Transformation of Seafood Side-Streams and Residuals into Valuable Products
Abstract
:1. Introduction
2. Current Drawbacks and Challenges Related to Transformation of Seafood Side-Streams into Valuable Compounds
3. Potential behind the Transformation of Seafood Side-Streams into Valuable Compounds
4. Traditional Methods of Transformation of Seafood Side-Streams and Residuals
4.1. Enzymatic Hydrolysis
4.2. Thermal Treatment
4.2.1. Conventional Thermal Heating Techniques
4.2.2. Novel Thermal Heating Techniques
Microwave Cooking
Ohmic Heating
Infrared Heating Technology
4.3. Extraction Techniques
4.3.1. Chemical Extraction
4.3.2. Supercritical Fluid Extraction
5. Innovative Technological Pre-Treatments for Enhanced Extraction of Valuable Compounds from Seafood Side-Streams and Their Sensory Attributes
5.1. High Hydrostatic Pressure
5.2. Pulsed Electric Field
5.3. Ultrasound
6. Emerging Biotech Approaches
7. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, M.; Zhou, J.; Selma-Royo, M.; Simal-Gandara, J.; Collado, M.C.; Barba, F.J. Potential Benefits of High-Added-Value Compounds from Aquaculture and Fish Side Streams on Human Gut Microbiota. Trends Food Sci. Technol. 2021, 112, 484–494. [Google Scholar] [CrossRef]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on Healthy Diets from Sustainable Food Systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Välimaa, A.-L.; Mäkinen, S.; Mattila, P.; Marnila, P.; Pihlanto, A.; Mäki, M.; Hiidenhovi, J. Fish and Fish Side Streams Are Valuable Sources of High-Value Components. Food Qual. Saf. 2019, 3, 209–226. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Miravalles, L.; Zannini, E.; Bez, J.; Arendt, E.K.; O’Mahony, J.A. Thermal and Mineral Sensitivity of Oil-in-Water Emulsions Stabilised Using Lentil Proteins. Foods 2020, 9, 453. [Google Scholar] [CrossRef] [Green Version]
- van Vliet, S.; Kronberg, S.L.; Provenza, F.D. Plant-Based Meats, Human Health, and Climate Change. Front. Sustain. Food Syst. 2020, 4, 128. [Google Scholar] [CrossRef]
- Gregg, J.S.; Jürgens, J.; Happel, M.K.; Strøm-Andersen, N.; Tanner, A.N.; Bolwig, S.; Klitkou, A. Valorization of Bio-Residuals in the Food and Forestry Sectors in Support of a Circular Bioeconomy: A Review. J. Clean. Prod. 2020, 267, 122093. [Google Scholar] [CrossRef]
- Pateiro, M.; Domínguez, R.; Varzakas, T.; Munekata, P.E.S.; Movilla Fierro, E.; Lorenzo, J.M. Omega-3-Rich Oils from Marine Side Streams and Their Potential Application in Food. Mar. Drugs 2021, 19, 233. [Google Scholar] [CrossRef] [PubMed]
- Gullón, B.; Gagaoua, M.; Barba, F.J.; Gullón, P.; Zhang, W.; Lorenzo, J.M. Seaweeds as Promising Resource of Bioactive Compounds: Overview of Novel Extraction Strategies and Design of Tailored Meat Products. Trends Food Sci. Technol. 2020, 100, 1–18. [Google Scholar] [CrossRef]
- Abejón, R.; Belleville, M.P.; Sanchez-Marcano, J.; Garea, A.; Irabien, A. Optimal Design of Industrial Scale Continuous Process for Fractionation by Membrane Technologies of Protein Hydrolysate Derived from Fish Wastes. Sep. Purif. Technol. 2018, 197, 137–146. [Google Scholar] [CrossRef]
- Al Khawli, F.; Pateiro, M.; Domínguez, R.; Lorenzo, J.M.; Gullón, P.; Kousoulaki, K.; Ferrer, E.; Berrada, H.; Barba, F.J. Innovative Green Technologies of Intensification for Valorization of Seafood and Their By-Products. Mar. Drugs 2019, 17, 689. [Google Scholar] [CrossRef]
