Application of the Luminescent luxCDABE Gene for the Rapid Screening of Antibacterial Substances Targeting Pseudomonas aeruginosa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Construction of the PAO1-CE Biosensor
2.2. Chemicals
2.3. Preparation of the Test Solutions Containing Antibioticss
2.4. Inhibition Ratio (IR) of the Six Antibiotics on Luminescence
2.5. Traditional Methods for Verifying the Sensitivity of Antibacterial Substances
2.5.1. MIC
2.5.2. Growth Curve and Influence of the Dynamic Growth Model
2.5.3. Measurement of Intracellular ATP Concentrations
2.5.4. Measurement of Cell Wall Permeability via AKP Activity
2.5.5. Measurement of Cell Membrane Damage via Integrity
2.5.6. Morphological Observation via FESEM
2.6. Statistical Analysis
3. Results
3.1. Cytotoxicity of the Six Test Antibiotics Evaluated by PAO1-CE
3.2. Traditional Methods for Verifying the Sensitivity of Antibacterial Substances
3.2.1. MIC
3.2.2. Growth Curves and the Influence of the Dynamic Growth Model
3.2.3. Intracellular ATP Concentrations
3.2.4. Cell Wall Permeability
3.2.5. Cell Membrane Integrity
3.2.6. Morphological Analysis via FESEM
4. Discussion
4.1. Comparison of PAO1-CE with Other Whole-Cell Recombinant Bacterial Bioreporters
4.2. Cytotoxicity of the Six Test Antibiotics Verified by Traditional Methods
4.3. Analysis of Cytotoxicity Evaluation Mathematical Model Using PAO1-CE
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nahar, S.; Ha, A.J.; Byun, K.H.; Hossain, M.I.; Mizan, M.F.R.; Ha, S.D. Efficacy of flavourzyme against Salmonella Typhimurium, Escherichia coli, and Pseudomonas aeruginosa biofilms on food-contact surfaces. Int. J. Food Microbiol. 2021, 336, 108897. [Google Scholar] [CrossRef]
- Inat, G.; Siriken, B.; Baskan, C.; Erol, I.; Yildirim, T.; Ciftci, A. Quorum sensing systems and related virulence factors in Pseudomonas aeruginosa isolated from chicken meat and ground beef. Sci. Rep. 2021, 11, 15639. [Google Scholar] [CrossRef]
- Quintieri, L.; Fanelli, F.; Zuhlke, D.; Caputo, L.; Logrieco, A.F.; Albrecht, D.; Riedel, K. Biofilm and Pathogenesis-Related Proteins in the Foodborne P. fluorescens ITEM 17298 With Distinctive Phenotypes During Cold Storage. Front. Microbiol. 2020, 11, 991. [Google Scholar] [CrossRef]
- Moser, C.; Jensen, P.O.; Thomsen, K.; Kolpen, M.; Rybtke, M.; Lauland, A.S.; Trostrup, H.; Tolker-Nielsen, T. Immune Responses to Pseudomonas aeruginosa Biofilm Infections. Front. Immunol. 2021, 12, 625597. [Google Scholar] [CrossRef]
- Reynolds, D.; Kollef, M. The Epidemiology and Pathogenesis and Treatment of Pseudomonas aeruginosa Infections: An Update. Drugs 2021, 81, 2117–2131. [Google Scholar] [CrossRef]
- Bachta, K.E.R.; Allen, J.P.; Cheung, B.H.; Chiu, C.H.; Hauser, A.R. Systemic infection facilitates transmission of Pseudomonas aeruginosa in mice. Nat. Commun. 2020, 11, 543. [Google Scholar] [CrossRef] [Green Version]
- Penaranda, C.; Chumbler, N.M.; Hung, D.T. Dual transcriptional analysis reveals adaptation of host and pathogen to intracellular survival of Pseudomonas aeruginosa associated with urinary tract infection. PLoS Pathog. 2021, 17, e1009534. [Google Scholar] [CrossRef]
