Consumer Acceptance Studies of Margarine to Guide Product Development in the Food Industry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Instrumental Texture
2.3. Sensory Analysis
2.3.1. Sample Preparation and Presentation
2.3.2. Acceptance Analysis
2.3.3. Check-All-That-Apply (CATA)
2.3.4. Projective Mapping (Napping)
2.4. Statistical Analyses
3. Results and Discussion
3.1. Instrumental Texture Analysis
3.2. Acceptance Test
3.3. Check-All-That-Apply (CATA)
3.4. Projective Mapping (Napping)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rajah, K.K. (Ed.) Spreadable products. In Fats in Food Technology, 2nd ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2014; pp. 213–252. [Google Scholar] [CrossRef]
- Aleksić, A.D.; Gordić, D.R.; Šušteršič, V.M.; Babić, M.J. Application of fat trap for the waste water treatment in margarine production. Desalination Water Treat. 2016, 57, 3466–3472. [Google Scholar] [CrossRef]
- Silva, T.J.; Barrera-Arellano, D.; Paula, A.; Ribeiro, B. Margarines: Historical approach, technological aspects, nutritional profile, and global trends. Food Res. Int. 2021, 147, 110486. [Google Scholar] [CrossRef] [PubMed]
- Laia, O.M.; Ghazalia, H.M.; Cho, F.; Chong, C.L. Physical and textural properties of an experimental table margarine prepared from lipase-catalysed transesterified palm stearin: Palm kernel olein mixture during storage. Food Chem. 2000, 71, 173–179. [Google Scholar] [CrossRef]
- Păduret, S. The Quantification of Fatty Acids, Color, and Textural Properties of Locally Produced Bakery Margarine. Appl. Sci. 2022, 12, 1731. [Google Scholar] [CrossRef]
- Palzer, S. Food Structures for Nutrition, Health and Wellness. Trends Food Sci. Technol. 2009, 20, 194–200. [Google Scholar] [CrossRef]
- Chaves, K.F.; Barrera-Arellano, D.; Ribeiro, A.P.B. Potential application of lipid organogels for food industry. Food Res. Int. 2018, 105, 863–872. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Cobb, L.K.; Vesper, H.W.; Asma, S. Global Surveillance of trans-Fatty Acids. Prev. Chronic Dis. 2019, 16, 190121. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Agriculture. U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2020–2025, 9th ed.; USDA: Washington, DC, USA, 2020. Available online: https://www.dietaryguidelines.gov/sites/default/files/2020-12/Dietary_Guidelines_for_Americans_2020-2025.pdf (accessed on 20 July 2023).
- U.S. Department of Agriculture. United States Department of Health and Human Services. Dietary Guidelines for Americans, 2000–2005, 6th ed.; USDA: Washington, DC, USA, 2000. Available online: https://health.gov/sites/default/files/2020-01/DGA2000.pdf (accessed on 23 July 2023).
- Weber, C.; Harnack, L.; Johnson, A.; Jasthi, B.; Pettit, J.; Stevenson, J. Nutrient comparisons of margarine/margarine-like products, butter blend products and butter in the US marketplace in 2020 post-FDA ban on partially hydrogenated oils. Public Health Nutr. 2021, 25, 1123–1130. [Google Scholar] [CrossRef]
- Fallahasgari, M.; Barzegar, F.; Abolghasem, D.; Nayebzadeh, K. An overview focusing on modification of margarine rheological and textural properties for improving physical quality. Eur. Food Res. Technol. 2023, 249, 2227–2240. [Google Scholar] [CrossRef]
- Lawless, H.T.; Heymann, H. (Eds.) Sensory Evaluation of Food. Principles and Practices, 2nd ed.; Springer-Science+Business Media, LLC: New York, NY, USA, 2010; Available online: http://www.amazon.com/Food-Analysis-Science-Text/dp/1441914773 (accessed on 23 July 2023).
