Effect of Enyzmes on the Quality and Predicting Glycaemic Response of Chinese Steamed Bread
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ingredients
2.2. Design of Experiment
2.3. Preparation of Chinese Steamed Bread (CSB)
2.4. Physical Properties of Chinese Steamed Bread
2.5. Image Analysis
2.6. Total Starch and Total, Soluble and Insoluble Dietary Fibre Analysis
2.7. Glycaemic Response Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Effect of Single Enzyme on Physicochemical and Nutritional Properties of CSB Incorporated with 15% Oat Bran
3.2. Effect of Enzymes Combination on the Physicochemical and Nutritional Properties of CSB Enriched in 15% Oat Bran
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Steenson, S.; Buttriss, J.L. Healthier and more sustainable diets: What changes are needed in high-income countries? Nutr. Bull. 2021, 46, 279–309. [Google Scholar] [CrossRef]
- Ye, S.; Shah, B.R.; Li, J.; Liang, H.; Zhan, F.; Geng, F.; Li, B. A critical review on interplay between dietary fibers and gut microbiota. Trends Food Sci. Technol. 2022, 124, 237–249. [Google Scholar] [CrossRef]
- Mkel, N.; Rosa-Sibakov, N.; Wang, Y.J.; Mattila, O.; Sontag-Strohm, T. Role of β-glucan content, molecular weight and phytate in the bile acid binding of oat β-glucan. Food Chem. 2021, 358, 129917. [Google Scholar] [CrossRef]
- Ksab, C.; Smdo, A.; Adsmc, E.; Pj, D.; Snda, C. Insights on β-glucan as a prebiotic coadjuvant in the treatment of diabetes mellitus: A review—ScienceDirect. Food Hydrocoll. Health 2022, 2, 100056. [Google Scholar] [CrossRef]
- Wood, P.J. Cereal β-glucans in diet and health. J. Cereal Sci. 2007, 46, 230–238. [Google Scholar] [CrossRef]
- Liu, W.; Brennan, M.; Serventi, L.; Brennan, C. The Effect of Oat Bran on the Dough Rheology and Quality of Chinese Steamed Bread. Grain Oil Sci. Technol. 2018, 1, 18–22. [Google Scholar]
- Wang, L.; Ye, F.; Feng, L.; Wei, F.; Zhao, G. The effects of oat β-glucan incorporation on the quality, structure, consumer acceptance and glycaemic response of steamed bread. J. Texture Stud. 2017, 48, 562–570. [Google Scholar] [CrossRef]
- Liu, W.; Brennan, M.A.; Serventi, L.; Brennan, C.S. Effect of cellulase, xylanase and α-amylase combinations on the rheological properties of Chinese steamed bread dough enriched in wheat bran. Food Chem. 2017, 234, 93–102. [Google Scholar] [CrossRef]
- Cripwell, R.A.; van Zyl, W.H.; Viljoen-Bloom, M. Fungal Biotechnology: Fungal Amylases and Their Applications. In Encyclopedia of Mycology; Zaragoza, Ó., Casadevall, A., Eds.; Elsevier: Oxford, UK, 2021; pp. 326–336. [Google Scholar]
- Dahiya, S.; Bajaj, B.K.; Kumar, A.; Tiwari, S.K.; Singh, B. A review on biotechnological potential of multifarious enzymes in bread making. Process Biochem. 2020, 99, 290–306. [Google Scholar] [CrossRef]