- Tørris, C.; Småstuen, M.C.; Molin, M. Nutrients in Fish and Possible Associations with Cardiovascular Disease Risk Factors in Metabolic Syndrome. Nutrients 2018, 10, 952. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Sun, Q.; Liu, S.; Wei, S.; Xia, Q.; Ji, H.; Deng, C.; Hao, J. Extraction of Fish Oil from Fish Heads Using Ultra-High Pressure Pre-Treatment Prior to Enzymatic Hydrolysis. Innov. Food Sci. Emerg. Technol. 2021, 70, 102670. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2020; FAO: Rome, Italy, 2020; ISBN 978-92-5-132692-3. [Google Scholar]
- Wennberg, A. Food and Agriculture Organization of the United Nations. In Encyclopedia of Toxicology; Elsevier: Amsterdam, The Netherlands, 2014; pp. 628–630. ISBN 9780123864543. [Google Scholar]
- Marti-Quijal, F.J.; Remize, F.; Meca, G.; Ferrer, E.; Ruiz, M.-J.; Barba, F.J. Fermentation in Fish and By-Products Processing: An Overview of Current Research and Future Prospects. Curr. Opin. Food Sci. 2020, 31, 9–16. [Google Scholar] [CrossRef]
- Maschmeyer, T.; Luque, R.; Selva, M. Upgrading of Marine (Fish and Crustaceans) Biowaste for High Added-Value Molecules and Bio(Nano)-Materials. Chem. Soc. Rev. 2020, 49, 4527–4563. [Google Scholar] [CrossRef]
- Vázquez, J.; Meduíña, A.; Durán, A.; Nogueira, M.; Fernández-Compás, A.; Pérez-Martín, R.; Rodríguez-Amado, I. Production of Valuable Compounds and Bioactive Metabolites from By-Products of Fish Discards Using Chemical Processing, Enzymatic Hydrolysis, and Bacterial Fermentation. Mar. Drugs 2019, 17, 139. [Google Scholar] [CrossRef] [Green Version]
- Zou, Y.; Robbens, J.; Heyndrickx, M.; Debode, J.; Raes, K. Bioprocessing of Marine Crustacean Side-streams into Bioactives: A Review. J. Chem. Technol. Biotechnol. 2021, 96, 1465–1474. [Google Scholar] [CrossRef]
- Sar, T.; Ferreira, J.A.; Taherzadeh, M.J. Bioprocessing Strategies to Increase the Protein Fraction of Rhizopus Oryzae Biomass Using Fish Industry Sidestreams. Waste Manag. 2020, 113, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Ucak, I.; Afreen, M.; Montesano, D.; Carrillo, C.; Tomasevic, I.; Simal-Gandara, J.; Barba, F.J. Functional and Bioactive Properties of Peptides Derived from Marine Side Streams. Mar. Drugs 2021, 19, 71. [Google Scholar] [CrossRef]
- Singh, A.; Ahmad, S.; Ahmad, A. Green Extraction Methods and Environmental Applications of Carotenoids-a Review. RSC Adv. 2015, 5, 62358–62393. [Google Scholar] [CrossRef]
- Poojary, M.; Barba, F.; Aliakbarian, B.; Donsì, F.; Pataro, G.; Dias, D.; Juliano, P. Innovative Alternative Technologies to Extract Carotenoids from Microalgae and Seaweeds. Mar. Drugs 2016, 14, 214. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, S.; Li, C. Effect of N-3 Polyunsaturated Fatty Acids on Dopaminergic Neurons in Substantia Nigra, Brain Inflammatory Response and Behavior in Mice with Parkinson’s Disease. Trop. J. Pharm. Res. 2021, 18, 767–772. [Google Scholar] [CrossRef]
- Cropotova, J.; Mozuraityte, R.; Standal, I.B.; Ojha, S.; Rustad, T.; Tiwari, B. Influence of High-Pressure Processing on Quality Attributes of Haddock and Mackerel Minces during Frozen Storage, and Fishcakes Prepared Thereof. Innov. Food Sci. Emerg. Technol. 2020, 59, 102236. [Google Scholar] [CrossRef]
- Hassoun, A.; Ojha, S.; Tiwari, B.; Rustad, T.; Nilsen, H.; Heia, K.; Cozzolino, D.; Bekhit, A.E.-D.; Biancolillo, A.; Wold, J.P. Monitoring Thermal and Non-Thermal Treatments during Processing of Muscle Foods: A Comprehensive Review of Recent Technological Advances. Appl. Sci. 2020, 10, 6802. [Google Scholar] [CrossRef]
- Index Mundi. Available online: https://www.indexmundi.com (accessed on 14 December 2022).
