Advanced Glycation End Products and Nitrosamines in Sausages Influenced by Processing Parameters, Food Additives and Fat during Thermal Processing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Preparation of Sausage Samples
2.3. Physicochemical and Color VALUE analysis
2.4. AGE and α-Dicarbonyl Compound Analysis
2.4.1. Extraction and Purification of AGEs and α-Dicarbonyl Compounds
2.4.2. Determination by UPLC-MS/MS
2.5. NDMA and NDEA Analysis
2.5.1. Extraction and Purification of NDMA and NDEA
2.5.2. Determination by GC-MS
2.6. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Characteristics and Color Value
3.2. Effect of Cooking Temperature and Time
3.2.1. CML and CEL
3.2.2. α-Dicarbonyl Compounds
3.2.3. NDMA and NDEA
3.3. Effect of Additives
3.3.1. CML and CEL
3.3.2. α-Dicarbonyl Compounds
3.3.3. NDMA and NDEA
3.4. Effect of Fat
3.5. Correlations between AGEs, NAs and α-Dicarbonyl Compounds
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hellwig, M.; Humpf, H.U.; Hengstler, J.; Mally, A.; Vieths, S.; Henle, T. Quality Criteria for Studies on Dietary Glycation Compounds and Human Health. J. Agric. Food Chem. 2019, 67, 11307–11311. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zeng, M.; He, Z.; Zheng, Z.; Qin, F.; Tao, G.; Zhang, S.; Chen, J. Increased Accumulation of Protein-Bound Nε-(Carboxymethyl)lysine in Tissues of Healthy Rats after Chronic Oral Nε-(Carboxymethyl)lysine. J. Agric. Food Chem. 2015, 63, 1658–1663. [Google Scholar] [CrossRef] [PubMed]
- D’Cunha, N.M.; Sergi, D.; Lane, M.M.; Naumovski, N.; Gamage, E.; Rajendran, A.; Kouvari, M.; Gauci, S.; Dissanayka, T.; Marx, W. The Effects of Dietary Advanced Glycation End-Products on Neurocognitive and Mental Disorders. Nutrients 2022, 14, 2421. [Google Scholar] [CrossRef]
- Li, M.; Shen, M.; Lu, J.; Yang, J.; Huang, Y.; Liu, L.; Fan, H.; Xie, J.; Xie, M. Maillard reaction harmful products in dairy products: Formation, occurrence, analysis, and mitigation strategies. Food Res. Int. 2022, 151, 110839. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Liu, T.; Sun, D.-W. Advanced glycation end-products (AGEs) in foods and their detecting techniques and methods: A review. Trends Food Sci. Technol. 2018, 82, 32–45. [Google Scholar] [CrossRef]
- Ye, H.; Miao, Y.; Zhao, C.; Yuan, Y. Acrylamide and methylglyoxal formation in potato chips by microwaving and frying heating. Int. J. Food Sci. Technol. 2011, 46, 1921–1926. [Google Scholar] [CrossRef]
- Xue, C.; He, Z.; Qin, F.; Chen, J.; Zeng, M. Effects of amides from pungent spices on the free and protein-bound heterocyclic amine profiles of roast beef patties by UPLC–MS/MS and multivariate statistical analysis. Food Res. Int. 2020, 135, 109299. [Google Scholar] [CrossRef]
- Hrynets, Y.; Ndagijimana, M.; Betti, M. Studies on the Formation of Maillard and Caramelization Products from Glucosamine Incubated at 37 °C. J. Agric. Food Chem. 2015, 63, 6249–6261. [Google Scholar] [CrossRef]
- Österdahl, B.G. Volatile nitrosamines in foods on the Swedish market and estimation of their daily intake. Food Addit. Contam. 1988, 5, 587–595. [Google Scholar] [CrossRef]
- Qian, Y. Canadian Food Inspection Agency Animal Products, Food of Animal Origin Meat Hygiene Manual of Procedures; China Agricultural Science and Technology Press: Beijing, China, 2004. [Google Scholar]
- GB 2762-2017; National Standards of the People’s Republic of China Maximum Levels of Contaminants in Foods. State Food and Drug Administration, National Health and Family Planning Commission: Beijing, China, 2017.