- Singhal, G.; Bhagyawant, S.S.; Srivastava, N. Chapter 3—Cellulases through thermophilic microorganisms: Production, characterization, and applications. In Current Status and Future Scope of Microbial Cellulases; Tuli, D.K., Kuila, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 39–57. [Google Scholar]
- AACC. AACC Method 44-15: Moisture-Air Oven Methods; American Association for Clinical Chemistry: Washington, DC, USA, 1999. [Google Scholar]
- Liu, W.; Brennan, M.; Serventi, L.; Brennan, C. Buckwheat flour inclusion in Chinese steamed bread: Potential reduction in glycemic response and effects on dough quality. Eur. Food Res. Technol. 2017, 243, 727–734. [Google Scholar] [CrossRef]
- Dewaest, M.; Villemejane, C.; Berland, S.; Neron, S.; Clement, J.; Verel, A.; Michon, C. Effect of crumb cellular structure characterized by image analysis on cake softness. J. Texture Stud. 2018, 49, 328–338. [Google Scholar] [CrossRef] [PubMed]
- Brennan, M.A.; Derbyshire, E.J.; Brennan, C.S.; Tiwari, B.K. Impact of dietary fibre-enriched ready-to-eat extruded snacks on the postprandial glycaemic response of non-diabetic patients. Mol. Nutr. Food Res. 2012, 56, 834–837. [Google Scholar] [CrossRef] [PubMed]
- Barrera, G.N.; Tadini, C.C.; León, A.E.; Ribotta, P.D. Use of alpha-amylase and amyloglucosidase combinations to minimize the bread quality problems caused by high levels of damaged starch. J. Food Sci. Technol. 2016, 53, 3675–3684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rebholz, G.F.; Sebald, K.; Dirndorfer, S.; Dawid, C.; Hofmann, T.; Scherf, K.A. Impact of exogenous α-amylases on sugar formation in straight dough wheat bread. Eur. Food Res. Technol. 2021, 247, 695–706. [Google Scholar] [CrossRef]
- Xue, Y.; Cui, X.; Zhang, Z.; Zhou, T.; Gao, R.; Li, Y.; Ding, X. Effect of β-endoxylanase and α-arabinofuranosidase enzymatic hydrolysis on nutritional and technological properties of wheat brans. Food Chem. 2020, 302, 125332. [Google Scholar] [CrossRef]
- Serventi, L.; Skibsted, L.H.; Kidmose, U. Individual and combined effects of water addition with xylanases and laccase on the loaf quality of composite wheat-cassava bread. Eur. Food Res. Technol. 2016, 242, 1663–1672. [Google Scholar] [CrossRef]
- Schoenlechner, R.; Szatmari, M.; Bagdi, A.; Tömösközi, S. Optimisation of bread quality produced from wheat and proso millet (Panicum miliaceum L.) by adding emulsifiers, transglutaminase and xylanase. LWT—Food Sci. Technol. 2013, 51, 361–366. [Google Scholar] [CrossRef]
- Tebben, L.; Chen, G.; Tilley, M.; Li, Y. Individual effects of enzymes and vital wheat gluten on whole wheat dough and bread properties. J. Food Sci. 2020, 85, 4201–4208. [Google Scholar] [CrossRef]
- Flander, L.; Rouau, X.; Morel, M.-H.; Autio, K.; Seppänen-Laakso, T.; Kruus, K.; Buchert, J. Effects of Laccase and Xylanase on the Chemical and Rheological Properties of Oat and Wheat Doughs. J. Agric. Food Chem. 2008, 56, 5732–5742. [Google Scholar] [CrossRef]
