Optimization of Enzyme-Assisted Mechanical Extraction Process of Hodgsonia heteroclita Oilseeds and Physical, Chemical, and Nutritional Properties of the Oils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Preparation
2.2. Effect of Different Enzymes on H. heteroclita Seed Oil Extraction
2.3. Optimization of Enzyme-Assisted Extraction Conditions Using Response Surface Methodology (RSM)
2.4. Determination of Physical, Chemical and Nutritional Properties of H. heteroclita Seed Oils
2.4.1. Physical Properties
2.4.2. Chemical Properties
2.4.3. Nutritional Properties
2.5. Statistical Analysis
3. Results
3.1. Effect of Different Enzymes on H. heteroclita Seed Oil Extraction
3.2. Optimization of Enzyme-Assisted Extraction Conditions Using Response Surface Methodology (RSM)
3.2.1. RSM Model Development
3.2.2. Effect of Extraction Conditions on Oil Yield
3.2.3. Determination of Optimal Conditions
3.3. Physical, Chemical and Nutritional Properties of H. heteroclita Seed Oils
3.3.1. Physical Properties
3.3.2. Chemical Properties
3.3.3. Nutritional Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gunstone, F.D. Edible Oil Processing; Hamm, W., Hamilton, R.J., Calliauw, G., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013; Chapter 1; pp. 1–39. [Google Scholar]
- IndustryARC. Global Vegetable Oil Market—Forecast (2022–2027). Available online: https://www.industryarc.com/Research/Global-Vegetable-Oil-Market-Research-510285 (accessed on 24 July 2022).
- Ebert, A.W. Potential of Underutilized Traditional Vegetables and Legume Crops to Contribute to Food and Nutritional Security, Income and more Sustainable Production Systems. Sustainability 2014, 6, 319–335. [Google Scholar] [CrossRef] [Green Version]
- Swargiary, A.; Brahma, D. Phytochemical Analysis and Antioxidant Activity of Hodgsonia heteroclita (Roxb). Indian J. Pharm. Sci. 2017, 79, 212–219. [Google Scholar] [CrossRef]
- Khuntaseema, B.; Jomduang, S. Nutritive Values of Inner Pulp from Ma-king Seed (Hodgsonia heteroclite susp. Indochinensis). Agric. Sci. J. 2014, 45, 725–728. [Google Scholar]
- Franca-Oliveira, G.; Fornari, T.; Hernández-Ledesma, B. A Review on the Extraction and Processing of Natural Source-Derived Proteins through Eco-Innovative Approaches. Processes 2021, 9, 1626. [Google Scholar] [CrossRef]
- van Doosselaere, P. Edible Oil Processing; Hamm, W., Hamilton, R.J., Calliauw, G., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013; Chapter 3; pp. 55–96. [Google Scholar]
- Yusuf, A.K. A Review of Methods Used for Seed Oil Extraction. IJSR 2018, 7, 233–238. [Google Scholar] [CrossRef]
- Latif, S.; Anwar, F. Effect of Aqueous Enzymatic Processes on Sunflower Oil Quality. J. Am. Oil Chem. Soc. 2009, 86, 393–400. [Google Scholar] [CrossRef]