- Cantwell, M.; Elliott, C. Nitrates, nitrites and nitrosamines from processed meat intake and colorectal cancer risk. Am. J. Clin. Nutr. Am. 2017, 3, 27. [Google Scholar]
- Goldberg, T.; Cai, W.; Peppa, M.; Dardaine, V.; Baliga, B.S.; Uribarri, J.; Vlassara, H. Advanced glycoxidation end products in commonly consumed foods. JADA 2004, 104, 1287–1291. [Google Scholar] [CrossRef] [PubMed]
- Mitra, B.; Lametsch, R.; Greco, I.; Ruiz-Carrascal, J. Advanced glycation end products, protein crosslinks and post translational modifications in pork subjected to different heat treatments. Meat Sci. 2018, 145, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Smith, J.S. Determination of advanced glycation endproducts in cooked meat products. Food Chem. 2015, 168, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Sakai, T.; Munasinghe, D.M.S.; Kashimura, M.; Sugamoto, K.; Kawahara, S. Effect of NaCl on lipid peroxidation-derived aldehyde, 4-hydroxy-2-nonenal formation in minced pork and beef. Meat Sci. 2004, 66, 789–792. [Google Scholar] [CrossRef]
- Honikel, K.O. The use and control of nitrate and nitrite for the processing of meat products. Meat Sci. 2008, 78, 68–76. [Google Scholar] [CrossRef]
- Sallan, S.; Kaban, G.; Ogras, S.S.; Celik, M.; Kaya, M. Nitrosamine formation in a semi-dry fermented sausage: Effects of nitrite, ascorbate and starter culture and role of cooking. Meat Sci. 2020, 159, 107917. [Google Scholar] [CrossRef]
- AOAC. AOAC, Association of Official Methods of Analysis Methods 925.04 and 973.31, 16th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1995. [Google Scholar]
- Janisch, S.; Krischek, C.; Wicke, M. Color values and other meat quality characteristics of breast muscles collected from 3 broiler genetic lines slaughtered at 2 ages. Poult. Sci. 2011, 90, 1774–1781. [Google Scholar] [CrossRef]
- Tareke, E.; Forslund, A.; Lindh, C.H.; Fahlgren, C.; Östman, E. Isotope dilution ESI-LC-MS/MS for quantification of free and total Nε-(1-Carboxymethyl)-l-Lysine and free Nε-(1-Carboxyethyl)-l-Lysine: Comparison of total Nε-(1-Carboxymethyl)-l-Lysine levels measured with new method to ELISA assay in gruel samples. Food Chem. 2013, 141, 4253–4259. [Google Scholar] [CrossRef]
- Scheijen, J.L.; Schalkwijk, C.G. Quantification of glyoxal, methylglyoxal and 3-deoxyglucosone in blood and plasma by ultra performance liquid chromatography tandem mass spectrometry: Evaluation of blood specimen. Clin. Chem. Lab. Med. 2014, 52, 85–91. [Google Scholar] [CrossRef]
- Yurchenko, S.; Mölder, U. The occurrence of volatile N-nitrosamines in Estonian meat products. Food Chem. 2007, 100, 1713–1721. [Google Scholar] [CrossRef]
- Ruedt, C.; Gibis, M.; Weiss, J. Effect of varying salt concentration on iridescence in precooked pork meat. Eur. Food Res. Technol. 2022, 248, 57–68. [Google Scholar] [CrossRef]
- Gómez, J.; Sanjuán, N.; Arnau, J.; Bon, J.; Clemente, G. Diffusion of nitrate and water in pork meat: Effect of the direction of the meat fiber. J. Food Eng. 2017, 214, 69–78. [Google Scholar] [CrossRef]
