Downregulation of Peroxidase Activity of Platinum Cube Enables Minute–Time Scale Colorimetric Signaling of Hypoxanthine for Fish Freshness Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instruments
2.2. Synthesis of PVP-PtNC
2.3. PVP-PtNC-Based Colorimetric Sensing of Hx
2.4. Processing of Real Fish Samples
3. Results and Discussion
3.1. Principle of the Proposed Colorimetric Sensor
3.2. Feasibility Demonstration for Hx Analysis
3.3. Characterization of as-Synthesized PVP-PtNC
3.4. Exploring the Interaction of PVP-PtNC with Hx
3.5. Optimization of Experimental Conditions
3.6. Investigation for Quantitative Detection of Hx
3.7. Investigation for the Qualitative Detection of Hx
3.8. Practicability Investigation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nawaz, A.; Li, E.; Irshad, S.; Xiong, Z.; Xiong, H.; Shahbaz, H.M.; Siddique, F. Valorization of fisheries by-products: Challenges and technical concerns to food industry. Trends Food Sci. Technol. 2020, 99, 34–43. [Google Scholar] [CrossRef]
- Lucas, S.; Soler, L.-G.; Irz, X.; Gascuel, D.; Aubin, J.; Cloâtre, T. The environmental impact of the consumption of fishery and aquaculture products in France. J. Clean. Prod. 2021, 299, 126718. [Google Scholar] [CrossRef]
- Naylor, R.L.; Hardy, R.W.; Buschmann, A.H.; Bush, S.R.; Cao, L.; Klinger, D.H.; Little, D.C.; Lubchenco, J.; Shumway, S.E.; Troell, M. A 20-year retrospective review of global aquaculture. Nature 2021, 591, 551–563. [Google Scholar] [CrossRef] [PubMed]
- Duarte, A.M.; Silva, F.; Pinto, F.R.; Barroso, S.; Gil, M.M. Quality Assessment of Chilled and Frozen Fish-Mini Review. Foods 2020, 9, 1739. [Google Scholar] [CrossRef]
- Gokoglu, N. Novel natural food preservatives and applications in seafood preservation: A review. J. Sci. Food Agric. 2019, 99, 2068–2077. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Qin, N.; Zhang, L.; Li, Q.; Prinyawiwatkul, W.; Luo, Y. Degradation of adenosine triphosphate, water loss and textural changes in frozen common carp (Cyprinus carpio) fillets during storage at different temperatures. Int. J. Refrig. 2019, 98, 294–301. [Google Scholar] [CrossRef]
- Pan, C.; Chen, S.; Hao, S.; Yang, X. Effect of low-temperature preservation on quality changes in Pacific white shrimp, Litopenaeus vannamei: A review. J. Sci. Food Agric. 2019, 99, 6121–6128. [Google Scholar] [CrossRef]
- Shi, C.; Guo, H.; Wu, T.; Tao, N.; Wang, X.; Zhong, J. Effect of three types of thermal processing methods on the lipidomics profile of tilapia fillets by UPLC-Q-Extractive Orbitrap mass spectrometry. Food Chem. 2019, 298, 125029. [Google Scholar] [CrossRef]
- Chang, W.C.; Wu, H.Y.; Yeh, Y.; Liao, P.C. Untargeted foodomics strategy using high-resolution mass spectrometry reveals potential indicators for fish freshness. Anal. Chim. Acta 2020, 1127, 98–105. [Google Scholar] [CrossRef]
- Zhou, J.; Wu, X.; Chen, Z.; You, J.; Xiong, S. Evaluation of freshness in freshwater fish based on near infrared reflectance spectroscopy and chemometrics. LWT 2019, 106, 145–150. [Google Scholar] [CrossRef]
- Wu, L.; Pu, H.; Sun, D.-W. Novel techniques for evaluating freshness quality attributes of fish: A review of recent developments. Trends Food Sci. Technol. 2019, 83, 259–273. [Google Scholar] [CrossRef]
- Chang, L.Y.; Chuang, M.Y.; Zan, H.W.; Meng, H.F.; Lu, C.J.; Yeh, P.H.; Chen, J.N. One-Minute Fish Freshness Evaluation by Testing the Volatile Amine Gas with an Ultrasensitive Porous-Electrode-Capped Organic Gas Sensor System. ACS Sens. 2017, 2, 531–539. [Google Scholar] [CrossRef]
- Weng, X.; Luan, X.; Kong, C.; Chang, Z.; Li, Y.; Zhang, S.; Al-Majeed, S.; Xiao, Y. A Comprehensive Method for Assessing Meat Freshness Using Fusing Electronic Nose, Computer Vision, and Artificial Tactile Technologies. J. Sens. 2020, 2020, 8838535. [Google Scholar] [CrossRef]