- Latif, S.; Anwar, F.; Ashraf, M. Characterization of Enzyme-Assisted Cold-Pressed Cottonseed Oil. J. Food Lipids 2007, 14, 424–436. [Google Scholar] [CrossRef]
- Nguyen, H.C.; Vuong, D.P.; Nguyen, N.T.T.; Nguyen, N.P.; Su, C.-H.; Wang, F.-M.; Juan, H.-Y. Aqueous Enzymatic Extraction of Polyunsaturated Fatty Acid–Rich Sacha Inchi (Plukenetia volubilis L.) Seed Oil: An Eco-Friendly Approach. LWT 2020, 133, 109992. [Google Scholar] [CrossRef]
- Sharma, A.; Khare, S.K.; Gupta, M.N. Enzyme-Assisted Aqueous Extraction of Peanut Oil. J. Am. Oil Chem. Soc. 2002, 79, 215–218. [Google Scholar] [CrossRef]
- Concha, J.; Soto, C.; Chamy, R.; Zúñiga, M.E. Enzymatic Pretreatment on Rose-Hip Oil Extraction: Hydrolysis and Pressing Conditions. J. Am. Oil Chem. Soc. 2004, 81, 549–552. [Google Scholar] [CrossRef]
- Santamaríaa, R.I.; Sotob, C.; Zúñigab, M.E.; Chamyb, R.; López-Munguíaa, A. Enzymatic Extraction of Oil from Gevuina avellane, the Chilean Hazelnut. J. Am. Oil Chem. Soc. 2003, 80, 33–36. [Google Scholar] [CrossRef]
- Soto, C.; Chamy, R.; Zúñiga, M.E. Enzymatic Hydrolysis and Pressing Conditions Effect on Borage Oil Extraction by Cold Pressing. Food Chem. 2007, 102, 834–840. [Google Scholar] [CrossRef]
- Zúñiga, M.E.; Soto, C.; Mora, A.; Chamy, R.; Lema, L.M. Enzymic Pre-Treatment of Guevina Avellana Mol Oil Extraction by Pressing Process. Biochemistry 2003, 39, 51–57. [Google Scholar] [CrossRef]
- Aydar, A. Statistical Approaches with Emphasis on Design of Experiments Applied to Chemical Processes; Silva, V., Ed.; InTech: London, UK, 2018; Chapter 10; pp. 157–169. [Google Scholar]
- De Wilde, W.J.J.O.; Duyfjes, B.E.E. Cucurbitaceae. Fl. Thailand 2008, 9, 411–546. [Google Scholar]
- Sharma, R.; Sharma, P.C.; Rana, J.C.; Joshi, V.K. Improving the Olive Oil Yield and Quality through Enzyme-Assisted Mechanical Extraction, Antioxidants and Packaging. J. Food Process. Preserv. 2015, 39, 157–166. [Google Scholar] [CrossRef]
- Novozymes. Flavourzyme. Available online: https://biosolutions.novozymes.com/en/plant-protein/products/flavourzyme (accessed on 13 September 2022).
- Novozymes. Viscozyme. Available online: https://biosolutions.novozymes.com/en/plant-protein/products/viscozyme (accessed on 17 April 2022).
- AOAC. Official Method of Analysis of AOAC Internation, 21st ed.; AOAC International: Arlington, VA, USA, 2019. [Google Scholar]
- Kaseke, T.; Opara, U.L.; Fawole, O.A. Quality and Antioxidant Properties of Cold-Pressed Oil from Blanched and Microwave-Pretreated Pomegranate Seed. Foods 2021, 10, 712. [Google Scholar] [CrossRef] [PubMed]
- ISO 662:2016; Animal and Vegetable Fats and Oils—Determination of Moisture and Volatile Matter Content. International Organization for Standardization: Geneva, Switzerland, 2016.