- Gómez, J.; Sanjuán, N.; Bon, J.; Arnau, J.; Clemente, G. Effect of temperature on nitrite and water diffusion in pork meat. J. Food Eng. 2015, 149, 188–194. [Google Scholar] [CrossRef]
- Park, S.; Bae, W. Modeling kinetics of ammonium oxidation and nitrite oxidation under simultaneous inhibition by free ammonia and free nitrous acid. Process Biochem. 2009, 44, 631–640. [Google Scholar] [CrossRef]
- Deng, S.; Bai, X.; Li, Y.; Wang, B.; Kong, B.; Liu, Q.; Xia, X. Changes in moisture, colour, residual nitrites and N-nitrosamine accumulation of bacon induced by nitrite levels and dry-frying temperatures. Meat Sci. 2021, 181, 108604. [Google Scholar] [CrossRef]
- Sun, X.; Tang, J.; Wang, J.; Rasco, B.A.; Lai, K.; Huang, Y. Formation of advanced glycation endproducts in ground beef under pasteurisation conditions. Food Chem. 2015, 172, 802–807. [Google Scholar] [CrossRef]
- Ahmed, N.; Mirshekar-Syahkal, B.; Kennish, L.; Karachalias, N.; Thornalley, P.J. Assay of advanced glycation endproducts in selected beverages and food by liquid chromatography with tandem mass spectrometric detection. Mol. Nutr. Food Res. 2010, 49, 691–699. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, S.; Wang, X.; Dong, S.; Zhao, Y.; Zeng, M. The relationship between the formation of advanced glycation end products and quality attributes of fried sturgeon fillets. LWT Food Sci. Technol. 2022, 159, 113161. [Google Scholar] [CrossRef]
- Eggen, M.D.; Glomb, M.A. Analysis of Glyoxal-and Methylglyoxal-Derived Advanced Glycation End Products during Grilling of Porcine Meat. J. Agric. Food Chem. 2021, 69, 15374–15383. [Google Scholar] [CrossRef]
- Wang, Y.; Ho, C.T. Flavour chemistry of methylglyoxal and glyoxal. Chem. Soc. Rev. 2012, 41, 4140–4149. [Google Scholar] [CrossRef]
- De Mey, E.; De Maere, H.; Paelinck, H.; Fraeye, I. Volatile N-nitrosamines in meat products: Potential precursors, influence of processing, and mitigation strategies. Crit. Rev. Food Sci. Nutr. 2017, 57, 2909–2923. [Google Scholar] [CrossRef] [PubMed]
- Drabik-Markiewicz, G.; Dejaegher, B.; De Mey, E.; Kowalska, T.; Paelinck, H.; Vander Heyden, Y. Influence of putrescine, cadaverine, spermidine or spermine on the formation of N-nitrosamine in heated cured pork meat. Food Chem. 2011, 126, 1539–1545. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.; Shelef, L. Effects of sodium chloride and lactates on chemical and microbiological changes in refrigerated and frozen fresh ground pork. Meat Sci. 2002, 62, 27–32. [Google Scholar] [CrossRef]
- Kanner, J.; Harel, S.; Jaffe, R. Lipid peroxidation of muscle food as affected by sodium chloride. J. Agric. Food Chem. 1991, 39, 1017–1021. [Google Scholar] [CrossRef]
- Feng, L.; Zhuang, H.; Qiao, W.; Zhang, J.; Wang, Y. Effect of partial substitution of NaCl by KCl on physicochemical properties, biogenic amines and N-nitrosamines during ripening and storage of dry-cured bacon. J. Food Sci. Technol. 2016, 53, 3795–3805. [Google Scholar]
