A New Laboratory Scale Olive Oil Extraction Method with Comparative Characterization of Phenolic and Fatty Acid Composition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Sampling Collection
2.3. Basic Physical Characterizations of Olive Fruit Samples
2.4. Olive Paste Preparation and Laboratory Scale Olive Oil Extraction
2.5. OO Yield Production Measurement
2.6. Industrial Scale Olive Oil Extraction
2.7. FT-NIR Spectroscopy
2.8. K232, K268 and ΔK Measurements
2.9. Hydrophilic Phenolic Extracts
2.10. Total Phenolic Compounds
2.11. GC-FID Analysis of Fatty Acids
2.12. Data Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bellumori, M.; Cecchi, L.; Innocenti, M.; Clodoveo, M.L.; Corbo, F.; Mulinacci, N. The EFSA Health Claim on Olive Oil Polyphenols: Acid Hydrolysis Validation and Total Hydroxytyrosol and Tyrosol Determination in Italian Virgin Olive Oils. Molecules 2019, 24, 2179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breton, C.; Souyris, I.; Villemur, P.; Berville, A. Oil Accumulation Kinetic along Ripening in Four Olive Cultivars Varying for Fruit Size. OCL—Ol. Corps Gras Lipides 2009, 16, 58–64. [Google Scholar] [CrossRef] [Green Version]
- International Olive Council. Trade Standard Applying to Olive Oils and Olive Pomace Oils; COI/T.15/Nc No. 3/Rev. 14; International Olive Council: Madrid, Spain, 2019. [Google Scholar]
- Amirante, P.; Clodoveo, M.L.; Tamborrino, A.; Leone, A.; Paice, A. Influence of the Crushing System: Phenol Content in Virgin Olive Oil Produced from Whole and De-Stoned Pastes. In Olives and Olive Oil in Health and Disease Prevention; Preedy, V., Watson, R., Eds.; Academic Press: London, UK, 2010; pp. 69–76. [Google Scholar]
- Clodoveo, M.L. Malaxation: Influence on Virgin Olive Oil Quality. Past, Present and Future—An Overview. Trends Food Sci. Technol. 2012, 25, 13–23. [Google Scholar] [CrossRef]
- Aydar, A.Y.; Bagdatlioglu, N.; Köseoglu, O. Effect of Ultrasound on Olive Oil Extraction and Optimization of Ultrasound-Assisted Extraction of Extra Virgin Olive Oil by Response Surface Methodology (RSM). Grasas Aceites 2017, 68, e189. [Google Scholar] [CrossRef]
- Clodoveo, M.L. An Overview of Emerging Techniques in Virgin Olive Oil Extraction Process: Strategies in the Development of Innovative Plants. J. Agric. Eng. 2013, 44, 297–305. [Google Scholar] [CrossRef]
- Clodoveo, M.L.; Hbaieb, R.H.; Kotti, F.; Mugnozza, G.S.; Gargouri, M. Mechanical Strategies to Increase Nutritional and Sensory Quality of Virgin Olive Oil by Modulating the Endogenous Enzyme Activities. Compr. Rev. Food Sci. Food Saf. 2014, 13, 135–154. [Google Scholar] [CrossRef] [Green Version]
- Morrone, L.; Rotondi, A.; Rapparini, F.; Bertazza, G. Olive Processing: Influence of Some Crucial Phases on the Final Quality of Olive Oil. In Food Processing; Marc, R.A., Ed.; IntechOpen: London, UK, 2019; pp. 1–17. [Google Scholar]
- Servili, M.; Selvaggini, R.; Taticchi, A.; Esposto, S.; Montedoro, G.F. Volatile Compounds and Phenolic Composition of Virgin Olive Oil: Optimization of Temperature and Time of Exposure of Olive Pastes to Air Contact during the Mechanical Extraction Process. J. Agric. Food Chem. 2003, 51, 7980–7988. [Google Scholar] [CrossRef]