- Dehlholm, C.; Brockhoff, B.; Meinert, L.; Aaslyng, M.D.; Bredie, W.L.P. Rapid descriptive sensory methods-Comparison of Free Multiple Sorting, Partial Napping, Napping, Flash Profiling and conventional profiling. Food Qual. Prefer. 2012, 26, 267–277. [Google Scholar] [CrossRef]
- Ares, G.; Barreiro, C.; Deliza, R.; Giménez, A.; Gámbaro, A. Application of a check-all-that-apply question to the development of chocolate milk desserts. J. Sens. Stud. 2010, 25, 67–86. [Google Scholar] [CrossRef]
- Stone, H.; Sidel, J.L. Sensory Evaluation Practices, 3rd ed.; Academic Press: Cambridge, MA, USA, 2004. [Google Scholar]
- Valentin, D.; Chollet, S.; Lelièvre, M.; Abdi, H. Quick and dirty but still pretty good: A review of new descriptive methods in food science. Int. J. Food Sci. Technol. 2012, 47, 1563–1578. [Google Scholar] [CrossRef]
- Ares, G. Methodological challenges in sensory characterization. Curr. Opin. Food Sci. 2015, 3, 1–5. [Google Scholar] [CrossRef]
- Nestrud, M.A.; Lawless, H.T. Perceptual Mapping of Apples and Cheeses Using Projective Mapping and Sorting. J. Sens. Stud. 2010, 25, 390–405. [Google Scholar] [CrossRef]
- Kennedy, J. Evaluation of Replicated Projective Mapping of Granola Bars. J. Sens. Stud. 2010, 25, 672–684. [Google Scholar] [CrossRef]
- Ross, C.F.; Weller, K.M.; Alldredge, J.R. Impact of Serving Temperature on Sensory Properties of Red Wine as Evaluated Using Projective Mapping by a Trained Panel. J. Sens. Stud. 2012, 27, 463–470. [Google Scholar] [CrossRef]
- Torri, L.; Dinnella, C.; Recchia, A.; Naes, T.; Tuorila, H.; Monteleone, E. Projective Mapping for interpreting wine aroma differences as perceived by naïve and experienced assessors. Food Qual. Prefer. 2013, 29, 6–15. [Google Scholar] [CrossRef]
- Louw, L.; Malherbe, S.; Naes, T.; Lambrechts, M.; Van Rensburg, P.; Nieuwoudt, H. Validation of two Napping techniques as rapid sensory screening tools for high alcohol products. Food Qual. Prefer. 2013, 30, 192–201. [Google Scholar] [CrossRef]
- Meyners, M.; Castura, J.C. Randomization of CATA attributes: Should attribute lists be allocated to assessors or to samples? Food Qual. Prefer. 2016, 48, 210–215. [Google Scholar] [CrossRef]
- Rogers, M.A. Novel structuring strategies for unsaturated fats—Meeting the zero-trans, zero-saturated fat challenge: A review. Food Res. Int. 2009, 42, 747–753. [Google Scholar] [CrossRef]
- Glibowski, P.; Zarzycki, P.; Krzepkowska, M.; Glibowski, P. The Rheological and Instrumental Textural Properties of Selected Table Fats. Int. J. Food Prop. 2008, 11, 678–686. [Google Scholar] [CrossRef]
- Ziarno, M.; Derewiaka, D.; Florowska, A.; Szymańska, I. Comparison of the Spreadability of Butter and Butter Substitutes. Appl. Sci. 2023, 13, 2600. [Google Scholar] [CrossRef]
- ISO 8589; Sensory Analysis–General Guidance for the Design of Test Rooms. ISO: Geneva, Switzerland, 2007.
- Meilgaard, M.C.; Civille, G.V.; Carr, B.T. (Eds.) Sensory Evaluation Techniques, 5th ed.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar] [CrossRef]
- Vidal, L.; Cadena, R.S.; Antúnez, L.; Giménez, A.; Varela, P.; Ares, G. Stability of sample configurations from projective mapping: How many consumers are necessary? Food Qual. Prefer. 2014, 34, 79–87. [Google Scholar] [CrossRef]