- Eugenia Steffolani, M.; Ribotta, P.D.; Pérez, G.T.; León, A.E. Combinations of glucose oxidase, α-amylase and xylanase affect dough properties and bread quality. Int. J. Food Sci. Technol. 2012, 47, 525–534. [Google Scholar] [CrossRef]
- Sarabhai, S.; Tamilselvan, T.; Prabhasankar, P. Role of enzymes for improvement in gluten-free foxtail millet bread: It’s effect on quality, textural, rheological and pasting properties. LWT 2021, 137, 110365. [Google Scholar] [CrossRef]
- Altuna, L.; Ribotta, P.D.; Tadini, C.C. Effect of a combination of enzymes on the fundamental rheological behavior of bread dough enriched with resistant starch. LWT 2016, 73, 267–273. [Google Scholar] [CrossRef] [Green Version]
- Ebling, C.D.; Thys, R.C.S.; Klein, M.P. Influence of amyloglucosidase, glucose oxidase, and transglutaminase on the technological quality of gluten-free bread. Cereal Chem. 2022, 99, 802–810. [Google Scholar] [CrossRef]
- Park, E.Y.; Fuerst, E.P.; Baik, B.-K. Effect of bran hydration with enzymes on functional properties of flour–bran blends. Cereal Chem. 2019, 96, 273–282. [Google Scholar] [CrossRef]
- Calle, J.; Benavent-Gil, Y.; Rosell, C.M. Development of gluten free breads from Colocasia esculenta flour blended with hydrocolloids and enzymes. Food Hydrocoll. 2020, 98, 105243. [Google Scholar] [CrossRef]
- Arte, E.; Rizzello, C.G.; Verni, M.; Nordlund, E.; Katina, K.; Coda, R. Correction to Impact of Enzymatic and Microbial Bioprocessing on Protein Modification and Nutritional Properties of Wheat Bran. J. Agric. Food Chem. 2019, 67, 12333–12334. [Google Scholar] [CrossRef] [Green Version]
- Song, H.T.; Gao, Y.; Yang, Y.M.; Xiao, W.J.; Liu, S.H.; Xia, W.C.; Liu, Z.L.; Yi, L.; Jiang, Z.B. Synergistic effect of cellulase and xylanase during hydrolysis of natural lignocellulosic substrates. Bioresour. Technol. 2016, 219, 710–715. [Google Scholar] [CrossRef]
- Han, W.; Ma, S.; Li, L.; Zheng, X.; Wang, X. Impact of wheat bran dietary fiber on gluten and gluten-starch microstructure formation in dough. Food Hydrocoll. 2019, 95, 292–297. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, S.; Ai, L. Physical barrier effects of dietary fibers on lowering starch digestibility. Curr. Opin. Food Sci. 2022, 48, 100940. [Google Scholar] [CrossRef]
Blocks | A | B | C | Volume (mL) | Specific Volume (mL/g) | Loaf Height (mm) | Moisture (%) | Hardness (g) | Springiness (mm) | Cohesiveness (mm) | Chewiness (g) | Cells (cells/cm2) | Cell Size (mm) | Cell Area (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Wheat flour | 0 | 0 | 0 | 248.33 | 2.50 | 62.14 | 40.10 | 228.24 | 0.94 | 0.88 | 179.83 | 53.00 | 0.488 | 21.88 |
Oat bran | 0 | 0 | 0 | 194.33 | 1.79 | 50.62 | 45.27 | 519.03 | 0.95 | 0.85 | 419.34 | 80.50 | 0.41 | 20.32 |
