blecker, C.; Attia, H. Preparation and Characterization of Osmodehydrated Fruits from Lemon and Date By-Products. Food Sci. Technol. Int. 2007, 13, 405–412. [Google Scholar] [CrossRef]
- Sendra, E.; Fayos, P.; Lario, Y.; Fernández-López, J.; Sayas-Barberá, E.; Pérez-Alvarez, J.A. Incorporation of Citrus Fibers in Fermented Milk Containing Probiotic Bacteria. Food Microbiol. 2008, 25, 13–21. [Google Scholar] [CrossRef]
- Imeneo, V.; Romeo, R.; Gattuso, A.; De Bruno, A.; Piscopo, A. Functionalized Biscuits with Bioactive Ingredients Obtained by Citrus Lemon Pomace. Foods 2021, 10, 2460. [Google Scholar] [CrossRef]
- Jiménez Nempeque, L.V.; Gómez Cabrera, Á.P.; Colina Moncayo, J.Y. Evaluation of Tahiti Lemon Shell Flour (Citrus latifolia Tanaka) as a Fat Mimetic. J. Food Sci. Technol. 2021, 58, 720–730. [Google Scholar] [CrossRef]
- Chappalwar, A.M.; Pathak, V.; Goswami, M.; Verma, A.K.; Rajkumar, V. Efficacy of Lemon Albedo as Fat Replacer for Development of Ultra-Low-Fat Chicken Patties. J. Food Process. Preserv. 2021, 45, e15587. [Google Scholar] [CrossRef]
- Kamiloglu, S.; Ozdal, T.; Tomas, M.; Capanoglu, E. Oil Matrix Modulates the Bioaccessibility of Polyphenols: A Study of Salad Dressing Formulation with Industrial Broccoli by-Products and Lemon Juice. J. Sci. Food Agric. 2022, 102, 5368–5377. [Google Scholar] [CrossRef]
- Zappia, A.; Spanti, A.; Princi, R.; Imeneo, V.; Piscopo, A. Evaluation of the Efficacy of Antioxidant Extract from Lemon By-Products on Preservation of Quality Attributes of Minimally Processed Radish (Raphanus sativus L.). Antioxidants 2023, 12, 235. [Google Scholar] [CrossRef]
- Banerjee, J.; Vijayaraghavan, R.; Arora, A.; MacFarlane, D.R.; Patti, A.F. Lemon Juice Based Extraction of Pectin from Mango Peels: Waste to Wealth by Sustainable Approaches. ACS Sustain. Chem. Eng. 2016, 4, 5915–5920. [Google Scholar] [CrossRef]
- Meseldžija, S.; Petrovic, J.; Onjia, A.; Volkov-Husovic, T.; Nešic, A.; Vukelic, N. Removal of Fe2+, Zn2+and Mn2+from the Mining Wastewater by Lemon Peel Waste. J. Serbian Chem. Soc. 2020, 85, 1371–1382. [Google Scholar] [CrossRef]
- Fernández-López, J.; Zhi, N.; Aleson-Carbonell, L.; Pérez-Alvarez, J.A.; Kuri, V. Antioxidant and Antibacterial Activities of Natural Extracts: Application in Beef Meatballs. Meat Sci. 2005, 69, 371–380. [Google Scholar] [CrossRef]
- Sariçoban, C.; Özalp, B.; Yilmaz, M.T.; Özen, G.; Karakaya, M.; Akbulut, M. Characteristics of Meat Emulsion Systems as Influenced by Different Levels of Lemon Albedo. Meat Sci. 2008, 80, 599–606. [Google Scholar] [CrossRef]
- Fu, J.T.; Chang, Y.H.; Shiau, S.Y. Rheological, Antioxidative and Sensory Properties of Dough and Mantou (Steamed Bread) Enriched with Lemon Fiber. LWT 2015, 61, 56–62. [Google Scholar] [CrossRef]
- Shan, B.; Li, X.; Pan, T.; Zheng, L.; Zhang, H.; Guo, H.; Jiang, L.; Zhen, S.; Ren, F. Effect of Shaddock Albedo Addition on the Properties of Frankfurters. J. Food Sci. Technol. 2015, 52, 4572–4578. [Google Scholar] [CrossRef]
- Sanz-Puig, M.; Pina-Pérez, M.C.; Martínez-López, A.; Rodrigo, D. Escherichia Coli O157:H7 and Salmonella typhimurium Inactivation by the Effect of Mandarin, Lemon, and Orange by-Products in Reference Medium and in Oat-Fruit Juice Mixed Beverage. LWT 2016, 66, 7–14. [Google Scholar] [CrossRef]
- Long, J.M.; Mohan, A. Food Flavoring Prepared with Lemon By-Product. J. Food Process. Preserv. 2021, 45, e15462. [Google Scholar] [CrossRef]