- Wu, Z.; Bertram, H.C.; Kohler, A.; Böcker, U.; Ofstad, R.; Andersen, H.J. Influence of Aging and Salting on Protein Secondary Structures and Water Distribution in Uncooked and Cooked Pork. A Combined FT-IR Microspectroscopy and 1H NMR Relaxometry Study. J. Agric. Food Chem. 2006, 54, 8589–8597. [Google Scholar] [CrossRef]
- Berardo, A.; De Maere, H.; Stavropoulou, D.A.; Rysman, T.; Leroy, F.; De Smet, S. Effect of sodium ascorbate and sodium nitrite on protein and lipid oxidation in dry fermented sausages. Meat Sci. 2016, 121, 359–364. [Google Scholar] [CrossRef]
- Srey, C.; Hull, G.L.; Connolly, L.; Elliott, C.T.; del Castillo, M.D.; Ames, J.M. Effect of inhibitor compounds on NꜪpsilon-(carboxymethyl)lysine (CML) and NꜪpsilon-(carboxyethyl)lysine (CEL) formation in model foods. J. Agric. Food Chem. 2010, 58, 12036–12041. [Google Scholar] [CrossRef] [Green Version]
- Rhee, K.S.; Smith, G.C.; Terrell, R.N. Effect of Reduction and Replacement of Sodium Chloride on Rancidity Development in Raw and Cooked Ground Pork. J. Food Prot. 1983, 46, 578–581. [Google Scholar] [CrossRef]
- Hu, J.; Jiang, K.; Huang, C.; Zheng, J.; Ou, S. Glycine and serine markedly eliminate methylglyoxal in the presence of formaldehyde via the formation of imidazole salts. Food Chem. 2021, 369, 130952. [Google Scholar] [CrossRef]
- Bonifacie, A.; Gatellier, P.; Promeyrat, A.; Nassy, G.; Picgirard, L.; Scislowski, V.; Santé-Lhoutellier, V.; Théron, L. New insights into the chemical reactivity of dry-cured fermented sausages: Focus on nitrosation, nitrosylation and oxidation. Foods 2021, 10, 852. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.N.; Li, M.Y.; Huang, Y.S.; Xie, J.H.; Shen, M.Y.; Xie, M.Y. A comprehensive review of advanced glycosylation end products and N-Nitrosamines in thermally processed meat products. Food Control 2022, 131, 108449. [Google Scholar] [CrossRef]
- Herrmann, S.S.; Granby, K.; Duedahl-Olesen, L. Formation and mitigation of N-nitrosamines in nitrite preserved cooked sausages. Food Chem. 2015, 174, 516–526. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Huang, M.; Cheng, Y.; Khan, I.A.; Huang, J. A comprehensive review of Nε-carboxymethyllysine and Nε-carboxyethyllysine in thermal processed meat products. Trends Food Sci. Technol. 2020, 98, 30–40. [Google Scholar] [CrossRef]
- Zhu, Z.; Yang, J.; Zhou, X.; Khan, I.A.; Bassey, A.P.; Huang, M. Comparison of two kinds of peroxyl radical pretreatment at chicken myofibrillar proteins glycation on the formation of Nε-carboxymethyllysine and Nε-carboxyethyllysine. Food Chem. 2021, 353, 129487. [Google Scholar] [CrossRef]
- Han, L.; Li, L.; Li, B.; Zhao, D.; Li, Y.; Xu, Z.; Liu, G. Hydroxyl radical induced by lipid in Maillard reaction model system promotes diet-derived N(epsilon)-carboxymethyllysine formation. Food Chem. Toxicol. 2013, 60, 536–541. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Tang, J.; Wang, J.; Rasco, B.A.; Lai, K. Formation of N ε -carboxymethyllysine and N ε -carboxyethyllysine in ground beef during heating as affected by fat, nitrite and erythorbate. J. Food Meas. Charact. 2017, 11, 320–328. [Google Scholar] [CrossRef]