1 | 6 | 70 | 35 | 266.67 | 2.51 | 60.97 | 44.78 | 233.34 | 1.18 | 0.91 | 257.19 | 46.17 | 0.95 | 23.82 |
2 | 6 | 70 | 60 | 265.00 | 2.42 | 60.46 | 43.59 | 270.26 | 1.21 | 0.90 | 275.23 | 49.67 | 0.65 | 21.98 |
3 | 6 | 120 | 60 | 252.33 | 2.31 | 59.28 | 49.50 | 305.04 | 1.05 | 0.92 | 346.18 | 38.00 | 0.87 | 21.20 |
4 | 6 | 120 | 35 | 260.33 | 2.41 | 60.22 | 47.41 | 297.82 | 1.13 | 0.91 | 247.67 | 46.50 | 0.74 | 22.17 |
5 | 10 | 70 | 35 | 251.33 | 2.32 | 58.46 | 47.83 | 300.12 | 1.06 | 0.90 | 305.95 | 45.33 | 0.73 | 21.68 |
6 | 10 | 120 | 35 | 242.33 | 2.19 | 57.27 | 44.73 | 419.78 | 1.00 | 0.90 | 363.52 | 65.50 | 0.47 | 20.55 |
7 | 10 | 120 | 60 | 246.67 | 2.20 | 54.76 | 46.73 | 318.06 | 1.08 | 0.92 | 319.07 | 51.50 | 0.61 | 21.05 |
8 | 10 | 70 | 60 | 239.67 | 2.21 | 54.31 | 50.21 | 366.07 | 0.98 | 0.91 | 374.73 | 48.67 | 0.70 | 21.29 |
Coefficient Estimate | Volume (mL) | Specific Volume (mL/g) | Loaf Height (mm) | Moisture (%) | Hardness (g) | Springiness (mm) | Cohesiveness (mm) | Chewiness (g) | Cells (cells/cm2) | Cell Size (mm) | Cell Area (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
Constant (β0) | 253.09 | 2.32 | 58.22 | 46.85 | 313.81 | 1.08 | 0.91 | 311.19 | 48.92 | 0.72 | 21.72 |
Amylase (β1) | −8.08 | −0.09 | −2.02 | 0.53 | 37.20 | −0.06 | NS | 29.63 | 3.83 | −0.88 | −0.58 |
Xylanase (β2) | −2.66 | −0.04 | −0.33 | 0.24 | 21.36 | −0.02 | NS | 7.92 | 1.46 | −0.04 | −0.47 |
Cellulase (β3) | −2.17 | −0.04 | −1.01 | 0.66 | NS | NS | NS | 17.61 | −1.96 | NS | −0.33 |
Amylase*Xylanase (β12) | 2.18 | 0.01 | NS | −1.89 | −3.45 | 0.03 | NS | −7.44 | 4.29 | −0.05 | NS |
Amylase*Cellulase (β13) | NS | 0.01 | 0.16 | 0.43 | −9.99 | NS | NS | −11.53 | NS | 0.03 | 0.37 |
Xylanase*Cellulase (β23) | NS | 0.01 | NS | 0.36 | −24.67 | NS | NS | −4.09 | −3.66 | 0.08 | 0.22 |
Amy*Xyl*Cellulase | 2.74 | 0.02 | NS | −0.46 | −17.25 | 0.03 | NS | −24.21 | NS | −0.03 | NS |
R2 | 86.68% | 98.45% | 90.85% | 99.58% | 98.96% | 90.44% | 39.82% | 98.19% | 91.89% | 96.87% | 85.11% |
Blocks | A | B | C | IDF % | SDF % | TDF % | Total Starch % | AUC |
---|---|---|---|---|---|---|---|---|
Wheat flour | 0 | 0 | 0 | 3.48 | 0.52 | 4.01 | 43.82 | 491.3 |
Oat bran | 0 | 0 | 0 | 4.81 | 3.62 | 8.43 | 37.52 | 344.61 |
1 | 6 | 70 | 35 | 4.66 | 3.09 | 7.75 | 34.11 | 371.65 |
2 | 6 | 70 | 60 | 4.76 | 2.76 | 7.52 | 35.92 | 346.74 |
3 | 6 | 120 | 60 | 4.32 | 3.24 | 7.56 | 33.13 | 336.24 |
4 | 6 | 120 | 35 | 4.41 | 3.36 | 7.77 | 34.63 | 355.67 |
5 | 10 | 70 | 35 | 4.63 | 3.08 | 7.71 | 35.32 | 351.06 |
6 | 10 | 120 | 35 | 4.09 | 3.15 | 7.24 | 36.39 | 375.73 |
7 | 10 | 120 | 60 | 4.41 | 2.68 | 7.09 | 33.08 | 318.22 |
8 | 10 | 70 | 60 | 4.73 | 2.90 | 7.63 | 34.44 | 382.20 |
Coefficient Estimate | IDF % | SDF % | TDF % | Total Starch % | AUC |
---|---|---|---|---|---|
Constant (β0) | 4.51 | 3.01 | 7.52 | 34.63 | 394.73 |
Amylase (β1) | −0.04 | −0.06 | −0.10 | 0.18 | NS |