- AOCS. Official Method of Analyis of AOCS; The American Oil Chemists’ Society: Urbana, IL, USA, 2009. [Google Scholar]
- Azrina, A.; Maznah, I.; Azizah, A.H. Extraction and Determination of Oryzanol in Rice Bran of Mixed Herbarium UKMB; AZ 6807: MR 185, AZ 6808: MR 211, AZ6809: MR 29. ASEAN Food J. 2008, 15, 89–96. [Google Scholar]
- Chen, M.H.; Bergman, C.J. A Rapid Procedure for Analysing Rice Bran Tocopherol, Tocotrienol and Γ-Oryzanol Contents. J. Food Compos. Anal. 2005, 18, 139–151. [Google Scholar] [CrossRef]
- Liu, Q.; Li, P.; Chen, J.; Li, C.-Z.; Jiang, L.; Luo, M.; Sun, A.N. Optimization of Aqueous Enzymatic Extraction of Castor (Ricinus communis) Seeds Oil Using Response Surface Methodology. JBMB 2019, 13, 114–122. [Google Scholar] [CrossRef]
- Liu, Z.; Gui, M.; Xu, T.; Zhang, L.; Kong, L.; Qin, L.; Zou, Z. Efficient Aqueous Enzymatic-Ultrasonication Extraction of Oil from Sapindus Mukorossi Seed Kernels. Ind. Crop. Prod. 2019, 134, 124–133. [Google Scholar] [CrossRef]
- Meng, Z.; Wei, S.; Qi, K.; Guo, Y.; Wang, Y.; Liu, Y. Secondary Structure of Proteins on Oil Release in Aqueous Enzymatic Extraction of Rapeseed Oil as Affected Hydrolysis State. Int. J. Food Prop. 2018, 21, 119–127. [Google Scholar] [CrossRef] [Green Version]
- Nyam, K.L.; Tan, C.P.; Lai, O.M.; Long, K.; Man, Y.B.C. Enzyme-Assisted Aqueous Extraction of Kalahari Melon Seed Oil: Optimization Using Response Surface Methodology. J. Am. Oil Chem. Soc. 2009, 86, 1235–1240. [Google Scholar] [CrossRef]
- Mechqoq, H.; El Yaagoubi, M.; Momchilova, S.; Msanda, F.; El Aouad, N. Comparative Study on Yields and Quality Parameters of Argan Oils Extracted by Conventional and Green Extraction Techniques. GOST 2021, 4, 125–130. [Google Scholar] [CrossRef]
- Womeni, H.M.; Ndjouenkeu, R.; Kapseu, C.; Mbiapo, F.T.; Parmentier, M.; Fanni, J. Aqueous Enzymatic Oil Extraction from Irvingia Gabonensis Seed Kernels. Eur. J. Lipid Sci. Technol. 2008, 110, 232–238. [Google Scholar] [CrossRef]
- Sosulski, K.; Sosulski, F.W. Enzyme-Aidedvs. Two-Stage Processing of Canola: Technology, Product Quality and Cost Evaluation. J. Am. Oil Chem. Soc. 1993, 70, 825–829. [Google Scholar] [CrossRef]
- Jun, S.; Irudayaraj, J.; Demirci, A.; Geiser, D. Pulsed UV-Light Treatment of Corn Meal for Inactivation of Aspergillus Niger Spores. Int. J. Food Sci. 2003, 38, 883–888. [Google Scholar] [CrossRef]
- Su, C.-H.; Nguyen, H.C.; Bui, T.L.; Huang, D.-L. Enzyme-Assisted Extraction of Insect Fat for Biodiesel Production. J. Clean. Prod. 2019, 223, 436–444. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, Q.; Gu, H.; Yang, L. An Approach for Extraction of Kernel Oil from Pinus Pumila using Homogenate-Circulating Ultrasound in Combination with an Aqueous Enzymatic Process and Evaluation of its Antioxidant Activity. J. Chromatogr. A 2016, 1471, 68–79. [Google Scholar] [CrossRef]
- Zhang, Y.-L.; Li, S.; Yin, C.-P.; Jiang, D.-H.; Yan, F.-F.; Xu, T. Response Surface Optimisation of Aqueous Enzymatic Oil Extraction from Bayberry (Myrica Rubra) Kernels. Food Chem. 2012, 135, 304–308. [Google Scholar] [CrossRef]
- Karrar, E.; Sheth, S.; Wei, W.; Wang, X. Effect of Microwave Heating on Lipid Composition, Oxidative Stability, Color Value, Chemical Properties, and Antioxidant Activity of Gurum (Citrulluslanatus Var. Colocynthoide) Seed Oil. Biocatal. Agric. Biotechnol. 2020, 23, 101504. [Google Scholar] [CrossRef]
- Phan, V.M.; Junyusen, T.; Liplap, P.; Junyusen, P. Effects of Ultrasonication and Thermal Cooking Pretreatments on the Extractability and Quality of Cold Press Extracted Rice Bran Oil. J. Food Process Eng. 2019, 42, e12975. [Google Scholar] [CrossRef]
- Saeed, R.; Naz, S. Effect of Heating on the Oxidative Stability of Corn Oil and Soybean Oil. Grasas Aceites 2019, 70, 303. [Google Scholar] [CrossRef]
- Stanciu, I. Viscosity Index of Rapeseed Oil. J. Sci. Arts 2011, 4, 463–466. [Google Scholar]
- YCM. Quality and Identity Characteristics of Palm Oil Part 3—Identity Characteristics: Physical. Available online: https://oilpalmblog.wordpress.com/ (accessed on 17 September 2022).