- Zhao, Y.; Cao, H.; Qin, H.; Cheng, T.; Qian, S.; Cheng, M.; Peng, X.; Wang, J.; Zhang, Y.; Jin, G.; et al. Balancing the Osteogenic and Antibacterial Properties of Titanium by Codoping of Mg and Ag: An in Vitro and in Vivo Study. ACS Appl. Mater. Interfaces 2015, 7, 17826–17836. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Liang, S.; Yuan, W. Observational Evidence for Impacts of Vegetation Change on Local Surface Climate over Northern China Using the Granger Causality Test. J. Geophys. Res. Biogeosciences 2015, 120, 1–12. [Google Scholar] [CrossRef]
- Altieri, M.A.; Koohafkan, P. Globally Important Ingenious Agricultural Heritage Systems (GIAHS): Extent, Significance, and Implications for Development. In Proceedings of the Second International Workshop and Steering Committee Meeting for the Globally Important Agricultural Heritage Systems (GIAHS) Project, Rome, Italy, 7–9 June 2004. [Google Scholar]
- Fraval, S.; Hammond, J.; Bogard, J.R.; Ng’endo, M.; van Etten, J.; Herrero, M.; Oosting, S.J.; de Boer, I.J.M.; Lannerstad, M.; Teufel, N.; et al. Food Access Deficiencies in Sub-Saharan Africa: Prevalence and Implications for Agricultural Interventions. Front. Sustain. Food Syst. 2019, 3, 104. [Google Scholar] [CrossRef] [Green Version]
- Swinburn, B.A.; Kraak, V.I.; Allender, S.; Atkins, V.J.; Baker, P.I.; Bogard, J.R.; Brinsden, H.; Calvillo, A.; De Schutter, O.; Devarajan, R.; et al. The Global Syndemic of Obesity, Undernutrition, and Climate Change: The Lancet Commission Report. Lancet 2019, 393, 791–846. [Google Scholar] [CrossRef] [PubMed]
- Mutalipassi, M.; Esposito, R.; Ruocco, N.; Viel, T.; Costantini, M.; Zupo, V. Bioactive Compounds of Nutraceutical Value from Fishery and Aquaculture Discards. Foods 2021, 10, 1495. [Google Scholar] [CrossRef]
- Coppola, A.; Salatino, P.; Montagnaro, F.; Scala, F. Hydration-Induced Reactivation of Spent Sorbents for Fluidized Bed Calcium Looping (Double Looping). Fuel Process. Technol. 2014, 120, 71–78. [Google Scholar] [CrossRef]
- Rotter, A.; Barbier, M.; Bertoni, F.; Bones, A.M.; Cancela, M.L.; Carlsson, J.; Carvalho, M.F.; Cegłowska, M.; Chirivella-Martorell, J.; Conk Dalay, M.; et al. The Essentials of Marine Biotechnology. Front. Mar. Sci. 2021, 8, 158. [Google Scholar] [CrossRef]
- Sanz-Lazaro, C.; Sanchez-Jerez, P. Mussels Do Not Directly Assimilate Fish Farm Wastes: Shifting the Rationale of Integrated Multi-Trophic Aquaculture to a Broader Scale. J. Environ. Manag. 2017, 201, 82–88. [Google Scholar] [CrossRef] [Green Version]
- Arias, A.H.; Menendez, M.C. Marine Ecology in a Changing World; Arias, A.H., Menendez, M.C., Eds.; CRC Press: Boca Raton, FL, USA, 2013; ISBN 9780429073854. [Google Scholar]
- Neori, A.; Chopin, T.; Troell, M.; Buschmann, A.H.; Kraemer, G.P.; Halling, C.; Shpigel, M.; Yarish, C. Integrated Aquaculture: Rationale, Evolution and State of the Art Emphasizing Seaweed Biofiltration in Modern Mariculture. Aquaculture 2004, 231, 361–391. [Google Scholar] [CrossRef]