- García, A.; Brenes, M.; Martínez, F.; Alba, J.; García, P.; Garrido, A. High-Performance Liquid Chromatography Evaluation of Phenols in Virgin Olive Oil during Extraction at Laboratory and Industrial Scale. J. Am. Oil Chem. Soc. 2001, 78, 625–629. [Google Scholar] [CrossRef]
- García, J.M.; Seller, S.; Carmen Pérez-Camino, M. Influence of Fruit Ripening on Olive Oil Quality. J. Agric. Food Chem. 1996, 44, 3516–3520. [Google Scholar] [CrossRef]
- Angerosa, F.; Mostallino, R.; Basti, C.; Vito, R.; Serraiocco, A. Virgin Olive Oil Differentiation in Relation to Extraction Methodologies. J. Sci. Food Agric. 2000, 80, 2190–2195. [Google Scholar] [CrossRef]
- Gómez-Rico, A.; Salvador, M.D.; Moriana, A.; Pérez, D.; Olmedilla, N.; Ribas, F.; Fregapane, G. Influence of Different Irrigation Strategies in a Traditional Cornicabra Cv. Olive Orchard on Virgin Olive Oil Composition and Quality. Food Chem. 2007, 100, 568–578. [Google Scholar] [CrossRef]
- Grattan, S.R.; Berenguer, M.J.; Connell, J.H.; Polito, V.S.; Vossen, P.M. Olive Oil Production as Influenced by Different Quantities of Applied Water. Agric. Water Manag. 2006, 85, 133–140. [Google Scholar] [CrossRef]
- Ben-David, E.; Kerem, Z.; Zipori, I.; Weissbein, S.; Basheer, L.; Bustan, A.; Dag, A. Optimization of the Abencor System to Extract Olive Oil from Irrigated Orchards. Eur. J. Lipid Sci. Technol. 2010, 112, 1158–1165. [Google Scholar] [CrossRef]
- Martínez, P.E.; Hidalgo, F.; Heredia, F. Método Rápido de Obtención de Aceite de Oliva Virgen Para Determinación de Acidez. Grasas Aceites 1999, 50, 122–1126. [Google Scholar] [CrossRef] [Green Version]
- International Olive Council. Guide for the Determination of the Characteristics of Oil-Olives; COI/OH/Doc. No. 1; International Olive Council: Madrid, Spain, 2011. [Google Scholar]
- Lee, C.; Polari, J.J.; Kramer, K.E.; Wang, S.C. Near-Infrared (NIR) Spectrometry as a Fast and Reliable Tool for Fat and Moisture Analyses in Olives. ACS Omega 2018, 3, 16081–16088. [Google Scholar] [CrossRef] [PubMed]
- Official Journal of the European Union. European Union, Commission Regulation 2568/91; Official Journal of the European Union: Brussels, Belgium, 1991; Volume L248, p. 1. [Google Scholar]
- Falleh, H.; Ksouri, R.; Chaieb, K.; Karray-Bouraoui, N.; Trabelsi, N.; Boulaaba, M.; Abdelly, C. Phenolic Composition of Cynara Cardunculus L. Organs, and Their Biological Activities. Comptes Rendus Biol. 2008, 331, 372–379. [Google Scholar] [CrossRef]
- International Olive Council. Method of Analysis Determination of the Content of Waxes, Fatty Acid Methyl Esters and Fatty Acid Ethyl Esters by Capillary Gas Chromatography; IOC/T.20/Doc. No. 28/Rev. 2; International Olive Council: Madrid, Spain, 2017. [Google Scholar]
- Milinovic, J.; Garcia, R.; Rato, A.E.; Cabrita, M.J. Rapid Assessment of Monovarietal Portuguese Extra Virgin Olive Oil’s (EVOO’s) Fatty Acids by Fourier-Transform Near-Infrared Spectroscopy (FT-NIRS). Eur. J. Lipid Sci. Technol. 2019, 121, 1800392. [Google Scholar] [CrossRef]