- Specific Gravity Determination. Available online: https://www.impactanalytical.com/specific-gravity-determination/ (accessed on 24 August 2022).
- Hleba, L.; Hlebová, M.; Glinushkin, A.; Laishevtcev, A.I.; Derkanosova, A.; Plygun, S.; Shariati, M.A.; Friday, O. Investigation of Physiochemical and Storage Conditions on the Properties of Extracted Tiger Nut Oil from Different Cultivars. J. Microbiol. Biotechnol. Food Sci. 2019, 9, 988–993. [Google Scholar] [CrossRef]
- Codex Alimentarius Commission. Standard for Named Vegetable Oils CXS 210-1999. Available online: https://www.fao.org/3/y2774e/y2774e04.htm (accessed on 24 August 2022).
- Ayoola, B.; Adeyeye, A. Effect of Heating on the Chemical Composition and Physico—Chemical Properties of Arachis hypogea (Groundnut) Seed Flour and Oil. Pak. J. Nutr. 2010, 9, 751–754. [Google Scholar] [CrossRef] [Green Version]
- Mengistie, T.; Alemu, A.; Mekonnen, A. Comparison of Physicochemical Properties of Edible Vegetable Oils Commercially Available in Bahir Dar, Ethiopia. Chem. Int. 2018, 4, 130–135. [Google Scholar]
- Negera, D. Physicochemical Characteristics Analysis in Niger Seed Edible Oil (Adama) and Linseed Edible Oil (Bishoftu). Ethiop. J. Sci. Sustain. Dev. 2019, 5, 153–170. [Google Scholar] [CrossRef]
- Piravi-vanak, Z.; Azadmard-Damirchi, S.; Kahrizi, D.; Mooraki, N.; Ercisli, S.; Savage, G.P.; Rostami Ahmadvandi, H.; Martinez, F. Physicochemical Properties of Oil Extracted from Camelina (Camelina Sativa) Seeds as a New Source of Vegetable Oil in Different Regions of Iran. J. Mol. Liq. 2022, 345, 117043. [Google Scholar] [CrossRef]
- Sanders, T.H. Encyclopedia of Food Sciences and Nutrition; Caballero, B., Trugo, L., Finglas, P., Eds.; Academic Press, Ltd.: London, UK, 2003; pp. 2967–2974. [Google Scholar]
- Badifu, G.I.O. Unsaponifiable Matter in Oils from some Species of Cucurbitaceae. J. Food Compos. Anal. 1991, 4, 360–365. [Google Scholar] [CrossRef]
- Determination of Unsaponifiable Matter in Oils and Fats. Available online: https://egyankosh.ac.in/bitstream/123456789/43421/1/Experiment-17.pdf (accessed on 17 October 2022).