- Fujioka, K.; Shibamoto, T. In Formation and inhibition of reactive carbonyl compounds in dietary oils upon oxidation. In Proceedings of the 228th National Meeting of the American-Chemical-Society, Philadelphia, PA, USA, 22–26 August 2004. [Google Scholar]
- Jiang, Y.; Hengel, M.; Pan, C.; Seiber, J.N.; Shibamoto, T. Determination of toxic alpha-dicarbonyl compounds, glyoxal, methylglyoxal, and diacetyl, released to the headspace of lipid commodities upon heat treatment. J. Agric. Food Chem. 2013, 61, 1067–1071. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.H.; Conboy, J.J.; Hotchkiss, J.H. Nitrosation by nitro-nitroso derivatives of olefins: A potential mechanism for N-nitrosamine formation in fried bacon. J. Agric. Food Chem. 1988, 36, 984–987. [Google Scholar] [CrossRef]
- Mottram, D.S.; Patterson, R.L.; Edwards, R.A.; Gough, T.A. The preferential formation of volatile N-nitrosamines in the fat of fried bacon. J. Sci. Food Agric. 1977, 28, 1025–1029. [Google Scholar] [CrossRef]
- Zhao, S.S.; Hu, H.Y.; Xie, J.H.; Shen, M.Y. Investigation into the contents of nutrients, Nε-carboxymethyllysine and Nε-carboxyethyllysine in various commercially canned fishes to find the correlation between them. J. Food Compos. Anal. 2021, 96, 103737. [Google Scholar] [CrossRef]
- Liu, L.C.; Liu, L.; Xie, J.H.; Shen, M.Y. Formation mechanism of AGEs in Maillard reaction model systems containing ascorbic acid. Food Chem. 2022, 378, 132108. [Google Scholar] [CrossRef]
- Poulsen, M.W.; Hedegaard, R.V.; Andersen, J.M.; de Courten, B.; Bügel, S.; Nielsen, J.; Skibsted, L.H.; Dragsted, L.O. Advanced glycation endproducts in food and their effects on health. Food Chem. Toxicol. 2013, 60, 10–37. [Google Scholar] [CrossRef] [PubMed]
- Drabik-Markiewicz, G.; Maagdenberg, K.; Mey, E.D.; Deprez, S.; Kowalska, T.; Paelinck, H. Role of proline and hydroxyproline in N-nitrosamine formation during heating in cured meat. Meat Sci. 2009, 81, 479–486. [Google Scholar] [CrossRef] [PubMed]
- De Mey, E.; De Klerck, K.; De Maere, H.; Dewulf, L.; Derdelinckx, G.; Peeters, M.C.; Fraeye, I.; Vander Heyden, Y.; Paelinck, H. The occurrence of N-nitrosamines, residual nitrite and biogenic amines in commercial dry fermented sausages and evaluation of their occasional relation. Meat Sci. 2014, 96, 821–828. [Google Scholar] [CrossRef]
Temperature (°C) | Time (h) | Salt (%) | Nitrite (mg/100 g) | Fat (%) |
---|---|---|---|---|
70, 90, 110 and 130 | 2 | 2 | 10 | 5 |
110 | 1, 2, 3 and 4 | 2 | 10 | 5 |
110 | 2 | 0, 0.5, 1, 2 and 5 | 10 | 5 |
110 | 2 | 2 | 0, 5, 10 and 15 | 5 |
110 | 2 | 2 | 10 | 0, 10, 20 and 30 |
Fat (%) | Moisture (%) | Protein (%) | Nitrite Residue (mg/100 g) | |
---|---|---|---|---|
Temperature (°C) | ||||
70 | 3.07 ± 0.06 a | 64.20 ± 0.21 a | 38.57 ± 0.34 c | 6.57 ± 0.09 b |
90 | 1.90 ± 0.02 b | 61.60 ± 0.56 b | 37.17 ± 0.24 c | 9.09 ± 0.12 a |
110 | 1.47 ± 0.06 b | 60.26 ± 0.07 b | 44.12 ± 0.22 b | 8.12 ± 0.12 a |
130 | 0.55 ± 0.05 c | 55.48 ± 0.69 c | 51.47 ± 0.10 a | 4.67 ± 0.06 c |
Time (h) | ||||
1 | 2.77 ±0.15 a | 66.42 ± 0.07 a | 44.38 ± 0.46 a | 5.93 ± 0.06 b |