- DeWeerdt, S. Can Aquaculture Overcome Its Sustainability Challenges? Nature 2020, 588, S60–S62. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Lee, S.-M.; Jung, C.; Meyer-Rochow, V.B. Nutritional Composition of Five Commercial Edible Insects in South Korea. J. Asia. Pac. Entomol. 2017, 20, 686–694. [Google Scholar] [CrossRef]
- Edwards, P. Aquaculture and Poverty: Past, Present and Future Prospects of Impact. In Proceedings of the Fifth Fisheries Development Donor Consultation, Rome, Italy, 22–24 February 1999. [Google Scholar]
- Frei, M.; Becker, K. Integrated Rice-Fish Culture: Coupled Production Saves Resources. Nat. Resour. Forum 2005, 29, 135–143. [Google Scholar] [CrossRef]
- Pleissner, D.; Peinemann, J.C. The Challenges of Using Organic Municipal Solid Waste as Source of Secondary Raw Materials. Waste Biomass Valorization 2020, 11, 435–446. [Google Scholar] [CrossRef]
- Blancheton, J.-P.; Piedrahita, R.; Eding, E.H.; Lemarie, G.; Bergheim, A.; Fivelstad, S.; Roque D’Orbcastel, E. Intensification of Landbased Aquaculture Production in Single Pass and Reuse Systems. Aquac. Eng. Environ. 2007, 0, 21–47. [Google Scholar]
- Calderini, M.L.; Stevčić, Č.; Taipale, S.; Pulkkinen, K. Filtration of Nordic Recirculating Aquaculture System Wastewater: Effects on Microalgal Growth, Nutrient Removal, and Nutritional Value. Algal Res. 2021, 60, 102486. [Google Scholar] [CrossRef]
- Piedrahita, R.H. Reducing the Potential Environmental Impact of Tank Aquaculture Effluents through Intensification and Recirculation. Aquaculture 2003, 226, 35–44. [Google Scholar] [CrossRef]
- Arumugam, K.; Ahmad, M.F.; Yaacob, N.S.; Ikram, W.M.; Maniyam, M.N.; Abdullah, H.; Katayama, T.; Komatsu, K.; Kuwahara, V.S. Enhancement of Targeted Microalgae Species Growth Using Aquaculture Sludge Extracts. Heliyon 2020, 6, e04556. [Google Scholar] [CrossRef] [PubMed]
- Rathod, N.B.; Ranveer, R.C.; Bhagwat, P.K.; Ozogul, F.; Benjakul, S.; Pillai, S.; Annapure, U.S. Cold Plasma for the Preservation of Aquatic Food Products: An Overview. Compr. Rev. Food Sci. Food Saf. 2021, 20, 4407–4425. [Google Scholar] [CrossRef] [PubMed]
- Shabani, A.; Boldaji, F.; Dastar, B.; Ghoorchi, T.; Zerehdaran, S.; Ashayerizadeh, A. Evaluation of Increasing Concentrations of Fish Waste Silage in Diets on Growth Performance, Gastrointestinal Microbial Population, and Intestinal Morphology of Broiler Chickens. Anim. Feed Sci. Technol. 2021, 275, 114874. [Google Scholar] [CrossRef]
- Martin, A.M. Composting of Seafood Wastes. In Maximising the Value of Marine By-Products; Elsevier: Amsterdam, The Netherlands, 2007; pp. 486–515. ISBN 9781845690137. [Google Scholar]
- Qin, D.; Bi, S.; You, X.; Wang, M.; Cong, X.; Yuan, C.; Yu, M.; Cheng, X.; Chen, X.-G. Development and Application of Fish Scale Wastes as Versatile Natural Biomaterials. Chem. Eng. J. 2022, 428, 131102. [Google Scholar] [CrossRef]