- Salman, M.; Rizwana, R.; Khan, H.; Munir, I.; Hamayun, M.; Iqbal, A.; Rehman, A.; Amin, K.; Ahmed, G.; Khan, M.; et al. Synergistic effect of silver nanoparticles and polymyxin B against biofilm produced by Pseudomonas aeruginosa isolates of pus samples in vitro. Artif. Cells Nanomed. Biotechnol. 2019, 47, 2465–2472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sorensen, M.; Kantorek, J.; Byrnes, L.; Boutin, S.; Mall, M.A.; Lasitschka, F.; Zabeck, H.; Nguyen, D.; Dalpke, A.H. Pseudomonas aeruginosa Modulates the Antiviral Response of Bronchial Epithelial Cells. Front. Immunol. 2020, 11, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeanvoine, A.; Meunier, A.; Puja, H.; Bertrand, X.; Valot, B.; Hocquet, D. Contamination of a hospital plumbing system by persister cells of a copper-tolerant high-risk clone of Pseudomonas aeruginosa. Water Res. 2019, 157, 579–586. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Choi, H.Y.; Kim, W.G. The Nitrite Transporter Facilitates Biofilm Formation via Suppression of Nitrite Reductase and Is a New Antibiofilm Target in Pseudomonas aeruginosa. mBio 2020, 11, e00878-20. [Google Scholar] [CrossRef]
- Armijo, L.M.; Wawrzyniec, S.J.; Kopciuch, M.; Brandt, Y.I.; Rivera, A.C.; Withers, N.J.; Cook, N.C.; Huber, D.L.; Monson, T.C.; Smyth, H.D.C.; et al. Antibacterial activity of iron oxide, iron nitride, and tobramycin conjugated nanoparticles against Pseudomonas aeruginosa biofilms. J. Nanobiotechnol. 2020, 18, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.; Ding, S.; Fei, Y.; Liu, G.; Jang, H.; Fang, J. Antimicrobial activity of anthocyanins and catechins against foodborne pathogens Escherichia coli and Salmonella. Food Control 2019, 106, 106712. [Google Scholar] [CrossRef]
- Shi, C.; Sun, Y.; Zhang, X.; Zheng, Z.; Yang, M.; Ben, H.; Song, K.; Cao, Y.; Chen, Y.; Liu, X.; et al. Antimicrobial effect of lipoic acid against Cronobacter sakazakii. Food Control 2016, 59, 352–358. [Google Scholar] [CrossRef]
- Zhang, S.; Xiong, J.; Lou, W.; Ning, Z.; Zhang, D.; Yang, J. Antimicrobial activity and action mechanism of triglycerol monolaurate on common foodborne pathogens. Food Control 2019, 98, 113–119. [Google Scholar] [CrossRef]
- Hrubanova, K.; Nebesarova, J.; Ruzicka, F.; Krzyzanek, V. The innovation of cryo-SEM freeze-fracturing methodology demonstrated on high pressure frozen biofilm. Micron 2018, 110, 28–35. [Google Scholar] [CrossRef]
- Jeong, Y.-J.; Ha, J.-W. Combined treatment of UV-A radiation and acetic acid to control foodborne pathogens on spinach and characterization of their synergistic bactericidal mechanisms. Food Control 2019, 106, 106698. [Google Scholar] [CrossRef]
- McCutcheon, J.; Southam, G. Advanced biofilm staining techniques for TEM and SEM in geomicrobiology: Implications for visualizing EPS architecture, mineral nucleation, and microfossil generation. Chem. Geol. 2018, 498, 115–127. [Google Scholar] [CrossRef]