Xylanase (β2) | −0.19 | 0.07 | −0.12 | −0.32 | −8.18 |
Cellulase (β3) | 0.05 | −0.14 | −0.09 | −0.48 | −8.88 |
Amylase*Xylanase (β12) | NS | −0.11 | −0.14 | 0.25 | NS |
Amylase*Cellulase (β13) | 0.06 | −0.04 | NS | −0.56 | NS |
Xylanase*Cellulase (β23) | NS | NS | NS | −0.71 | −10.44 |
Amylase*Xylanase*Cellulase | 0.05 | −0.07 | NS | NS | −11.72 |
R2 | 89.61% | 89.36% | 97.71% | 96.76% | 90.23% |
Bread Samples | Wheat Flour | 15% Oat Bran (Control) | Optimum 1 67,035 ppm | Optimum 2 10,120,60 ppm |
---|---|---|---|---|
Volume (mL) | 248.33 ± 2.65 B | 194.33 ± 2.08 C | 266.67 ± 5.18 A | 246.67 ± 3.58 B |
Specific volume (mL/g) | 2.50 ± 0.03 A | 1.79 ± 0.01 C | 2.51 ± 0.02 A | 2.20 ± 0.01 B |
Loaf height (mm) | 62.14 ± 0.38 A | 50.62 ± 0.36 C | 60.97 ± 1.18 A | 54.76 ± 0.68 B |
Moisture (%) | 40.10 ± 0.01 C | 45.27 ± 0.06 AB | 44.78 ± 0.53 B | 46.73 ± 0.62 A |
Hardness (g) | 228.24 ± 25.92 C | 519.03 ± 1.84 A | 233.61 ± 6.61 C | 318.06 ± 3.62 B |
Gumminess (g) | 191.75 ± 19.15 C | 438.80 ± 4.29 A | 211.14 ± 12.02 C | 292.26 ± 3.88 B |
Chewiness (g) | 179.83 ± 19.34 D | 419.34 ± 7.34 A | 257.19 ± 8.71 C | 319.07 ± 3.11 B |
Cohesiveness (mm) | 0.88 ± 0.02 AB | 0.85 ± 0.01 B | 0.91 ± 0.02 A | 0.92 ± 0.02 A |
Springiness (mm) | 0.95 ± 0.01 C | 0.95 ± 0.01 C | 1.18 ± 0.03 A | 1.08 ± 0.02 B |
Cell density (cells/cm2) | 53.00 ± 1.03 B | 80.33 ± 1.35 A | 46.17 ± 3.97 C | 51.50 ± 3.21 B |
Cell size (mm) | 0.488 ± 0.01 C | 0.41 ± 0.02 D | 0.95 ± 0.07 A | 0.61 ± 0.01 B |
Mean cell area (%) | 21.88 ± 1.33 B | 20.32 ± 0.76 B | 23.82 ± 0.26 A | 21.05 ± 0.68 B |
IDF (%) | 3.48 ± 0.11 C | 4.81 ± 0.14 A | 4.66 ± 0.01 A | 4.41 ± 0.03 B |
SDF (%) | 0.53 ± 0.01 D | 3.62 ± 0.05 A | 3.09 ± 0.01 B | 2.68 ± 0.01 C |
TDF (%) | 4.01 ± 0.10 D | 8.43 ± 0.13 A | 7.75 ± 0.01 C | 7.09 ± 0.03 B |
Total starch (%) | 43.82 ± 1.30 A | 37.52 ± 0.26 B | 34.11 ± 0.23 C | 33.08 ± 0.41 C |
AUC | 431.31 ± 21.4 A | 344.61 ± 2.81 C | 371.26 ± 8.25 B | 318.22 ± 6.59 D |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Brennan, M.; Brennan, C.; You, L.; Tu, D. Effect of Enyzmes on the Quality and Predicting Glycaemic Response of Chinese Steamed Bread. Foods 2023, 12, 273. https://doi.org/10.3390/foods12020273
Liu W, Brennan M, Brennan C, You L, Tu D. Effect of Enyzmes on the Quality and Predicting Glycaemic Response of Chinese Steamed Bread. Foods. 2023; 12(2):273. https://doi.org/10.3390/foods12020273
Chicago/Turabian StyleLiu, Wenjun, Margaret Brennan, Charles Brennan, Linfeng You, and Dawei Tu. 2023. "Effect of Enyzmes on the Quality and Predicting Glycaemic Response of Chinese Steamed Bread" Foods 12, no. 2: 273. https://doi.org/10.3390/foods12020273
APA StyleLiu, W., Brennan, M., Brennan, C., You, L., & Tu, D. (2023). Effect of Enyzmes on the Quality and Predicting Glycaemic Response of Chinese Steamed Bread. Foods, 12(2), 273. https://doi.org/10.3390/foods12020273