- Angaye, S.S.; Maduelosi, N.J.J.F.S.; Management, Q. Comparative Study of the Physicochemical Properties of Some Refined Vegetable Oils Sold in Mile One Market and some Departmental Stores in Port Harcourt, Rivers State, Nigeria. Food Sci. Qual. Manag. 2015, 39, 16–19. [Google Scholar]
- Edmonds, S.M.; Mattikow, M. The Determination of Soap in Refined Vegetable Oil using the Flame Photometer. J. Am. Oil Chem. Soc. 1958, 35, 680–681. [Google Scholar] [CrossRef]
- Mazzocchi, A.; De Cosmi, V.; Risé, P.; Milani, G.P.; Turolo, S.; Syrén, M.-L.; Sala, A.; Agostoni, C. Bioactive Compounds in Edible Oils and Their Role in Oxidative Stress and Inflammation. Front. Physiol. 2021, 12, 659551. [Google Scholar] [CrossRef] [PubMed]
- Franke, S.; Fröhlich, K.; Werner, S.; Böhm, V.; Schöne, F. Analysis of Carotenoids and Vitamin E in Selected Oilseeds, Press Cakes and Oils. Eur. J. Lipid Sci. Technol. 2010, 112, 1122–1129. [Google Scholar] [CrossRef]
- Matthäus, B.; Musazcan Özcan, M. Oil Content, Fatty Acid Composition and Distributions of Vitamin-E-Active Compounds of Some Fruit Seed Oils. Antioxidants 2015, 4, 124–133. [Google Scholar] [CrossRef]
- Chandra Sekhar, S.; Rao, V.K. Cottonseed Oil as Health Oil. Pertanika J. Trop. Agric. Sci. 2011, 34, 17–24. [Google Scholar]
- Vesna, K.; Shaban, M.; Biljana, B. Fatty Acid Composition of Edible Oils and Fats. J. Hyg. Eng. Des. 2013, 4, 112–116. [Google Scholar]
- Khan, S.; Choudhary, S.; Pandey, A.; Khan, M.; Thomas, G. Sunflower Oil: Efficient Oil Source for Human Consumption. Emer. Life Sci. Res. 2015, 1, 1–3. [Google Scholar]
- Asif, M. Health Effects of Omega-3,6,9 Fatty Acids: Perilla Frutescens is a Good Example of Plant Oils. Orient. Pharm. Exp. Med. 2011, 11, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Patterson, E.; Wall, R.; Fitzgerald, G.F.; Ross, R.P.; Stanton, C. Health Implications of High Dietary Omega-6 Polyunsaturated Fatty Acids. J. Nutr. Metab. 2012, 2012, 539426. [Google Scholar] [CrossRef]
- Farag, M.A.; Gad, M.Z. Omega-9 Fatty Acids: Potential Roles in Inflammation and Cancer Management. J. Genet. Eng. Biotechnol. 2022, 20, 48. [Google Scholar] [CrossRef]
Extraction | Pretreatments | Oil Yield (%) | Extraction Efficiency (%) |
---|---|---|---|
Mechanical extraction | Heat + Flavourzyme® | 38.10 ± 1.03 ab | 97.29 |
Heat + Viscozyme® | 36.23 ± 1.10 b | 92.52 | |
Heat + Flavourzyme® + Viscozyme® (1:1, w/w) | 38.94 ± 0.93 a | 99.44 | |
None | 33.64 ± 1.90 c | 85.90 | |
Soxtec extraction | None | 39.16 ± 0.27 a | 100.00 |
Run | Coded Variables | Uncoded Variables | Response | ||||
---|---|---|---|---|---|---|---|