- Mizan, M.F.R.; Ashrafudoulla, M.; Sadekuzzaman, M.; Kang, I.; Ha, S.-D. Effects of NaCl, glucose, and their combinations on biofilm formation on black tiger shrimp (Penaeus monodon) surfaces by Vibrio parahaemolyticus. Food Control 2018, 89, 203–209. [Google Scholar] [CrossRef]
- Shi, C.; Sun, Y.; Zheng, Z.; Zhang, X.; Song, K.; Jia, Z.; Chen, Y.; Yang, M.; Liu, X.; Dong, R.; et al. Antimicrobial activity of syringic acid against Cronobacter sakazakii and its effect on cell membrane. Food Chem. 2016, 197, 100–106. [Google Scholar] [CrossRef]
- He, R.; Zhong, Q.; Chen, W.; Zhang, M.; Pei, J.; Chen, H.; Chen, W. Antimicrobial mechanism of linalool against Brochothrix thermosphacta and its application on chilled beef. Food Res. Int. 2022, 157, 111407. [Google Scholar] [CrossRef] [PubMed]
- Shahid, M.; Manoharadas, S.; Chakdar, H.; Alrefaei, A.F.; Albeshr, M.F.; Almutairi, M.H. Biological toxicity assessment of carbamate pesticides using bacterial and plant bioassays: An in-vitro approach. Chemosphere 2021, 278, 130372. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Wang, X.; Cheng, J.H.; Zeng, G.; Sun, D.W. Synthesis and antimicrobial activities of novel sorbic and benzoic acid amide derivatives. Food Chem. 2018, 268, 220–232. [Google Scholar] [CrossRef] [PubMed]
- White, D., 3rd; Yang, Q. Genetically Encoded ATP Biosensors for Direct Monitoring of Cellular ATP Dynamics. Cells 2022, 11, 1920. [Google Scholar] [CrossRef]
- Sharifian, S.; Homaei, A.; Hemmati, R.; Khajeh, K. Light emission miracle in the sea and preeminent applications of bioluminescence in recent new biotechnology. J. Photochem. Photobiol. B 2017, 172, 115–128. [Google Scholar] [CrossRef]
- Grim, C.J. Ecological Significance of Luminescence in Vibrio cholerae: Occurrence, Structure, Expression, and Function; University of Maryland: College Park, MD, USA, 2006. [Google Scholar]
- Damron, F.H.; McKenney, E.S.; Barbier, M.; Liechti, G.W.; Schweizer, H.P.; Goldberg, J.B. Construction of mobilizable mini-Tn7 vectors for bioluminescent detection of gram-negative bacteria and single-copy promoter lux reporter analysis. Appl. Environ. Microbiol. 2013, 79, 4149–4153. [Google Scholar] [CrossRef] [Green Version]
- Swansona, B.; Savel, R.; Szokab, F.; Sawaa, T.; Wiener-Kronish, J. Development of a high throughput Pseudomonas aeruginosa epithelial cell adhesion assay. J. Microbiol. Methods 2003, 52, 361–366. [Google Scholar] [CrossRef]
- Tian, L.; Wang, X.; Liu, R.; Zhang, D.; Wang, X.; Sun, R.; Guo, W.; Yang, S.; Li, H.; Gong, G. Antibacterial mechanism of thymol against Enterobacter sakazakii. Food Control 2021, 123, 107716. [Google Scholar] [CrossRef]
- Wang, Q.; Li, L.; Ding, W.; Zhang, D.; Wang, J.; Reed, K.; Zhang, B. Adulterant identification in mutton by electronic nose and gas chromatography-mass spectrometer. Food Control 2019, 98, 431–438. [Google Scholar] [CrossRef]
- Yu, X.; Sha, L.; Liu, Q.; Zhao, Y.; Fang, H.; Cao, Y.; Zhao, J. Recent advances in cell membrane camouflage-based biosensing application. Biosens. Bioelectron. 2021, 194, 113623. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.Y.; Lin, Y.Y.; Zhang, Z.B.; Shen, J.X.; Yang, C.M.; Jiang, M.J.; Hou, Y.M. Systematic analysis of bacteriostatic mechanism of flavonoids using transcriptome and its therapeutic effect on vaginitis. Aging 2020, 12, 6292–6305. [Google Scholar] [CrossRef] [PubMed]