- Varela, P.; Ares, G. Sensory profiling, the blurred line between sensory and consumer science. A review of novel methods for product characterization. Food Res. Int. 2012, 48, 893–908. [Google Scholar] [CrossRef]
- Dooley, L.; Lee, Y.-S.; Meullenet, J.-F. The application of check-all-that-apply (CATA) consumer profiling to preference mapping of vanilla ice cream and its comparison to classical external preference mapping. Food Qual. Prefer. 2010, 21, 394–401. [Google Scholar] [CrossRef]
- Pereira, C.T.M.; Pereira, D.M.; de Medeiros, A.C.; Hiramatsu, E.Y.; Ventura, M.B.; Bolini, H.M.A. Skyr yogurt with mango pulp, fructooligosaccharide and natural sweeteners: Physical aspects and drivers of liking. LWT-Food Sci. Technol. 2021, 150, 112054. [Google Scholar] [CrossRef]
- Jaeger, S.R.; Beresford, M.K.; Paisley, A.G.; Antúnez, L.; Vidal, L.; Cadena, R.S.; Giménez, A.; Ares, G. Check-all-that-apply (CATA) questions for sensory product characterization by consumers: Investigations into the number of terms used in CATA questions. Food Qual. Prefer. 2015, 42, 154–164. [Google Scholar] [CrossRef]
- Moskowitz, H.R. Product Testing and Sensory Evaluation of Foods: Marketing and R&D Approaches; Food & Nutrition Press: New York, NY, USA, 1983. [Google Scholar]
- Bolini, H.M.A.; Lima, R.S.; de Freitas, R.L.; de Medeiros, A.C. Preference Drivers for Blackberry Nectar (Rubus spp., Rosaceae) with Different Sweeteners. Foods 2023, 12, 549. [Google Scholar] [CrossRef]
- Varela, P.; Berget, I.; Hersleth, M.; Carlehög, M.; Asioli, D.; Naes, T. Projective mapping based on choice or preference: An affective approach to projective mapping. Food Res. Int. 2017, 100, 241–251. [Google Scholar] [CrossRef]
- Esmerino, E.A.; Tavares Filho, E.R.; Carr, B.T.; Ferraz, J.P.; Silva, H.L.A.; Pinto, L.P.F.; Freitas, M.Q.; Cruz, A.G.; Bolini, H.M.A. Consumer-based product characterization using Pivot Profile, Projective Mapping and Check-all-that-apply (CATA): A comparative case with Greek yogurt samples. Food Res. Int. 2017, 99, 375–384. [Google Scholar] [CrossRef]
- Kennedy, J.; Heymann, H. Projective mapping and descriptive analysis of milk and dark chocolates. J. Sens. Stud. 2009, 24, 220–233. [Google Scholar] [CrossRef]
- de Oliveira Rocha, I.F.; Bolini, H.M.A. Passion fruit juice with different sweeteners: Sensory profile by descriptive analysis and acceptance. Food Sci. Nutr. 2015, 3, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Pagès, J. Collection and analysis of perceived product inter-distances using multiple factor analysis:Application to the study of 10 white wines from the Loire Valley. Food Qual. Prefer. 2005, 16, 642–649. [Google Scholar] [CrossRef]
- Ergönül, P.G. Solid fat contents and instrumental textural attributes of margarines sold in Turkish market. Qual. Assur. Saf. Crop. Foods 2013, 5, 157–161. [Google Scholar] [CrossRef]
- Bemer, H.L.; Limbaugh, M.; Cramer, E.D.; Harper, W.J.; Maleky, F. Vegetable organogels incorporation in cream cheese products. Food Res. Int. 2016, 85, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Silva, T.J.; Barrera-Arellano, D.; Ribeiro, A.P.B. The impact of fatty acid profile on the physicochemical properties of commercial margarines in Brazil. J. Am. Oil Chem. Soc. 2022, 99, 469–483. [Google Scholar] [CrossRef]