X1 | X2 | X3 | Enzyme Loading (%) | Incubating Temperature (°C) | Incubating Time (h) | Oil Yield (%) | |
1 | −1 | −1 | 0 | 1 | 30 | 1.0 | 38.93 |
2 | +1 | −1 | 0 | 5 | 30 | 1.0 | 42.88 |
3 | −1 | +1 | 0 | 1 | 50 | 1.0 | 40.96 |
4 | +1 | +1 | 0 | 5 | 50 | 1.0 | 42.20 |
5 | −1 | 0 | −1 | 1 | 40 | 0.5 | 36.23 |
6 | +1 | 0 | −1 | 5 | 40 | 0.5 | 38.83 |
7 | −1 | 0 | +1 | 1 | 40 | 1.5 | 42.18 |
8 | +1 | 0 | +1 | 5 | 40 | 1.5 | 41.56 |
9 | 0 | −1 | −1 | 3 | 30 | 0.5 | 41.29 |
10 | 0 | +1 | −1 | 3 | 50 | 0.5 | 42.56 |
11 | 0 | −1 | +1 | 3 | 30 | 1.5 | 44.99 |
12 | 0 | +1 | +1 | 3 | 50 | 1.5 | 45.94 |
13 | 0 | 0 | 0 | 3 | 40 | 1.0 | 44.90 |
14 | 0 | 0 | 0 | 3 | 40 | 1.0 | 45.29 |
15 | 0 | 0 | 0 | 3 | 40 | 1.0 | 47.01 |
Source | SS | df | MS | F-Value | p-Value |
---|---|---|---|---|---|
Model | 118.08 | 9 | 13.12 | 15.53 | 0.0038 |
X1 | 6.43 | 1 | 6.43 | 7.61 | 0.0399 |
X2 | 1.59 | 1 | 1.59 | 1.89 | 0.2280 |
X3 | 31.05 | 1 | 31.05 | 36.76 | 0.0018 |
X1X2 | 1.84 | 1 | 1.84 | 2.17 | 0.2004 |
X1X3 | 2.59 | 1 | 2.59 | 3.07 | 0.1402 |
X2X3 | 0.0256 | 1 | 0.0256 | 0.0303 | 0.8686 |
X12 | 66.47 | 1 | 66.47 | 78.69 | 0.0003 |
X22 | 0.2269 | 1 | 0.2269 | 0.2687 | 0.6263 |
X32 | 11.84 | 1 | 11.84 | 14.01 | 0.0134 |
Residual | 4.22 | 5 | 0.8447 | ||
Lack of fit | 1.70 | 3 | 0.5675 | 0.4503 | 0.7440 |
Pure error | 2.52 | 2 | 1.26 | ||
Cor total | 122.30 | 14 |
Physical Properties | No Pretreatment | Heat Pretreatment $ | Heat and Enzymatic Pretreatments # | |
---|---|---|---|---|
Color | L* | 65.10 ± 0.29 ab | 64.96 ± 0.24 b | 65.67 ± 0.39 a |
a* | −3.34 ± 0.04 b | −3.09 ± 0.07 ab | −2.07 ± 0.96 a | |
b* | 18.54 ± 1.95 ab | 25.51 ± 2.80 a | 16.70 ± 5.38 b | |
YI | 40.69 ± 4.45 ab | 56.11 ± 6.36 a | 36.40 ± 11.99 b | |
Viscosity (cps) | 62.71 ± 2.28 b | 54.91 ± 0.43 c | 88.42 ± 1.00 a | |
Specific gravity (at 20 °C) ns | 0.92 ± 0.00 | 0.92 ± 0.00 | 0.92 ± 0.00 | |
Refractive index (at 40 °C) ns | 1.47 ± 0.00 | 1.47 ± 0.00 | 1.47 ± 0.00 |
Chemical Properties | No Pretreatment | Heat Pretreatment $ | Heat and Enzymatic Pretreatments # |
---|---|---|---|
Water and volatile compounds (% w/w) ns | 0.09 ± 0.01 | 0.06 ± 0.01 | 0.06 ± 0.01 |
Acid (mg KOH/g) | 0.96 ± 0.08 a | 0.46 ± 0.02 b | 0.26 ± 0.02 c |
Peroxide (mEq peroxide/kg) | 22.32 ± 0.15 a | 3.85 ± 0.03 c | 5.29 ± 0.23 b |
Iodine (g I2/100 g) ns | 105.75 ± 0.35 | 106.40 ± 0.14 | 105.75 ± 0.35 |
Saponification (mg KOH/g) | 199.20 ± 0.28 a | 199.10 ± 0.28 a | 198.00 ± 0.00 b |
Unsaponifiable matters (g/kg) | 1.90 ± 0.02 c | 2.64 ± 0.01 b | 5.70 ± 0.01 a |
Soap content (% w/w) | 0.0025 ± 0.00 a | 0.0035 ± 0.00 a | 0.0004 ± 0.00 b |