- Zhong, W.; Chen, K.; Yang, L.; Tang, T.; Jiang, S.; Guo, J.; Gao, Z. Essential Oils From Citrus unshiu Marc. Effectively Kill Aeromonas hydrophila by Destroying Cell Membrane Integrity, Influencing Cell Potential, and Leaking Intracellular Substances. Front. Microbiol. 2022, 13, 869953. [Google Scholar] [CrossRef]
- Duan, K.; Surette, M.G. Environmental regulation of Pseudomonas aeruginosa PAO1 Las and Rhl quorum-sensing systems. J. Bacteriol. 2007, 189, 4827–4836. [Google Scholar] [CrossRef] [Green Version]
- Abida, P.; Gillian, S.; Vyvyan, S.; Shona, M.N. Biofilm culture of Pseudomonas aeruginosa expressing lux genes as a model to study susceptibility to antimicrobials. FEMS Microbiol. Lett. 2001, 199, 115–118. [Google Scholar] [CrossRef]
- Shah, N.; Naseby, D.C. Bioluminescence-based measurement of viability of Pseudomonas aeruginosa ATCC 9027 harbouring plasmid-based lux genes under the control of constitutive promoters. J. Appl. Microbiol. 2014, 117, 1373–1387. [Google Scholar] [CrossRef]
- Fu, B.; Wu, Q.; Dang, M.; Bai, D.; Guo, Q.; Shen, L.; Duan, K. Inhibition of Pseudomonas aeruginosa Biofilm Formation by Traditional Chinese Medicinal Herb Herba patriniae. BioMed Res. Int. 2017, 2017, 9584703. [Google Scholar] [CrossRef] [Green Version]
- Bello-Lopez, J.M.; Ibanez-Cervantes, G.; Fernandez-Sanchez, V.; Arroyo-Perez, J.A.; Rojo-Medina, J. Propagation capacity of bacterial contaminants in platelet concentrates using a luciferase reporter system. Transfus. Apher. Sci. 2015, 52, 326–331. [Google Scholar] [CrossRef] [PubMed]
- Engelberg, R.; Danielson, A.; Wang, S.; Singh, M.; Wai, A.; Sorensen, J.; Duan, K.; Hausner, G.; Kumar, A. Creation of a drug-sensitive reporter strain of Pseudomonas aeruginosa as a tool for the rapid screening of antimicrobial products. J. Microbiol. Methods 2018, 152, 1–6. [Google Scholar] [CrossRef]
- Assadi, Z.; Emtiazi, G.; Zarrabi, A. Novel synergistic activities of tetracycline copper oxide nanoparticles integrated into chitosan micro particles for delivery against multiple drug resistant strains: Generation of reactive oxygen species (ROS) and cell death. J. Drug Deliv. Sci. Technol. 2018, 44, 65–70. [Google Scholar] [CrossRef]
- Patzer, J.A.; Dzierzanowska, D. Increase of imipenem resistance among Pseudomonas aeruginosa isolates from a Polish paediatric hospital (1993–2002). Int. J. Antimicrob. Agents 2007, 29, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Weledji, E.P.; Weledji, E.K.; Assob, J.C.; Nsagha, D.S. Pros, cons and future of antibiotics. New Horiz. Transl. Med. 2017, 4, 9–14. [Google Scholar] [CrossRef]
- Tian, Q.; Wu, J.; Xu, H.; Hu, Z.; Huo, Y.; Wang, L. Cryo-EM structure of the fatty acid reductase LuxC-LuxE complex provides insights into bacterial bioluminescence. J. Biol. Chem. 2022, 298, 102006. [Google Scholar] [CrossRef] [PubMed]