- Doi, T.; Wang, M.; Mcclements, D.J. Emulsion-based control of flavor release profiles: Impact of oil droplet characteristics on garlic aroma release during simulated cooking. Food Res. Int. 2019, 116, 1–11. [Google Scholar] [CrossRef]
- Foguel, A.; Neves Rodrigues Ract, J.; Claro da Silva, R. Sensory characterization of commercial cream cheese by the consumer using check-all-that-apply questions. J. Sens. Stud. 2021, 36, e12658. [Google Scholar] [CrossRef]
- Moskowitz, H.R. Margarine: The Drivers of Liking and Image. J. Sens. Stud. 2001, 16, 53–72. [Google Scholar] [CrossRef]
- Roberts, D.D.; Pollien, P.; Antille, N.; Lindinger, C.; Yeretzian, C. Comparison of Nosespace, Headspace, and Sensory Intensity Ratings for the Evaluation of Flavor Absorption by Fat. J. Agric. Food Chem. 2003, 51, 3636–3642. [Google Scholar] [CrossRef]
- Relkin, P.; Fabre, M.; Guichard, E. Effect of Fat Nature and Aroma Compound Hydrophobicity on Flavor Release from Complex Food Emulsions. J. Agric. Food Chem. 2004, 52, 6257–6263. [Google Scholar] [CrossRef] [PubMed]
- Afoakwa, E.O.; Paterson, A.; Fowler, M.; Ryan, A. Matrix effects on flavour volatiles release in dark chocolates varying in particle size distribution and fat content using GC–mass spectrometry and GC–olfactometry. Food Chem. 2009, 113, 208–215. [Google Scholar] [CrossRef]
- Arancibia, C.; Jublot, L.; Costell, E.; Bayarri, S. Flavor release and sensory characteristics of o/w emulsions. Influence of composition, microstructure and rheological behavior. Food Res. Int. 2011, 44, 1632–1641. [Google Scholar] [CrossRef]
- Andersen, B.V.; Brockhoff, B.; Hyldig, G. The importance of liking of appearance,-odour,-taste and-texture in the evaluation of overall liking. A comparison with the evaluation of sensory satisfaction. Food Qual. Prefer. 2019, 71, 228–232. [Google Scholar] [CrossRef]
Samples | Lipids (%) | Total Fat (g) | Saturated Fat (g) |
---|---|---|---|
A30 | 30 | 3.0 | 0.7 |
B35 | 35 | 3.5 | 1.2 |
C38 | 38 | 3.8 | 1.1 |
A60 | 60 | 6.0 | 1.8 |
D70 | 70 | 7.0 | 2.0 |
E50 | 50 | 5.0 | 1.4 |
D55 | 55 | 5.5 | 1.0 |
A80 | 80 | 8.0 | 1.8 |
C80 | 80 | 8.0 | 2.0 |
D82 | 82 | 8.2 | 2.3 |
B80 | 80 | 8.0 | 2.0 |
F80 | 80 | 8.0 | 2.0 |
Samples | Hardness (N) | Adhesiveness (Ns) | Cohesiveness | Resilience (Ns) |
---|---|---|---|---|
A30 | 168.008 a,b,* | −688.280 c,d | 0.670 c,d | 0.023 e |
B35 | 209.665 a,b,c | −976.496 b,c | 0.693 d | 0.016 c,d |
C38 | 120.477 a | −539.837 d | 0.645 c,d | 0.015 b,c,d |
A60 | 523.980 g | −2182.356 a | 0.601 b,c,d | 0.008 a |
D70 | 255.746 b,c,d | −1230.185 b | 0.548 b,c,d | 0.010 a,b |
E50 | 304.365 d,e | −1227.701 b | 0.618 b,c,d | 0.012 a,b,c |
D55 | 263.479 c,d | −1159.119 b | 0.714 d | 0.020 d,e |
A80 | 735.396 h | −1233.076 b | 0.270 a | 0.008 a |
B80 | 432.320 f | −1971.677 a | 0.629 c,d | 0.007 a |
C80 | 259.202 b,c,d | −1124.580 b | 0.538 b,c,d | 0.008 a |
D82 | 319.208 d,e | −1128.141 b | 0.495 b,c | 0.007 a |
F80 | 370.914 e,f | −1097.906 b | 0.432 a,b | 0.007 a |
Samples | Appearance | Aroma | Flavor | Texture | Overall Impression |
---|---|---|---|---|---|
A30 | 6.69 a,b,* | 5.35 b | 3.84 f | 5.73 c | 4.49 e |
B35 | 6.93 a,b | 5.98 a,b | 5.05 d,e | 6.41 a,b,c | 5.62 c,d |
C38 | 7.09 a,b | 6.41 a | 5.68 b,c,d | 6.89 a | 6.04 a,b,c |
A60 | 7.21 a | 6.54 a | 4.53 e,f | 6.58 a,b | 5.94 b,c,d |
D70 | 6.99 a,b | 6.27 a | 5.82 a,b,c,d | 6.12 b,c | 6.02 a,b,c |
E50 | 6.61 b | 6.22 a | 4.53 e,f | 6.57 a,b | 5.20 d,e |