Nutritional Properties | No Pretreatment | Heat Pretreatment $ | Heat and Enzymatic Pretreatments # | |
---|---|---|---|---|
Moisture content (g/100 g) | <0.01 | <0.01 | <0.01 | |
Ash (g/100 g) | <0.01 | <0.01 | <0.01 | |
Carbohydrate (g/100 g) | <0.01 | <0.01 | <0.01 | |
Protein (g/100 g) | <0.10 | <0.10 | <0.10 | |
Fat (g/100 g) ns | 100.00 ± 0.00 | 100.00 ± 0.00 | 100.00 ± 0.00 | |
Vitamin E (mg/100 g) | α-tocopherol | 0.03 ± 0.00 | nd | nd |
β-tocopherol | 0.12 ± 0.01 | 0.03 ± 0.00 | nd | |
γ-tocopherol | nd | 0.08 ± 0.00 | 3.52 ± 0.38 | |
δ-tocopherol | 0.18 ± 0.01 c | 1.58 ± 0.08 b | 88.29 ± 0.37 a | |
α-tocotrienol | nd | nd | 3.56 ± 0.58 | |
β-tocotrienol | 0.01 ± 0.00 | nd | 0.65 ± 0.03 | |
γ-tocotrienol | nd | nd | 2.50 ± 0.08 | |
δ-tocotrienol | 0.88 ± 0.01 | 9.84 ± 0.33 | nd |
Fatty Acid Profile | No Pretreatment | Heat Pretreatment $ | Heat and Enzymatic Pretreatments # |
---|---|---|---|
Saturated fat ns | 35.67 ± 0.51 | 34.79 ± 0.28 | 34.32 ± 0.33 |
Butyric acid (C4:0) | nd | nd | nd |
Caproic acid (C6:0) | nd | nd | nd |
Caprylic acid (C8:0) | 0.02 ± 0.00 | nd | 0.02 ± 0.00 |
Capric acid (C10:0) | nd | nd | nd |
Undecanoic acid (C11:0) | nd | nd | nd |
Lauric acid (C12:0) | 0.02 ± 0.02 | nd | nd |
Tridecanoic acid (C13:0) | nd | nd | nd |
Myristic acid (C14:0) ns | 0.07 ± 0.01 | 0.08 ± 0.01 | 0.07 ± 0.00 |
Pentadecanoic acid (C15:0) | nd | nd | 0.01 ± 0.00 |
Palmitic acid (C16:0) ns | 27.24 ± 0.35 | 26.00 ± 0.10 | 26.34 ± 0.66 |
Heptadecanoic acid (C17:0) ns | 0.08 ± 0.00 | 0.08 ± 0.00 | 0.08 ± 0.01 |
Stearic acid (C18:0) | 6.85 ± 0.06 b | 7.77 ± 0.28 a | 6.80 ± 0.04 b |
Arachidic acid (C20:0) ns | 0.46 ± 0.01 | 0.48 ± 0.01 | 0.44 ± 0.01 |
Heneicosanoic acid (C21:0) | nd | nd | nd |
Behenic acid (C22:0) ns | 0.26 ± 0.02 | 0.22 ± 0.01 | 0.23 ± 0.00 |
Tricosanoic acid (C23:0) | nd | nd | nd |
Lignoceric acid (C24:0) | 0.09 ± 0.00 a | 0.07 ± 0.00 b | 0.08 ± 0.01 b |
Monounsaturated fatty acid | 11.85 ± 0.11 b | 12.63 ± 0.17 a | 11.71 ± 0.27 b |
Myristoleic acid (C14:1) | nd | nd | nd |
Pentadecenoic acid (C15:1) | nd | nd | nd |
Palmitoleic acid (C16:1n7) ns | 0.12 ± 0.01 | 0.12 ± 0.00 | 0.11 ± 0.00 |
Heptadecenoic acid (C17:1) | nd | nd | nd |
Elaidic acid (C18:1n9t) | nd | nd | nd |
Oleic acid (C18:1n9c) (omega-9) ns | 11.28 ± 0.44 | 12.46 ± 0.19 | 11.46 ± 0.18 |
Eicosenoic acid (C20:1n9) (omega-9) ns | 0.08 ± 0.01 | 0.08 ± 0.01 | 0.08 ± 0.00 |
Erucic acid (C22:1n9) (omega-9) | nd | nd | nd |
Nervonic acid (C24:1n9) (omega-9) | nd | nd | nd |
Polyunsaturated fatty acid | 48.22 ± 0.22 b | 48.02 ± 0.28 b | 49.29 ± 0.34 a |
Linolelaidic acid (C18:2n6t) | nd | nd | nd |