- Eswaran, M.; Swamiappan, S.; Chokkiah, B.; Dhanusuraman, R.; Bharathkumar, S.; Ponnusamy, V.K. A Green and Economical Approach to Derive Nanostructured Hydroxyapatite from Garra Mullya Fish Scale Waste for Biocompatible Energy Storage Applications. Mater. Lett. 2021, 302, 130341. [Google Scholar] [CrossRef]
- Mohan, K.; Muralisankar, T.; Jayakumar, R.; Rajeevgandhi, C. A Study on Structural Comparisons of α-Chitin Extracted from Marine Crustacean Shell Waste. Carbohydr. Polym. Technol. Appl. 2021, 2, 100037. [Google Scholar] [CrossRef]
- Benni, S.D.; Munnolli, R.S.; Katagi, K.S.; Kadam, N.S. Mussel Shells as Sustainable Catalyst: Synthesis of Liquid Fuel from Non Edible Seeds of Bauhinia Malabarica and Gymnosporia Montana. Curr. Res. Green Sustain. Chem. 2021, 4, 100124. [Google Scholar] [CrossRef]
- De, D.; Sandeep, K.P.; Kumar, S.; Raja, R.A.; Mahalakshmi, P.; Sivaramakrishnan, T.; Ambasankar, K.; Vijayan, K.K. Effect of Fish Waste Hydrolysate on Growth, Survival, Health of Penaeus Vannamei and Plankton Diversity in Culture Systems. Aquaculture 2020, 524, 735240. [Google Scholar] [CrossRef]
- Shanthi, G.; Premalatha, M.; Anantharaman, N. Potential Utilization of Fish Waste for the Sustainable Production of Microalgae Rich in Renewable Protein and Phycocyanin-Arthrospira Platensis/Spirulina. J. Clean. Prod. 2021, 294, 126106. [Google Scholar] [CrossRef]
- Vidya, D.; Nayana, K.; Sreelakshmi, M.; Keerthi, K.V.; Mohan, K.S.; Sudhakar, M.P.; Arunkumar, K. A Sustainable Cultivation of Microalgae Using Dairy and Fish Wastes for Enhanced Biomass and Bio-Product Production. Biomass Convers. Biorefinery 2021, 11, 1–15. [Google Scholar] [CrossRef]
- Rajeswari, C.; Padmavathy, P.; Aanand, S. Composting of Fish Waste: A Review. Int. J. Appl. Res. 2018, 4, 242–249. [Google Scholar]
- Rustad, T.; Storrø, I.; Slizyte, R. Possibilities for the Utilisation of Marine By-Products. Int. J. Food Sci. Technol. 2011, 46, 2001–2014. [Google Scholar] [CrossRef]
- Caruso, G.; Floris, R.; Serangeli, C.; Di Paola, L. Fishery Wastes as a Yet Undiscovered Treasure from the Sea: Biomolecules Sources, Extraction Methods and Valorization. Mar. Drugs 2020, 18, 622. [Google Scholar] [CrossRef] [PubMed]
- Kota, H.B.; Singh, G.; Mir, M.; Smark, C.; Kumar, B. Sustainable Development Goals and Businesses. Australas. Bus. Account. Financ. J. 2021, 15, 1–3. [Google Scholar] [CrossRef]
- Fu, X.; Belwal, T.; Cravotto, G.; Luo, Z. Sono-Physical and Sono-Chemical Effects of Ultrasound: Primary Applications in Extraction and Freezing Operations and Influence on Food Components. Ultrason. Sonochem. 2020, 60, 104726. [Google Scholar] [CrossRef]
- Lapeña, D.; Vuoristo, K.S.; Kosa, G.; Horn, S.J.; Eijsink, V.G.H. Comparative Assessment of Enzymatic Hydrolysis for Valorization of Different Protein-Rich Industrial Byproducts. J. Agric. Food Chem. 2018, 66, 9738–9749. [Google Scholar] [CrossRef] [PubMed]
- Hassoun, A.; Heia, K.; Lindberg, S.-K.; Nilsen, H. Spectroscopic Techniques for Monitoring Thermal Treatments in Fish and Other Seafood: A Review of Recent Developments and Applications. Foods 2020, 9, 767. [Google Scholar] [CrossRef]