- Gao, X.; Liu, J.; Zhuang, X.; Tian, C.; Luan, F.; Liu, H.; Xiong, Y. Incorporating copper nanoclusters into a zeolitic imidazole framework-90 for use as a highly sensitive adenosine triphosphate sensing system to evaluate the freshness of aquatic products. Sens. Actuators B Chem. 2020, 308, 127720. [Google Scholar] [CrossRef]
- Li, P.; Geng, J.; Li, H.; Niu, Z. Fish meal freshness detection by GBDT based on a portable electronic nose system and HS-SPME–GC–MS. Eur. Food Res. Technol. 2020, 246, 1129–1140. [Google Scholar] [CrossRef]
- Mohammadi Lalabadi, H.; Sadeghi, M.; Mireei, S.A. Fish freshness categorization from eyes and gills color features using multi-class artificial neural network and support vector machines. Aquac. Eng. 2020, 90, 102076. [Google Scholar] [CrossRef]
- Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Qiao, J.; Liu, W.; Qi, L. Norfloxacin detection based on the peroxidase-like activity enhancement of gold nanoclusters. Anal. Bioanal. Chem. 2021, 413, 979–985. [Google Scholar] [CrossRef]
- Jin, L.; Meng, Z.; Zhang, Y.; Cai, S.; Zhang, Z.; Li, C.; Shang, L.; Shen, Y. Ultrasmall Pt Nanoclusters as Robust Peroxidase Mimics for Colorimetric Detection of Glucose in Human Serum. ACS Appl. Mater. Interfaces 2017, 9, 10027–10033. [Google Scholar] [CrossRef]
- Tang, Y.; Hu, Y.; Yang, Y.; Liu, B.; Wu, Y. A facile colorimetric sensor for ultrasensitive and selective detection of Lead(II) in environmental and biological samples based on intrinsic peroxidase-mimic activity of WS2 nanosheets. Anal. Chim. Acta 2020, 1106, 115–125. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, S.; Ma, L.; Wu, P.; Liu, J. Graphene oxide as a photocatalytic nuclease mimicking nanozyme for DNA cleavage. Nano Res. 2020, 13, 455–460. [Google Scholar] [CrossRef]
- Lopez-Cantu, D.O.; Gonzalez-Gonzalez, R.B.; Melchor-Martinez, E.M.; Martinez, S.A.H.; Araujo, R.G.; Parra-Arroyo, L.; Sosa-Hernandez, J.E.; Parra-Saldivar, R.; Iqbal, H.M.N. Enzyme-mimicking capacities of carbon-dots nanozymes: Properties, catalytic mechanism, and applications—A review. Int. J. Biol. Macromol. 2022, 194, 676–687. [Google Scholar] [CrossRef] [PubMed]
- Unnikrishnan, B.; Lien, C.W.; Chu, H.W.; Huang, C.C. A review on metal nanozyme-based sensing of heavy metal ions: Challenges and future perspectives. J. Hazard. Mater. 2021, 401, 123397. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, M.; Hosseinali, S.H.; Yousefvand, P.; Salihi, A.; Shekha, M.S.; Aziz, F.M.; JouyaTalaei, A.; Hasan, A.; Falahati, M. Gold nanozyme: Biosensing and therapeutic activities. Mater. Sci. Eng. C 2020, 108, 110422. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Ni, D.; Rosenkrans, Z.T.; Huang, P.; Yan, X.; Cai, W. Nanozyme: New horizons for responsive biomedical applications. Chem. Soc. Rev. 2019, 48, 3683–3704. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Huang, R.; Qi, W.; Su, R.; Binks, B.P.; He, Z. Construction of a bioinspired laccase-mimicking nanozyme for the degradation and detection of phenolic pollutants. Appl. Catal. B Environ. 2019, 254, 452–462. [Google Scholar] [CrossRef]
- Yuan, L.; Gan, Z.; Fan, Y.; Ding, F.; Xu, X.; Chen, X.; Zou, X.; Zhang, W. Thermal-controlled active sensor module using enzyme-regulated UiO-66-NH2/MnO2 fluorescence probe for total organophosphorus pesticide determination. J. Hazard. Mater. 2022, 436, 129111. [Google Scholar] [CrossRef]
- Yang, Q.; Cui, X.; Qin, Y.; Lei, T.; He, Y.; Song, G. Cu nanoclusters decorated Ti3C2 nanosheets composite with tetraenzyme mimic activities and the application for smartphone-assisted detection of hypoxanthine. Anal. Chim. Acta 2022, 1232, 340494. [Google Scholar] [CrossRef]
- Chen, J.; Lu, Y.; Yan, F.; Wu, Y.; Huang, D.; Weng, Z. A fluorescent biosensor based on catalytic activity of platinum nanoparticles for freshness evaluation of aquatic products. Food Chem. 2020, 310, 125922. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, X.; Ye, Y.; Shen, Y. Fe-Doped polydopamine nanoparticles with peroxidase-mimicking activity for the detection of hypoxanthine related to meat freshness. Analyst 2022, 147, 956–964. [Google Scholar] [CrossRef]