- Azmi, N.A.N.; Elgharbawy, A.A.M.; Salleh, H.M.; Moniruzzaman, M. Preparation, Characterization and Biological Activities of an Oil-in-Water Nanoemulsion from Fish By-Products and Lemon Oil by Ultrasonication Method. Molecules 2022, 27, 6725. [Google Scholar] [CrossRef]
- Aydın, S.; Sayin, U.; Sezer, M.Ö.; Sayar, S. Antioxidant Efficiency of Citrus Peels on Oxidative Stability during Repetitive Deep-Fat Frying: Evaluation with EPR and Conventional Methods. J. Food Process Preserv. 2021, 45, e15584. [Google Scholar] [CrossRef]
- Choi, Y.-S.; Kim, H.-W.; Hwang, K.-E.; Song, D.-H.; Kim, H.-Y.; Lee, M.-A.; Yoon, Y.-H.; Kim, C.-J. Effects of Dietary Fiber Extracted from Citrus (Citrus unshiu S. Marcoy) Peel on Physicochemical Properties of a Chicken Emulsion in Model Systems. Korean J. Food Sci. Anim. Resour. 2012, 32, 618–626. [Google Scholar] [CrossRef]
By-Product Characteristics | Q1 | Q2 | Q3 | Q4 | Q5 | Optimum Conditions of Extraction | Adherence to Our Purpose | Ref. |
---|---|---|---|---|---|---|---|---|
Lemons (Citrus limon cv. Meyer), lemon (C. limon cv. Yenben) peels (epicarp and mesocarp), frozen and milled (Ø: <1 mm) | No | Yes (Water) | Yes (Enzymatic) | Yes | Yes | Celluzyme MX 1.5% at 50 °C | Excellent | [13] |
Lemons (Citrus limon cv. Meyer), lemon (C. limon cv. Yenben) peels (epicarp and mesocarp), frozen and milled (Ø: <1 mm) | No | Yes (Water and ethanol) | Yes (Temp.) | Yes | Yes | 85% ethanol and 80 °C | Excellent | [14] |
Lemon (Citrus limon L.) peels and pulps, freeze-dried and milled (Ø: 0.25 mm) | Yes (Central composite design) | Yes (Ethanol and acidified date juice) | Yes (Stirring) | No | Yes | 84.34 °C for 3 h 34 min, and pH 2.8 | Excellent | [15] |
Lemon (Citrus limon L.) peels and pulps, freeze-dried and milled (Ø: 0.25 mm) | No | Yes (Water with acidified date juice) | Yes (Stirring) | No | Yes | pH 3.5, 45% sucrose, and 0.1% calcium to improve the gelling properties of the extracted pectin | Good | [16] |
Lemon (Citrus limon L.) peels and pulps, freeze-dried and milled (Ø: 0.25 mm) | No | Yes (Water with acidified date juice) | Yes (Stirring) | No | Yes | 84.34 °C for 3 h 34 min, and pH 2.8 | Good | [17] |
Lemon peels (Ø: <3 mm) | No | Yes (Water) | Yes (Enzymatic) | No | Yes | Water at 160 °C in autohydrolysis with two membrane filtration stages (diafiltration and concentration) | Good | [18] |
Lemon peels (Ø: <7 mm) | No | Yes (Water) | Yes (Enzymatic) | No | Yes | 2:1 ratio (lemon peels:water) at 37 °C with 1.95 mg β-glucosidase, 2.21 mg pectinase, and 1.82 mg celullase using steam explosion | Good | [19] |
Lemon peels | No | Yes (Water) | Yes (Enzymatic) | No | Yes | From 7.5 to 24 h enzymatic hydrolysis and membrane processing (filtration and concentration) | Good | [20] |
Lime peel (Citrus limonium cv. Colima) squares (5 mm × 5 mm) | No | Yes (Citric acid–sodium citrate) | Yes (Enzymatic) | No | No | 1:2.5 ratio (peels:solvent) + 0.1% cellulase enzyme at 50 °C for 3 h | Bad | [21] |
Lemon (Citrus limon L. var. Kütdiken) seeds | No | Yes – | Yes (Cold-pressed) | No | Yes | High-quality oils from seeds with a moisture content of 12% and cold-pressed (screw rotation speed of 30 rpm, outlet matrix of 10 mm, and oil outlet temp. of 40 °C) | Good | [22] |
Yuzu (Citrus junos) peels and seeds, dried and milled (Ø: <0.71 mm) | Yes (Box–Behnken) | Yes (CO2) | Yes (Supercritical fluids) | No | Yes | 200.54 bar, 46.28 °C, and 34.98 g/min flow rate | Excellent | [23] |