D55 | 6.73 a,b | 6.16 a | 5.46 c,d | 6.12 b,c | 5.97 b,c |
A80 | 7.00 a,b | 6.70 a | 6.01 a,b,c | 6.89 a | 6.32 a,b,c |
B80 | 6.91 a,b | 6.28 a | 6.44 a,b | 6.83 a | 6.49 a,b |
C80 | 6.71 a,b | 6.21 a | 5.56 b,c,d | 6.37 a,b,c | 5.86 b,c,d |
D82 | 7.07 a,b | 6.24 a | 6.01 a,b,c | 6.70 a,b | 6.31 a,b,c |
F80 | 7.19 a,b | 6.16 a | 6.64 a | 6.91 a | 6.76 a |
MSD ** | 0.59 | 0.78 | 0.90 | 0.67 | 0.76 |
SAMPLES | p-Value (p < 0.05) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A30 | A60 | A80 | B35 | B80 | C38 | C80 | D55 | D70 | D82 | E50 | F80 | ||
Yellow | 43 | 6 | 8 | 14 | 20 | 16 | 8 | 2 | 4 | 39 | 83 | 12 | <0.0001 |
Yellow cream | 54 | 94 | 84 | 88 | 84 | 85 | 95 | 92 | 96 | 63 | 26 | 86 | <0.0001 |
Aerated | 11 | 10 | 9 | 9 | 5 | 14 | 13 | 9 | 6 | 5 | 14 | 7 | 0.081 |
Bright | 56 | 58 | 58 | 47 | 60 | 53 | 67 | 48 | 58 | 67 | 67 | 74 | <0.0001 |
Butter flavor | 37 | 53 | 67 | 43 | 53 | 51 | 54 | 55 | 55 | 56 | 42 | 71 | <0.0001 |
Milk aroma | 15 | 23 | 32 | 17 | 26 | 15 | 23 | 26 | 21 | 20 | 14 | 22 | 0.010 |
Rancid aroma | 32 | 10 | 11 | 11 | 7 | 11 | 7 | 16 | 15 | 16 | 14 | 7 | <0.0001 |
Vegetable oil aroma | 41 | 29 | 19 | 38 | 29 | 34 | 29 | 32 | 25 | 32 | 24 | 19 | 0.001 |
Milk flavor | 14 | 22 | 44 | 14 | 22 | 17 | 36 | 41 | 30 | 20 | 19 | 34 | <0.0001 |
Rancid flavor | 52 | 29 | 23 | 23 | 15 | 27 | 7 | 10 | 22 | 28 | 28 | 13 | <0.0001 |
Sweet taste | 7 | 6 | 9 | 8 | 10 | 6 | 16 | 15 | 9 | 12 | 17 | 12 | 0.050 |
Gramine flavor | 11 | 5 | 10 | 15 | 9 | 13 | 11 | 13 | 6 | 7 | 9 | 2 | 0.035 |
Oily flavor | 79 | 57 | 50 | 62 | 58 | 60 | 51 | 57 | 62 | 65 | 66 | 58 | 0.002 |
Metal flavor | 23 | 13 | 12 | 20 | 13 | 14 | 5 | 10 | 15 | 12 | 7 | 9 | 0.004 |
Salty taste | 30 | 43 | 58 | 37 | 62 | 51 | 56 | 43 | 48 | 40 | 9 | 66 | <0.0001 |
Bitter taste | 19 | 1 | 4 | 12 | 9 | 9 | 6 | 4 | 9 | 7 | 8 | 2 | <0.0001 |
Soft | 65 | 66 | 61 | 63 | 69 | 78 | 81 | 62 | 69 | 58 | 70 | 70 | 0.014 |
Homogeneous | 60 | 79 | 80 | 69 | 72 | 71 | 81 | 75 | 71 | 76 | 73 | 75 | 0.044 |
Consistent | 25 | 43 | 50 | 46 | 44 | 40 | 41 | 46 | 39 | 42 | 38 | 46 | 0.013 |
Milk cream flavor | 11 | 24 | 27 | 17 | 19 | 18 | 29 | 31 | 17 | 13 | 16 | 25 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bolini, H.M.A.; Medeiros, A.C.; Pereira, C.T.M.; Carraro, F.; Augusto, P.P.C.; Cardello, F.; Lima, R.S. Consumer Acceptance Studies of Margarine to Guide Product Development in the Food Industry. Foods 2024, 13, 116. https://doi.org/10.3390/foods13010116
Bolini HMA, Medeiros AC, Pereira CTM, Carraro F, Augusto PPC, Cardello F, Lima RS. Consumer Acceptance Studies of Margarine to Guide Product Development in the Food Industry. Foods. 2024; 13(1):116. https://doi.org/10.3390/foods13010116
Chicago/Turabian StyleBolini, Helena Maria Andre, Alessandra Cazelatto Medeiros, Cecília Teresa Muniz Pereira, Francisco Carraro, Pedro Pio Campregher Augusto, Flavio Cardello, and Rafael Sousa Lima. 2024. "Consumer Acceptance Studies of Margarine to Guide Product Development in the Food Industry" Foods 13, no. 1: 116. https://doi.org/10.3390/foods13010116
APA StyleBolini, H. M. A., Medeiros, A. C., Pereira, C. T. M., Carraro, F., Augusto, P. P. C., Cardello, F., & Lima, R. S. (2024). Consumer Acceptance Studies of Margarine to Guide Product Development in the Food Industry. Foods, 13(1), 116. https://doi.org/10.3390/foods13010116