- Yu, T.-Y.; Morton, J.D.; Clerens, S.; Dyer, J.M. Cooking-Induced Protein Modifications in Meat. Compr. Rev. Food Sci. Food Saf. 2017, 16, 141–159. [Google Scholar] [CrossRef] [Green Version]
- Afroz, R.; Rahman, A.; Masud, M.M.; Akhtar, R. The Knowledge, Awareness, Attitude and Motivational Analysis of Plastic Waste and Household Perspective in Malaysia. Environ. Sci. Pollut. Res. 2017, 24, 2304–2315. [Google Scholar] [CrossRef]
- Slizyte, R.; Mozuraityte, R.; Remman, T.; Rustad, T. Two-Stage Processing of Salmon Backbones to Obtain High-Quality Oil and Proteins. Int. J. Food Sci. Technol. 2018, 53, 2378–2385. [Google Scholar] [CrossRef]
- Fan, H.; Fan, D.; Huang, J.; Zhao, J.; Yan, B.; Ma, S.; Zhou, W.; Zhang, H. Cooking Evaluation of Crayfish (Procambarus Clarkia) Subjected to Microwave and Conduction Heating: A Visualized Strategy to Understand the Heat-Induced Quality Changes of Food. Innov. Food Sci. Emerg. Technol. 2020, 62, 102368. [Google Scholar] [CrossRef]
- Orsat, V.; Raghavan, G.S.V.; Krishnaswamy, K. Microwave Technology for Food Processing. In The Microwave Processing of Foods; Elsevier: Amsterdam, The Netherlands, 2017; pp. 100–116. ISBN 9780081005286. [Google Scholar]
- Kaur, N.; Singh, A.K. Ohmic Heating: Concept and Applications—A Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 2338–2351. [Google Scholar] [CrossRef]
- Aboud, S.A.; Altemimi, A.B.; Al-HiIphy, A.R.S.; Yi-Chen, L.; Cacciola, F. A Comprehensive Review on Infrared Heating Applications in Food Processing. Molecules 2019, 24, 4125. [Google Scholar] [CrossRef] [PubMed]
- Turp, G.Y.; Icier, F.; Kor, G. Influence of infrared final cooking on color, texture and cooking characteristics of ohmically pre-cooked meatball. Meat Sci. 2016, 114, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Casadidio, C.; Peregrina, D.V.; Gigliobianco, M.R.; Deng, S.; Censi, R.; Di Martino, P. Chitin and Chitosans: Characteristics, Eco-Friendly Processes, and Applications in Cosmetic Science. Mar. Drugs 2019, 17, 369. [Google Scholar] [CrossRef] [Green Version]
- Sousa, R.O.; Martins, E.; Carvalho, D.N.; Alves, A.L.; Oliveira, C.; Duarte, A.R.C.; Silva, T.H.; Reis, R.L. Collagen from Atlantic Cod (Gadus Morhua) Skins Extracted Using CO2 Acidified Water with Potential Application in Healthcare. J. Polym. Res. 2020, 27, 73. [Google Scholar] [CrossRef] [Green Version]
- Aganovic, K.; Hertel, C.; Vogel, R.F.; Johne, R.; Schlüter, O.; Schwarzenbolz, U.; Jäger, H.; Holzhauser, T.; Bergmair, J.; Roth, A.; et al. Aspects of High Hydrostatic Pressure Food Processing: Perspectives on Technology and Food Safety. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3225–3266. [Google Scholar] [CrossRef] [PubMed]
- Girgih, A.T.; Chao, D.; Lin, L.; He, R.; Jung, S.; Aluko, R.E. Enzymatic Protein Hydrolysates from High Pressure-Pretreated Isolated Pea Proteins Have Better Antioxidant Properties than Similar Hydrolysates Produced from Heat Pretreatment. Food Chem. 2015, 188, 510–516. [Google Scholar] [CrossRef]