Cold-pressed EOs derived from lemon industrial processing | No | Yes (Water) | Yes (Cold-pressed) | No | Yes | Hydrodistillation for 3 h | Good | [24] |
Lemon peels, membranes, and seeds, freeze-dried and milled (Ø: <1.4 mm) | No | Yes (Water) | Yes (MW) | Yes | Yes | 360 W for 5 min (72 kJ/g) | Excellent | [25] |
Lemon (Citrus limon L.) peels, membranes, and seeds, freeze-dried and milled (Ø: 1.4, 2, 2.8 mm) | Yes (Box–Behnken) | Yes (Water, hot water, and ethanol) | Yes (US, temp., and stirring) | Yes | Yes | US: 35–45 min, 48–50 °C, 150–250 W Temp.: 95 °C for 15 min | Excellent | [26] |
Cold-pressed meals of lemon (Citrus limon L.) seeds, dried | No | Yes – | Yes (Cold-pressed) | Yes | Yes | 150 °C for 30 min and cold-pressed (30 rpm, 10 mm die, and 40 °C) | Excellent | [27] |
Domestic house solid waste lemon peel, milled and dried | No | No | Yes (HMIM) | Yes | Yes | 80 °C for 3 h in a water bath, cooled, and filtered | Good | [28] |
Lemon (Citrus limon L.) peels, dried and milled (Ø: 0.6–1.5 mm) | No | Yes (Water) | Yes (Subcritical fluids) | No | Yes | 10 g at 1500 psi, 200 °C, 15 min | Good | [29] |
Lemon (Citrus limon L.) peels, chopped (Ø: 10–30 mm) | No | Yes – | Yes (Pulsed electric fields) | Yes | Yes | 5 bars, 3.5 kV/cm, 30 pulses of 30 µs | Excellent | [30] |
Lemon seeds, dried and milled (Ø: 0.25–0.425 mm) | No | Yes (CO2) | Yes (Supercritical fluids) | No | Yes | First separator: 300 bar and 40 °C Second separator: 20 bar and 15 °C | Good | [31] |
Lemon peels, dried and milled (Ø: 0.787 mm) | Yes (Box–Behnken) | Yes (Ethanol–water) | Yes (Homogenizer) | Yes | Yes | 0.1 g mixed in 33.62% ethanol for 1.282 min at 5007 rpm | Excellent | [32] |
Sweet lemon peels, dried and milled (Ø: 0.4 mm) | Yes (Box–Behnken) | Yes (Ethanol–water) | Yes (MW) | No | Yes | 700 W, 3 min, and pH 1.5 | Excellent | [33] |
Lemon (Citrus limon L.) peels, dried and milled (Ø: <0.15 mm) | No | Yes (Water or ethanol) | Yes (Temp.) | Yes | Yes | 10 g in 200 mL ethanol at 60 °C for 2 h | Excellent | [34] |
Lemon (Citrus limon L.) peels, blanched and frozen | Yes (Box– Behnken) | Yes (Citric acid) | Yes (Ohmic heating) | No | Yes | 8.7:1 (solvent:sample) ratio for 58.4 min and voltage gradient of 14.2 V/cm | Excellent | [35] |
Persian lime (Citrus latifolia) seeds, dried | No | Yes (Phosphate buffer) | Yes (Enzymatic) | No | Yes | Alcalase, Protamex, and Neutrase mixed enzymes (1:1:1), pH 8.0, 50 °C | Good | [36] |
Lemon peel pomace (Ø: 0.177 mm) | No | Yes (Citric acid and phosphate buffer) | Yes (Enzymatic) | No | Yes | 0.45% xylanase, pH 5.0, rate (solid:liquid) 1:20 at 60 °C for 1.5 h at 30 rpm | Good | [37] |
Frozen lemon peels and pulps | No | Yes (Ethanol) | Yes (HPH) | No | Yes | 20 MPa to alcohol-insoluble residue | Good | [38] |
Lemon (Citrus limon L. Osbeck) peels | No | Yes (Water and ethanol–water) | Yes (US and MW) | Yes | Yes | Ethanol:water (50:50), US at 70 °C for 30 min | Excellent | [39] |
Lemon peels, dried and milled (Ø: ~0.1 mm) | Yes (Central composite design) | Yes (Deep eutectic solvents) | Yes (Stirring) | Yes | Yes | 55% (sample/solvent), 13 mL/g and 36 min in deep eutectic solvents | Excellent | [40] |
Lemon peels | Yes (Box–Behnken) | Yes (Lactic acid-based automatic solvent) | Yes | Yes | Yes | 1.5 h, 46% water, and 5 g of peel | Excellent | [41] |