- Bajpai, V.K.; Sharma, A.; Baek, K.-H. Antibacterial mode of action of Cudrania tricuspidata fruit essential oil, affecting membrane permeability and surface characteristics of food-borne pathogens. Food Control 2013, 32, 582–590. [Google Scholar] [CrossRef]
- Nealson, K.H.; Platt, T.; Hastings, J.W. Cellular Control of the Synthesis and Activity of the Bacterial Luminescent System. J. Bacteriol. 1970, 104, 313–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Wu, Y.-T.; Zheng, W.; Han, X.-X.; Jiang, Y.-H.; Hu, P.-L.; Tang, Z.-X.; Shi, L.-E. The antibacterial activity and antibacterial mechanism of a polysaccharide from Cordyceps cicadae. J. Funct. Foods 2017, 38, 273–279. [Google Scholar] [CrossRef]
- Igrejas, G.; Radhouani, H.; Nunes-Miranda, J.D.; Carreira, R.; Santos, H.M.; Pinto, L.; Monteiro, R.; Carvalho, C.; Poeta, P.; Lodeiro, C.; et al. Proteomic changes in extended-spectrum beta-lactamase-producing Escherichia coli strain under cefotaxime selection. J. Integr. OMICS 2013, 3, 157–166. [Google Scholar] [CrossRef] [Green Version]
- Tan, L.; Shi, H.; Chen, M.; Wang, Z.; Yao, Z.; Sun, Y. In vitro synergistic effect of minocycline combined with antifungals against Cryptococcus neoformans. J. Mycol. Med. 2022, 32, 101227. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, L.; Kempf, J.; Briee, F.; Swain, J.; Mingeot-Leclercq, M.P.; Decout, J.L. Broad-spectrum antibacterial amphiphilic aminoglycosides: A new focus on the structure of the lipophilic groups extends the series of active dialkyl neamines. Eur. J. Med. Chem. 2018, 157, 1512–1525. [Google Scholar] [CrossRef]
- Papich, M.G. Trimethoprim Sulfadiazine. In Saunders Handbook of Veterinary Drugs, 4th ed.; Papich, M.G., Ed.; W.B. Saunders: St. Louis, MO, USA, 2016; pp. 818–820. [Google Scholar]
- Sun, R.; Zhao, X.; Meng, Q.; Huang, P.; Zhao, Q.; Liu, X.; Zhang, W.; Zhang, F.; Fu, Y. Genome-Wide Screening and Characterization of Genes Involved in Response to High Dose of Ciprofloxacin in Escherichia coli. Microb. Drug Resist. 2022, 28, 501–510. [Google Scholar] [CrossRef]
- Jiang, B.; Li, G.; Xing, Y.; Zhang, D.; Jia, J.; Cui, Z.; Luan, X.; Tang, H. A whole-cell bioreporter assay for quantitative genotoxicity evaluation of environmental samples. Chemosphere 2017, 184, 384–392. [Google Scholar] [CrossRef]
- Cui, Z.; Luan, X.; Jiang, H.; Li, Q.; Xu, G.; Sun, C.; Zheng, L.; Song, Y.; Davison, P.A.; Huang, W.E. Application of a bacterial whole cell biosensor for the rapid detection of cytotoxicity in heavy metal contaminated seawater. Chemosphere 2018, 200, 322–329. [Google Scholar] [CrossRef]
- Wang, D.; Wang, S.; Bai, L.; Nasir, M.S.; Li, S.; Yan, W. Mathematical Modeling Approaches for Assessing the Joint Toxicity of Chemical Mixtures Based on Luminescent Bacteria: A Systematic Review. Front. Microbiol. 2020, 11, 1651. [Google Scholar] [CrossRef] [PubMed]
- Bhuvaneshwari, M.; Eltzov, E.; Veltman, B.; Shapiro, O.; Sadhasivam, G.; Borisover, M. Toxicity of chlorinated and ozonated wastewater effluents probed by genetically modified bioluminescent bacteria and cyanobacteria Spirulina sp. Water Res. 2019, 164, 114910. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Guo, X.; Si, X.; Yang, R.; Zhou, J.; Quan, X. Environmentally persistent free radical generation on contaminated soil and their potential biotoxicity to luminous bacteria. Sci. Total Environ. 2019, 687, 348–354. [Google Scholar] [CrossRef]