2 | 1.51 ± 0.02 b | 61.35 ± 0.35 b | 37.42 ± 0.38 b | 9.10 ± 0.05 a |
3 | 0.78 ± 0.04 c | 59.71 ± 0.40 b | 43.29 ± 0.88 a | 4.82 ± 0.12 b |
4 | 0.70 ± 0.03 c | 52.72 ± 0.37 c | 43.50 ± 0.43 a | 5.08 ± 0.05 b |
Salt (g/100 g) | ||||
0 | 3.27 ± 0.13 c | 52.95 ± 1.19 c | 39.94 ± 0.82 a | 4.42 ± 0.21 a |
0.5 | 3.43 ± 0.12 c | 55.11 ± 1.22 c | 40.48 ± 0.65 a | 4.56 ± 0.13 a |
1 | 4.39 ± 1.46 b | 57.36 ± 1.83 b | 40.68 ± 1.02 a | 4.67 ± 0.06 a |
2 | 5.51 ± 1.05 a | 59.99 ± 1.54 a | 41.12 ± 0.29 a | 4.72 ± 0.13 a |
5 | 3.99 ± 0.66 c | 58.16 ± 5.26 a | 40.56 ± 0.95 a | 4.65 ± 0.27 a |
Nitrite (mg/100 g) | ||||
0 | 2.86 ± 0.05 a | 64.37 ± 0.14 a | 40.67 ± 0.56 a | 4.66 ± 0.09 a |
5 | 3.12 ± 0.04 b | 63.84 ± 0.05 a | 40.61 ± 0.26 a | 4.70 ± 0.12 a |
10 | 3.30 ± 0.02 b | 60.97 ± 6.09 b | 38.97 ± 0.93 b | 4.83 ± 0.05 a |
15 | 3.28 ± 0.10 b | 59.48 ± 0.07 b | 40.97 ± 0.38 a | 5.18 ± 0.16 a |
Temperature (°C) | L* | a* | b* |
---|---|---|---|
70 | 55.49 ± 0.21 b | 8.36 ± 0.06 b | 10.13 ± 0.09 b |
90 | 62.40 ± 0.04 a | 11.57 ± 0.07 a | 10.58 ± 0.03 b |
110 | 64.00 ± 0.18 a | 11.13 ± 0.11 a | 12.20 ± 0.12 a |
130 | 64.07 ± 0.44 a | 11.65 ± 0.08 a | 13.23 ± 0.05 a |
Time (h) | |||
1 | 59.37 ± 0.05 b | 9.98 ± 0.11 b | 11.51 ± 0.47 a |
2 | 62.37 ± 0.15 a | 11.61 ± 0.12 a | 9.56 ± 0.23 b |
3 | 60.61 ± 0.05 b | 12.11 ± 0.79 a | 10.18 ± 0.45 b |
4 | 61.12 ± 0.10 b | 12.42 ± 0.66 a | 9.88 ± 0.16 b |
Salt (g/100 g) | |||
0 | 57.97 ± 1.16 c | 8.61±0.22 e | 10.99 ± 0.77 a |
0.5 | 59.48 ± 0.67 b | 9.10±0.08 d | 10.34 ± 0.20 a |
1 | 61.21 ± 0.58 a | 11.18±0.20 c | 10.18 ± 0.54 a |
2 | 62.23 ± 1.05 a | 12.34±0.06 b | 9.48 ± 0.27 a |
5 | 60.64 ± 3.91 b | 13.63±0.04 a | 9.97 ± 0.97 a |
Nitrite (mg/100 g) | |||
0 | 55.82 ± 0.46 d | 8.45 ± 0.21 c | 10.19 ± 0.11 b |
5 | 57.49 ± 0.17 c | 9.34 ± 0.05 c | 11.32 ± 0.96 a |
10 | 60.47 ± 1.65 b | 10.58 ± 0.88 b | 10.18 ± 0.47 b |
15 | 62.69 ± 1.84 a | 11.77 ± 0.70 a | 10.17 ± 0.28 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, J.; Li, M.; Shen, M.; Xie, J.; Xie, M. Advanced Glycation End Products and Nitrosamines in Sausages Influenced by Processing Parameters, Food Additives and Fat during Thermal Processing. Foods 2023, 12, 394. https://doi.org/10.3390/foods12020394
Lu J, Li M, Shen M, Xie J, Xie M. Advanced Glycation End Products and Nitrosamines in Sausages Influenced by Processing Parameters, Food Additives and Fat during Thermal Processing. Foods. 2023; 12(2):394. https://doi.org/10.3390/foods12020394
Chicago/Turabian StyleLu, Jingnan, Mingyu Li, Mingyue Shen, Jianhua Xie, and Mingyong Xie. 2023. "Advanced Glycation End Products and Nitrosamines in Sausages Influenced by Processing Parameters, Food Additives and Fat during Thermal Processing" Foods 12, no. 2: 394. https://doi.org/10.3390/foods12020394
APA StyleLu, J., Li, M., Shen, M., Xie, J., & Xie, M. (2023). Advanced Glycation End Products and Nitrosamines in Sausages Influenced by Processing Parameters, Food Additives and Fat during Thermal Processing. Foods, 12(2), 394. https://doi.org/10.3390/foods12020394