Lemon peels, dried and crushed (Ø: >1 mm) | No | Yes (Ethanol and water) | Yes (PLE-SPE) | Yes | Yes | Sepra™ C18-E columns, in water–ethanol, pH 6–7, temp. 50–70 °C | Excellent | [42] |
Lemon peels, dried | Yes (Uncertainty analysis) | Yes (Water) | Yes (Steam distillation) | No | Yes | Lemon peel oils report better results compared to normal diesel in all aspects, except for NOx emissions. A content of 10% water in lemon peel oils improves the overall performance | Excellent | [43] |
Cold-pressed essential oil (CPEO) from lemon and tangerine | No | No (Hexane and dichloromethane) | Yes (Distillation) | No | Yes | Higher carotenoid recovery through azeotropic condensation, adding isopropanol 3.5:1 (ratio) to the CPEO, evaporating under negative pressure, and heating for 2.5 h at 28–32 °C. | Bad | [44] |
Lemon (Citrus limon cv. Eureka) peels, freeze-dried and milled (Ø: ~0.71 mm) | No | Yes (Ethanol–water) | Yes (US) | Yes | Yes | 1:40 (w:v) 75% ethanol, US 550 W for 5 min | Excellent | [45] |
Lemon peels, dried and milled (Ø: <0.4 mm) | Yes (Box–Behnken) | No (Hot acidic (HCl) water) | Yes (Temp.) | No | Yes | pH 1.5 at 90 °C for 120 min | Good | [46] |
Citrus peel pomace, dried and milled (Ø: 0.177 mm) | No | No (Octenyl succinic anhydride) | Yes (Esterification) | No | Yes | Octenyl succinic anhydride:citrus fiber (1:5, w:w), pH 8.5 at 20 °C for 1.5 h | Bad | [47] |
Lemon peels, dried and milled (Ø: 0.5–3.55 mm) | No | Yes (Deionized water) | Yes (Pressurized) | Yes | Yes | 10.34 MPa, rinse volume (30%), purge for 90 s with N2 gas, 160 °C for 5 or 30 min (depending on compound) | Excellent | [48] |
Lemon peels, freeze-dried and milled (Ø: 0.45 mm) | No | Yes (Sodium acetate buffer and ethanol–water) | Yes (Enzymatic and US) | Yes | Yes | Enzyme (5 U cellulase and pectinase in sodium acetate buffer (20 mM, pH 5.0) at 40 °C for 60 min) and US (400 W, 24 kHz, power level of 50%, 23 °C, 15 min in ethanol:water 50:50) treatments | Excellent | [49] |
Lemon processing residues, dried and milled (Ø: <1 mm) | No | Yes (Water, ethanol, and ethanol–water) | Yes (Stirring) | No | Yes | Water as solvent at ratio 1:50, stirring for 30 min | Good | [50] |
Lemon peel, dried and milled (Ø: <0.734 mm) | No | Yes (Water and ethanol) | Yes (Stirring) | Yes | Yes | 50 g + 500 mL 98% ethanol stirring for 24 h at 25 °C, filtered and concentrated using the vacuum evaporator at 40 °C | Excellent | [51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Zamora, L.; Cano-Lamadrid, M.; Artés-Hernández, F.; Castillejo, N. Flavonoid Extracts from Lemon By-Products as a Functional Ingredient for New Foods: A Systematic Review. Foods 2023, 12, 3687. https://doi.org/10.3390/foods12193687
Martínez-Zamora L, Cano-Lamadrid M, Artés-Hernández F, Castillejo N. Flavonoid Extracts from Lemon By-Products as a Functional Ingredient for New Foods: A Systematic Review. Foods. 2023; 12(19):3687. https://doi.org/10.3390/foods12193687
Chicago/Turabian StyleMartínez-Zamora, Lorena, Marina Cano-Lamadrid, Francisco Artés-Hernández, and Noelia Castillejo. 2023. "Flavonoid Extracts from Lemon By-Products as a Functional Ingredient for New Foods: A Systematic Review" Foods 12, no. 19: 3687. https://doi.org/10.3390/foods12193687
APA StyleMartínez-Zamora, L., Cano-Lamadrid, M., Artés-Hernández, F., & Castillejo, N. (2023). Flavonoid Extracts from Lemon By-Products as a Functional Ingredient for New Foods: A Systematic Review. Foods, 12(19), 3687. https://doi.org/10.3390/foods12193687