- Dag, A.; Kerem, Z.; Yogev, N.; Zipori, I.; Lavee, S.; Ben-David, E. Influence of Time of Harvest and Maturity Index on Olive Oil Yield and Quality. Sci. Hortic. 2011, 127, 358–366. [Google Scholar] [CrossRef]
- Camposeo, S.; Vivaldi, G.A.; Gattullo, C.E. Ripening Indices and Harvesting Times of Different Olive Cultivars for Continuous Harvest. Sci. Hortic. 2013, 151, 1–10. [Google Scholar] [CrossRef]
- Peres, F.; Martins, L.L.; Mourato, M.; Vitorino, C.; Ferreira-Dias, S. Bioactive Compounds of Portuguese Virgin Olive Oils Discriminate Cultivar and Ripening Stage. J. Am. Oil Chem. Soc. 2016, 93, 1137–1147. [Google Scholar] [CrossRef]
- Ferro, M.D.; Lopes, E.; Afonso, M.; Peixe, A.; Rodrigues, F.M.; Duarte, M.F. Phenolic Profile Characterization of “galega Vulgar” and “Cobrancosa” Portuguese Olive Cultivars along the Ripening Stages. Appl. Sci. 2020, 10, 3930. [Google Scholar] [CrossRef]
- Carella, A.; Massenti, R.; Milazzo, G.; Caruso, T.; Bianco, R. lo Fruiting, Morphology, and Architecture of ‘Arbequina’ and ‘Calatina’ Olive Branches. Horticulturae 2022, 8, 109. [Google Scholar] [CrossRef]
- Vidal, A.M.; Alcalá, S.; de Torres, A.; Moya, M.; Espínola, F. Characterization of Olive Oils from Superintensive Crops with Different Ripening Degree, Irrigation Management, and Cultivar: (Arbequina, Koroneiki, and Arbosana). Eur. J. Lipid Sci. Technol. 2019, 121, 1800360. [Google Scholar] [CrossRef]
- Rondanini, D.P.; Castro, D.N.; Searles, P.S.; Rousseaux, M.C. Contrasting Patterns of Fatty Acid Composition and Oil Accumulation during Fruit Growth in Several Olive Varieties and Locations in a Non-Mediterranean Region. Eur. J. Agron. 2014, 52, 237–246. [Google Scholar] [CrossRef]
- Yousfi, K.; Weiland, C.M.; García, J.M. Effect of Harvesting System and Fruit Cold Storage on Virgin Olive Oil Chemical Composition and Quality of Superintensive Cultivated Arbequina Olives. J. Agric. Food Chem. 2012, 60, 4743–4750. [Google Scholar] [CrossRef]
- Franco, M.N.; Sánchez, J.; de Miguel, C.; Martínez, M.; Martín-Vertedor, D. Influence of the Fruit’s Ripeness on Virgin Olive Oil Quality. J. Oleo Sci. 2015, 64, 263–273. [Google Scholar] [CrossRef] [Green Version]
- Aguilera, M.P.; Beltran, G.; Sanchez-Villasclaras, S.; Uceda, M.; Jimenez, A. Kneading Olive Paste from Unripe “Picual” Fruits: I. Effect on Oil Process Yield. J. Food Eng. 2010, 97, 533–538. [Google Scholar] [CrossRef]
- Ellis, A.C.; Gambaro, A. Characterisation of Arbequina Extra Virgin Olive Oil from Uruguay. J. Food Res. 2018, 7, 79–90. [Google Scholar] [CrossRef]
- Tamborrino, A.; Leone, A.; Romaniello, R.; Zagaria, R. Assessment of the Yield and Quality of Olive Oil Obtained with Two Different Crushing Systems. In Proceedings of the XXXIV CIOSTA CIGR V Conference, Vienna, Austria, 29 June–1 July 2011. [Google Scholar]
- Beltrán, G.; Uceda, M.; Jiménez, A.; Aguilera, M.P. Olive Oil Extractability Index as a Parameter for Olive Cultivar Characterisation. J. Sci. Food Agric. 2003, 83, 503–506. [Google Scholar] [CrossRef]
- Peres, F.; Martins, L.L.; Ferreira-Dias, S. Laboratory-Scale Optimization of Olive Oil Extraction: Simultaneous Addition of Enzymes and Microtalc Improves the Yield. Eur. J. Lipid Sci. Technol. 2014, 116, 1054–1062. [Google Scholar] [CrossRef]