Linoleic acid (C18:2n6c) (omega-6) ns | 47.84 ± 0.22 | 47.39 ± 0.52 | 48.19 ± 1.13 |
γ-Linolenic acid (C18:3n6) (omega-6) | nd | nd | nd |
α-Linolenic acid (C18:3n3) (ALA, omega-3) | 0.06 ± 0.00 | 0.06 ± 0.00 | 0.06 ± 0.00 |
Eicosadienoic acid (C20:2n6) (omega-6) | nd | nd | nd |
Eicosatrienoic acid (C20:3n6) (omega-6) | nd | nd | nd |
Eicosatrienoic acid (C20:3n3) (omega-3) | nd | nd | nd |
Arachidonic acid (C20:4n6) (ARA, omega-6) | nd | nd | nd |
Docosadienoic acid (C22:2n6) (omega-6) | nd | nd | nd |
Eicosapentaenoic acid (C20:5n3) (EPA, omega-3) | nd | nd | nd |
Docosahexaenoic acid (C22:6n3) (DHA, omega-3) | nd | nd | nd |
Unsaturated fat ns | 59.93 ± 0.14 | 60.27 ± 0.42 | 60.38 ± 0.27 |
Trans fat | nd | nd | nd |
Omega-3 | 57.70 ± 0.04 a | 56.18 ± 0.35 b | 58.15 ± 0.27 a |
Omega-6 ns | 47,846.20 ± 215.26 | 47,388.29 ± 521.02 | 48,187.86 ± 1128.16 |
Omega-9 | 11,362.36 ± 427.61 b | 12,536.92 ± 127.36 a | 11,533.04 ± 179.92 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piseskul, J.; Suttisansanee, U.; Chupeerach, C.; Khemthong, C.; Thangsiri, S.; Temviriyanukul, P.; Sahasakul, Y.; Santivarangkna, C.; Chamchan, R.; Aursalung, A.; et al. Optimization of Enzyme-Assisted Mechanical Extraction Process of Hodgsonia heteroclita Oilseeds and Physical, Chemical, and Nutritional Properties of the Oils. Foods 2023, 12, 292. https://doi.org/10.3390/foods12020292
Piseskul J, Suttisansanee U, Chupeerach C, Khemthong C, Thangsiri S, Temviriyanukul P, Sahasakul Y, Santivarangkna C, Chamchan R, Aursalung A, et al. Optimization of Enzyme-Assisted Mechanical Extraction Process of Hodgsonia heteroclita Oilseeds and Physical, Chemical, and Nutritional Properties of the Oils. Foods. 2023; 12(2):292. https://doi.org/10.3390/foods12020292
Chicago/Turabian StylePiseskul, Jirachaya, Uthaiwan Suttisansanee, Chaowanee Chupeerach, Chanakan Khemthong, Sirinapa Thangsiri, Piya Temviriyanukul, Yuraporn Sahasakul, Chalat Santivarangkna, Rungrat Chamchan, Amornrat Aursalung, and et al. 2023. "Optimization of Enzyme-Assisted Mechanical Extraction Process of Hodgsonia heteroclita Oilseeds and Physical, Chemical, and Nutritional Properties of the Oils" Foods 12, no. 2: 292. https://doi.org/10.3390/foods12020292
APA StylePiseskul, J., Suttisansanee, U., Chupeerach, C., Khemthong, C., Thangsiri, S., Temviriyanukul, P., Sahasakul, Y., Santivarangkna, C., Chamchan, R., Aursalung, A., & On–nom, N. (2023). Optimization of Enzyme-Assisted Mechanical Extraction Process of Hodgsonia heteroclita Oilseeds and Physical, Chemical, and Nutritional Properties of the Oils. Foods, 12(2), 292. https://doi.org/10.3390/foods12020292