- Visaggio, D.; Pirolo, M.; Frangipani, E.; Lucidi, M.; Sorrentino, R.; Mitidieri, E.; Ungaro, F.; Luraghi, A.; Peri, F.; Visca, P. A Highly Sensitive Luminescent Biosensor for the Microvolumetric Detection of the Pseudomonas aeruginosa Siderophore Pyochelin. ACS Sens. 2021, 6, 3273–3283. [Google Scholar] [CrossRef] [PubMed]
Antibiotics | Fitting Formula | R2 | Liner Range (μg/mL) | EC50 (μg/mL) | 1/2 MIC (μg/mL) |
---|---|---|---|---|---|
Str | y = 96.1138(1 − exp(−0.1393x)) | 0.9974 | 0.00~50.00 | 5.34 | 100.00 |
Car | y = 95.2735(1 − exp(−0.1362x)) | 0.9947 | 0.00~47.50 | 5.55 | 95.00 |
Amp | y = 42.8581 + 0.0283x | 0.9243 | 56.25~1800.00 | 252.36 | 900.00 |
Ter | y = 41.7624 + 0.5885x | 0.9932 | 6.75~100.00 | 13.99 | 50.00 |
Tmp | y = 14.311 + 0.436x | 0.9925 | 500.00~2000.00 | 818.10 | 1000.00 |
Cip | y = 2.0228 + 137.28x | 0.9889 | 0.05~0.7 | 0.35 | 0.50 |
Antibiotics | Concentrations | Growth Parameters | ||
---|---|---|---|---|
λ ± SE | μmax ± SE | ODmax ± SE | ||
Str | 1/2 MIC | 23.106 ± 0.251 A | 0.097 ± 0.001 C | 0.178 ± 0.011 E |
1/4 MIC | 19.432 ± 0.452 B | 0.069 ± 0.008 D | 0.352 ± 0.008 D | |
1/8 MIC | 2.720 ± 0.154 D | 0.033 ± 0.001 E | 0.647 ± 0.013 C | |
1/16 MIC | 3.874 ± 0.151 C | 0.074 ± 0.002 D | 1.155 ± 0.027 B | |
1/32 MIC | 3.361 ± 0.233 CD | 0.146 ± 0.002 B | 1.603 ± 0.001 A | |
CK | 3.124 ± 0.036 CD | 0.177 ± 0.001 A | 1.610 ± 0.005 A | |
Car | 1/2 MIC | 12.071 ± 0.341 A | 0.030 ± 0.001 F | 0.384 ± 0.004 E |
1/4 MIC | 2.724 ± 0.498 C | 0.045 ± 0.001 E | 0.875 ± 0.011 D | |
1/8 MIC | 4.182 ± 0.268 B | 0.095 ± 0.002 D | 1.211 ± 0.020 C | |
1/16 MIC | 3.347 ± 0.017 BC | 0.120 ± 0.000 C | 1.485 ± 0.008 B | |
1/32 MIC | 3.387 ± 0.104 BC | 0.144 ± 0.002 B | 1.607 ± 0.008 A | |
CK | 3.124 ± 0.036 C | 0.177 ± 0.001 A | 1.610 ± 0.005 A | |
Amp | 1/2 MIC | 1.335 ± 0.030 D | 0.061 ± 0.001 D | 0.349 ± 0.004 D |
1/4 MIC | 6.835 ± 0.462 A | 0.066 ± 0.002 D | 1.035 ± 0.011 C | |
1/8 MIC | 2.406 ± 0.026 C | 0.108 ± 0.006 C | 1.483 ± 0.061 B | |
1/16 MIC | 1.433 ± 0.173 D | 0.114 ± 0.002 C | 1.563 ± 0.015 AB | |
1/32 MIC | 3.265 ± 0.097 B | 0.161 ± 0.009 B | 1.593 ± 0.002 A | |
CK | 3.124 ± 0.036 B | 0.177 ± 0.001 A | 1.610 ± 0.005 A | |
Ter | 1/2 MIC | 6.973 ± 0.024 A | 0.142 ± 0.004 E | 1.585 ± 0.014 B |
1/4 MIC | 3.590 ± 0.035 BC | 0.164 ± 0.001 D | 1.646 ± 0.002 A | |
1/8 MIC | 3.462 ± 0.055 C | 0.175 ± 0.001 C | 1.653 ± 0.005 A | |
1/16 MIC | 3.627 ± 0.016 B | 0.182 ± 0.002 AB | 1.655 ± 0.010 A | |
1/32 MIC | 3.498 ± 0.086 BC | 0.185 ± 0.002 A | 1.611 ± 0.033 AB | |
CK | 3.124 ± 0.036 D | 0.177 ± 0.001 BC | 1.610 ± 0.005 AB | |
Tmp | 1/2 MIC | 12.237 ± 0.145 A | 0.053 ± 0.000 F | 0.665 ± 0.002 E |
1/4 MIC | 8.136 ± 0.024 B | 0.096 ± 0.001 D | 0.623 ± 0.003 E | |
1/8 MIC | 4.956 ± 0.008 C | 0.086 ± 0.000 E | 0.869 ± 0.016 D | |
1/16 MIC | 4.377 ± 0.023 D | 0.108 ± 0.001 C | 1.077 ± 0.022 C | |