- Cetinkaya, H.; Kulak, M. Soil Characteristics Influence the Fatty Acid Profile of Olive Oils. Sci. Pap. Ser. B Hortic. 2016, LX, 53–57. [Google Scholar]
- Hilali, M.; Maata, N.; Monfalouti, H.; Kartah, B.E. Study of the Chemical Composition of Olive Oil According to Its Mode of Extraction and Its Age from the Olive Tree. J. Environ. Treat. Tech. 2020, 8, 1075–1080. [Google Scholar]
Cultivar | MI | FW (g) | SW (g) | FP (g) | FP/S | FCFW (%) | H (%) |
---|---|---|---|---|---|---|---|
GV | 3.24 | 2.56 ± 0.41 b | 0.38 ± 0.08 b | 2.19 ± 0.33 b | 5.90 ± 0.49 a,b | 13.40 ± 0.37 c | 61.15 ± 0.16 a |
ARB | 0.98 | 1.28 ± 0.24 c | 0.25 ± 0.07 c | 1.03 ± 0.16 c | 4.32 ± 0.93 b | 14.96 ± 0.41 a | 58.52 ± 0.54 b |
COB | 2.25 | 4.43 ± 1.06 a | 0.60 ± 0.12 a | 3.84 ± 0.84 a | 6.39 ± 0.42 a | 14.11 ± 0.05 b | 60.40 ± 1.17 a,b |
Cultivar | OP (g) | OO (g) | Yield (%) |
---|---|---|---|
GV | 4379.4 | 291.2 | 6.65 |
ARB | 3076.3 | 245.7 | 7.99 |
COB | 4434.8 | 336.7 | 7.59 |
Cultivar | Extraction Method | Free Acidity | K232 | K268 | ΔK | Total Phenols |
---|---|---|---|---|---|---|
GV | LS IS | 0.082 ± 0.017 a 0.096 ± 0.022 a | 1.428 ± 0.002 b 1.742 ± 0.013 a | 0.081 ± 0.002 b 0.152 ± 0.007 a | −0.0094 ± 0.0003 b −0.001 ± 0.004 a | 328.2 ± 2.5 b 493.1 ± 17.3 a |
ARB | LS IS | 0.038 ± 0.005 b 0.075 ± 0.021 a | 1.572 ± 0.007 b 1.856 ± 0.004 a | 0.141 ± 0.003 b 0.204 ± 0.005 a | −0.009 ± 0.004 b 0.008 ± 0.002 a | 248.3 ± 16.6 b 350.0 ± 28.7 a |
COB | LS IS | 0.147 ± 0.013 a 0.112 ± 0.012 b | 1.710 ± 0.009 b 1.833 ± 0.006 a | 0.176 ± 0.002 b 0.185 ± 0.005 a | 0.0005 ± 0.0034 a −0.009 ± 0.007 a | 688.6 ± 28.9 a 690.3 ± 30.8 a |
Name | Abbreviation | ARB | COB | GV | |||
---|---|---|---|---|---|---|---|
LS | IS | LS | IS | LS | IS | ||
Myristoleic acid | C14:0 | 0.0189 ± 0.0016 a | 0.01645 ± 0.00027 b | 0.00809 ± 0.00063 a | 0.00898 ± 0.00039 a | 0.0109 ± 0.0012 a | 0.01167 ± 0.00024 a |
Pentadecanoic acid | C15:0 | 0.01363 ± 0.00041 a | 0.01319 ± 0.00039 a | 0.0071 ± 0.0011 a | 0.00703 ± 0.00011 a | 0.00976 ± 0.00051 b | 0.01279 ± 0.00027 a |
Palmitic acid | C16:0 | 16.98 ± 0.25 a | 15.885 ± 0.060 b | 15.07 ± 0.11 a | 14.427 ± 0.052 b | 17.07 ± 0.14 a | 15.89 ± 0.10 b |
Palmitoleic acid | C16:1 | 1.3522 ± 0.0066 a | 1.2548 ± 0.0023 b | 1.2548 ± 0.0063 a | 1.1149 ± 0.0061 b | 2.644 ± 0.021 a | 2.1397 ± 0.0096 b |
Heptadecanoic acid | C17:0 | 0.1776 ± 0.0013 a | 0.1781 ± 0.0023 a | 0.1269 ± 0.0013 b | 0.13208 ± 0.00070 a | 0.11091 ± 0.00092 b | 0.16037 ± 0.00084 a |
cis-10-heptadecenoic acid | C17:1 | 0.3392 ± 0.0016 a | 0.333 ± 0.010 a | 0.21730 ± 0.00067 b | 0.22925 ± 0.00032 a | 0.3101 ± 0.0047 a | 0.322 ± 0.016 a |
Stearic acid | C18:0 | 2.118 ± 0.011 a | 2.134 ± 0.014 a | 3.215 ± 0.019 a | 3.0968 ± 0.0050 b | 1.570 ± 0.012 b | 2.3958 ± 0.0083 a |
Oleic acid | C18:1n9c | 66.38 ± 0.17 b | 67.979 ± 0.026 a | 68.757 ± 0.083 b | 70.842 ± 0.054 a | 71.59 ± 0.12 b | 72.094 ± 0.089 a |
Linolelaidic acid | C18:2n6t | 0.0087 ± 0.0017 a | 0.00827 ± 0.00070 a | 0.00729 ± 0.00091 a | 0.00634 ± 0.00029 a | 0.00592 ± 0.00011 b | 0.00803 ± 0.00017 a |
Linoleic acid | C18:2n6c | 10.867 ± 0.072 a | 10.1749 ± 0.0018 b | 8.709 ± 0.023 a | 7.5731 ± 0.0038 b | 4.233 ± 0.013 b | 4.3825 ± 0.0070 a |