- Gao, Z.; Liu, G.G.; Ye, H.; Rauschendorfer, R.; Tang, D.; Xia, X. Facile Colorimetric Detection of Silver Ions with Picomolar Sensitivity. Anal. Chem. 2017, 89, 3622–3629. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.-J.; Zhang, Y.-p.; Liu, C.-J. Reduction of supported noble-metal ions using glow discharge plasma. Langmuir 2006, 22, 11388–11394. [Google Scholar] [CrossRef]
- Wang, Z.; Xiao, B.; Lin, Z.; Xu, Y.; Lin, Y.; Meng, F.; Zhang, Q.; Gu, L.; Fang, B.; Guo, S. PtSe2/Pt heterointerface with reduced coordination for boosted hydrogen evolution reaction. Angew. Chem. Int. Ed. 2021, 133, 23576–23581. [Google Scholar] [CrossRef]
- Chen, Z.; Lin, Y.; Ma, X.; Guo, L.; Qiu, B.; Chen, G.; Lin, Z. Multicolor biosensor for fish freshness assessment with the naked eye. Sens. Actuators B Chem. 2017, 252, 201–208. [Google Scholar]
- Avan, A.N.; Karakaş, Ö.; Demirci-Çekiç, S.; Apak, R. Enzymatic determination of hypoxanthine in fish samples as a freshness indicator using the CUPRAC colorimetric sensor. Enzym. Microb. Technol. 2023, 162, 110137. [Google Scholar]
- Zhang, Z.; Kwok, R.T.K.; Yu, Y.; Tang, B.Z.; Ng, K.M. Aggregation-induced emission luminogen-based fluorescence detection of hypoxanthine: A probe for biomedical diagnosis of energy metabolism-related conditions. J. Mater. Chem. B 2018, 6, 4575–4578. [Google Scholar] [CrossRef]
- Mustafa, F.; Andreescu, S. Paper-Based Enzyme Biosensor for One-Step Detection of Hypoxanthine in Fresh and Degraded Fish. ACS Sens. 2020, 5, 4092–4100. [Google Scholar] [CrossRef]
- Chen, P.-C.; Li, Y.-C.; Ma, J.-Y.; Huang, J.-Y.; Chen, C.-F.; Chang, H.-T. Size-tunable copper nanocluster aggregates and their application in hydrogen sulfide sensing on paper-based devices. Sci. Rep. 2016, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Albelda, J.A.V.; Uzunoglu, A.; Santos, G.N.C.; Stanciu, L.A. Graphene-titanium dioxide nanocomposite based hypoxanthine sensor for assessment of meat freshness. Biosens. Bioelectron. 2017, 89 Pt 1, 518–524. [Google Scholar] [CrossRef]
- Liao, L.; Xing, Y.; Xiong, X.; Gan, L.; Hu, L.; Zhao, F.; Tong, Y.; Deng, S. An electrochemical biosensor for hypoxanthine detection in vitreous humor: A potential tool for estimating the post-mortem interval in forensic cases. Microchem. J. 2020, 155, 104760. [Google Scholar] [CrossRef]
Sample | 12 h | 24 h | ||||
---|---|---|---|---|---|---|
Spiking (μM) | Found (μM) | Recovery (%) | Spiking (μM) | Found (μM) | Recovery (%) | |
1 | 10 | 10.6 | 106.0 | 10 | 10.15 | 101.5 |
2 | 100 | 103.5 | 103.5 | 100 | 101.9 | 101.9 |
3 | 1000 | 1025.6 | 102.6 | 1000 | 1009.7 | 100.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Feng, T.; Zhang, P.; Zhang, H.; Hu, X.; Yang, Y.; Wang, Z.; Zhang, H.; Peng, D.; Li, X.; et al. Downregulation of Peroxidase Activity of Platinum Cube Enables Minute–Time Scale Colorimetric Signaling of Hypoxanthine for Fish Freshness Monitoring. Foods 2023, 12, 291. https://doi.org/10.3390/foods12020291
Ma X, Feng T, Zhang P, Zhang H, Hu X, Yang Y, Wang Z, Zhang H, Peng D, Li X, et al. Downregulation of Peroxidase Activity of Platinum Cube Enables Minute–Time Scale Colorimetric Signaling of Hypoxanthine for Fish Freshness Monitoring. Foods. 2023; 12(2):291. https://doi.org/10.3390/foods12020291
Chicago/Turabian StyleMa, Xiaoming, Tingting Feng, Peng Zhang, Hui Zhang, Xuan Hu, Yuying Yang, Zhen Wang, Huifang Zhang, Dong Peng, Xun Li, and et al. 2023. "Downregulation of Peroxidase Activity of Platinum Cube Enables Minute–Time Scale Colorimetric Signaling of Hypoxanthine for Fish Freshness Monitoring" Foods 12, no. 2: 291. https://doi.org/10.3390/foods12020291
APA StyleMa, X., Feng, T., Zhang, P., Zhang, H., Hu, X., Yang, Y., Wang, Z., Zhang, H., Peng, D., Li, X., & Xu, J. (2023). Downregulation of Peroxidase Activity of Platinum Cube Enables Minute–Time Scale Colorimetric Signaling of Hypoxanthine for Fish Freshness Monitoring. Foods, 12(2), 291. https://doi.org/10.3390/foods12020291