1/32 MIC | 2.870 ± 0.269 E | 0.116 ± 0.005 B | 1.203 ± 0.064 B | |
CK | 3.124 ± 0.036 E | 0.177 ± 0.001 A | 1.610 ± 0.005 A | |
Cip | 1/2 MIC | 18.456 ± 0.230 A | 0.091 ± 0.003 D | 0.521 ± 0.035 E |
1/4 MIC | 1.922 ± 0.162 D | 0.079 ± 0.002 E | 0.786 ± 0.013 D | |
1/8 MIC | 2.524 ± 0.251 C | 0.134 ± 0.006 C | 1.200 ± 0.009 C | |
1/16 MIC | 2.832 ± 0.098 BC | 0.151 ± 0.004 B | 1.365 ± 0.006 B | |
1/32 MIC | 2.825 ± 0.095 BC | 0.167 ± 0.002 A | 1.541 ± 0.040 A | |
CK | 3.124 ± 0.036 B | 0.177 ± 0.001 A | 1.610 ± 0.005 A |
Plasmids/Transposon | Relevant Information | Application Areas | Reference |
---|---|---|---|
pKD-201/202/204/205/207 | pMS402 containing lasI/rhlI/lasR/rhlR/aprA/rhlA promoter, pMS402 expression reporter plasmid carrying the promoterless luxCDABE gene | Evaluating environmental regulation of P. aeruginosa PAO1 Las and Rhl quorum-sensing systems. | [34] |
pGLITE | pLITE27 containing the luxCDABE operon of Xenorhabdus luminescens | Susceptibility to antimicrobials. | [35] |
pME4510-lux | pME4510 containing a lux cassette from pSB417 | Correlation between bioluminescence properties and cell growth. | [36] |
pKD-algU/pslM/pelA/algA/ppyR/bdlA | pMS402 containing algU/pslM/pelA/algA/ppyR/bdlA promoter | Screening a library of 36 herb extracts for inhibitory properties against these genes. | [37] |
pUTminiTn5luxCDABEKm2 | miniTn5 promotor probe carrying the lux operon from Photorhabdus luminiscens | Studying the propagation and auto-sterilization of bacterial contaminants in platelet concentrates. | [38] |
pUC18-miniTn7TGm-luxCDABE | Gmr on mini-Tn7T; luxCDABE transcriptional fusion vector | Selected fungi producing antimicrobials. | [39] |
Antibiotics | Model | Formula | Parameter | R2 | ||
---|---|---|---|---|---|---|
a | k | b | ||||
Str | Gompertz | y = ae(−bexp(−kx)) | 95.9183 | 2.9382 | 0.2500 | 0.9819 |
Exponential | y = a(1 − exp(−bx)) | 96.1138 | - | 0.1393 | 0.9974 | |
Car | Gompertz | y = ae(−bexp(−kx)) | 91.7190 | 2.8206 | 0.2634 | 0.9733 |
Exponential | y = a(1 − exp(−bx)) | 95.2735 | - | 0.1362 | 0.9947 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Y.; Wang, Q.; Zhu, K.; Ding, W. Application of the Luminescent luxCDABE Gene for the Rapid Screening of Antibacterial Substances Targeting Pseudomonas aeruginosa. Foods 2023, 12, 392. https://doi.org/10.3390/foods12020392
Peng Y, Wang Q, Zhu K, Ding W. Application of the Luminescent luxCDABE Gene for the Rapid Screening of Antibacterial Substances Targeting Pseudomonas aeruginosa. Foods. 2023; 12(2):392. https://doi.org/10.3390/foods12020392
Chicago/Turabian StylePeng, Yue, Qian Wang, Kaixiang Zhu, and Wu Ding. 2023. "Application of the Luminescent luxCDABE Gene for the Rapid Screening of Antibacterial Substances Targeting Pseudomonas aeruginosa" Foods 12, no. 2: 392. https://doi.org/10.3390/foods12020392
APA StylePeng, Y., Wang, Q., Zhu, K., & Ding, W. (2023). Application of the Luminescent luxCDABE Gene for the Rapid Screening of Antibacterial Substances Targeting Pseudomonas aeruginosa. Foods, 12(2), 392. https://doi.org/10.3390/foods12020392