Arachidic acid | C20:0 | 0.4340 ± 0.0021 a | 0.4363 ± 0.0027 a | 0.4371 ± 0.0014 a | 0.4282 ± 0.0017 b | 0.3141 ± 0.0072 b | 0.4124 ± 0.0031 a |
cis-11-Eicosenoic acid | C20:1 | 0.7566 ± 0.0063 a | 0.69019 ± 0.00090 b | 0.9368 ± 0.0023 a | 0.8717 ± 0.0011 b | 0.8006 ± 0.0028 a | 0.68235 ± 0.00073 b |
Linolenic acid | C18:3n3 | 0.2877 ± 0.0015 b | 0.2912 ± 0.0017 a | 0.2118 ± 0.0011 a | 0.2142 ± 0.0025 a | 0.2836 ± 0.0064 a | 0.2562 ± 0.0018 b |
Heneicosanoic acid | C21:0 | 0.01759 ± 0.00091 a | 0.0162 ± 0.0010 a | 0.01041 ± 0.00023 a | 0.01014 ± 0.00028 a | 0.01631 ± 0.00082 a | 0.01561 ± 0.00025 a |
cis-11,14-Eicosadienoic acid | C20:2 | 0.00282 ± 0.00012 a | 0.00245 ± 0.00024 a | 0.00139 ± 0.00091 b | 0.001921 ± 0.000061 a | 0.00204 ± 0.00040 a | 0.00141 ± 0.00025 b |
Behenic acid | C22:0 | 0.1366 ± 0.0027 a | 0.1352 ± 0.0036 a | 0.10964 ± 0.00044 b | 0.1151 ± 0.0015 a | 0.0997 ± 0.0039 b | 0.12404 ± 0.00047 a |
Erucic acid | C22:1n9 | LOD | LOD | 0.00199 ± 0.00012 a | 0.00204 ± 0.00011 a | 0.00255 ± 0.00021 a | 0.00257 ± 0.00048 a |
Arachidonic acid | C20:4n6 | 0.02619 ± 0.00061 b | 0.3628 ± 0.0059 a | 0.8308 ± 0.0092 a | 0.8405 ± 0.0037 b | 0.832 ± 0.026 b | 1.009 ± 0.018 a |
Lignoceric acid | C24:0 | 0.0717 ± 0.0013a | 0.06972 ± 0.00088 a | 0.0731 ± 0.0016 a | 0.0717 ± 0.0023 b | 0.0558 ± 0.0038 b | 0.0676 ± 0.0033 a |
cis-5,8,11,14,17-Eicosapentaenoic acid | C20:5n3 | 0.00326 ± 0.00052 b | 0.00499 ± 0.00037 a | 0.0047 ± 0.0023 a | 0.00416 ± 0.00048 a | 0.025 ± 0.026 b | 0.0036 ± 0.0016 a |
Nervonic acid | C24:1 | 0.00490 ± 0.00031 b | 0.0110 ± 0.0015 a | 0.00502 ± 0.00034 a | 0.00165 ± 0.00036 b | 0.00358 ± 0.00022 a | 0.00250 ± 0.00028 b |
SFA | 20.03 ± 0.26 a | 18.885 ± 0.043 b | 19.06 ± 0.12 a | 18.298 ± 0.056 b | 19.26 ± 0.13 a | 19.095 ± 0.094 a | |
MUFA | 68.79 ± 0.18 b | 70.271 ± 0.034 a | 71.173 ± 0.083 b | 73.062 ± 0.047 a | 75.36 ± 0.11 a | 75.245 ± 0.071 a | |
PUFA | 11.178 ± 0.072 a | 10.848 ± 0.010 b | 9.764 ± 0.032 a | 8.636 ± 0.010 b | 5.359 ± 0.034 b | 5.658 ± 0.026 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferro, M.D.; Cabrita, M.J.; Herrera, J.M.; Duarte, M.F. A New Laboratory Scale Olive Oil Extraction Method with Comparative Characterization of Phenolic and Fatty Acid Composition. Foods 2023, 12, 380. https://doi.org/10.3390/foods12020380
Ferro MD, Cabrita MJ, Herrera JM, Duarte MF. A New Laboratory Scale Olive Oil Extraction Method with Comparative Characterization of Phenolic and Fatty Acid Composition. Foods. 2023; 12(2):380. https://doi.org/10.3390/foods12020380
Chicago/Turabian StyleFerro, Miguel D., Maria João Cabrita, José M. Herrera, and Maria F. Duarte. 2023. "A New Laboratory Scale Olive Oil Extraction Method with Comparative Characterization of Phenolic and Fatty Acid Composition" Foods 12, no. 2: 380. https://doi.org/10.3390/foods12020380
APA StyleFerro, M. D., Cabrita, M. J., Herrera, J. M., & Duarte, M. F. (2023). A New Laboratory Scale Olive Oil Extraction Method with Comparative Characterization of Phenolic and Fatty Acid Composition. Foods, 12(2), 380. https://doi.org/10.3390/foods12020380