- Heinz, V.; Buckow, R. Food Preservation by High Pressure. J. Für Verbrauch. Und Leb. 2010, 5, 73–81. [Google Scholar] [CrossRef]
- Hemker, A.K.; Nguyen, L.T.; Karwe, M.; Salvi, D. Effects of Pressure-Assisted Enzymatic Hydrolysis on Functional and Bioactive Properties of Tilapia (Oreochromis Niloticus) by-Product Protein Hydrolysates. LWT 2020, 122, 109003. [Google Scholar] [CrossRef]
- Khan, J.; Siddiq, M.; Akram, B.; Ashraf, M.A. In-situ synthesis of CuO nanoparticles in P(NIPAM-co-AAA) microgel, structural characterization, catalytic and biological applications. Arab. J. Chem. 2018, 11, 897–909. [Google Scholar] [CrossRef]
- Pérez-Lamela, C.; Franco, I.; Falqué, E. Impact of High-Pressure Processing on Antioxidant Activity during Storage of Fruits and Fruit Products: A Review. Molecules 2021, 26, 5265. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Wei, S.; Liu, Z.; Fan, X.; Sun, Q.; Xia, Q.; Liu, S.; Hao, J.; Deng, C. Non-Thermal Processing Technologies for the Recovery of Bioactive Compounds from Marine by-Products. LWT 2021, 147, 111549. [Google Scholar] [CrossRef]
- Denoya, G.I.; Colletti, A.C.; Vaudagna, S.R.; Polenta, G.A. Application of Non-Thermal Technologies as a Stress Factor to Increase the Content of Health-Promoting Compounds of Minimally Processed Fruits and Vegetables. Curr. Opin. Food Sci. 2021, 42, 224–236. [Google Scholar] [CrossRef]
- Franco, D.; Munekata, P.E.S.; Agregán, R.; Bermúdez, R.; López-Pedrouso, M.; Pateiro, M.; Lorenzo, J.M. Application of Pulsed Electric Fields for Obtaining Antioxidant Extracts from Fish Residues. Antioxidants 2020, 9, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaeger, H.; Roth, A.; Toepfl, S.; Holzhauser, T.; Engel, K.-H.; Knorr, D.; Vogel, R.F.; Bandick, N.; Kulling, S.; Heinz, V.; et al. Opinion on the Use of Ohmic Heating for the Treatment of Foods. Trends Food Sci. Technol. 2016, 55, 84–97. [Google Scholar] [CrossRef]
- López-Gámez, G.; Elez-Martínez, P.; Martín-Belloso, O.; Soliva-Fortuny, R. Pulsed Electric Fields Affect Endogenous Enzyme Activities, Respiration and Biosynthesis of Phenolic Compounds in Carrots. Postharvest Biol. Technol. 2020, 168, 111284. [Google Scholar] [CrossRef]
- Evdokimov, I.; Oboturova, N.; Nagdalyan, A.; Kulikov, Y.-; Gusevskaya, O. The study on the influence of the electrohydraulic effect on the diffusion coefficient and the penetration depth of salt into muscle tissues during salting. Foods Raw Mater. 2015, 3, 74–81. [Google Scholar] [CrossRef]
- Bhargava, N.; Mor, R.S.; Kumar, K.; Sharanagat, V.S. Advances in Application of Ultrasound in Food Processing: A Review. Ultrason. Sonochem. 2021, 70, 105293. [Google Scholar] [CrossRef]
- Gallo, M.; Ferrara, L.; Naviglio, D. Application of Ultrasound in Food Science and Technology: A Perspective. Foods 2018, 7, 164. [Google Scholar] [CrossRef] [Green Version]
- Jadhav, H.B.; Annapure, U.S.; Deshmukh, R.R. Non-Thermal Technologies for Food Processing. Front. Nutr. 2021, 8, 248. [Google Scholar] [CrossRef]
- Koubaa, M.; Mhemdi, H.; Fages, J. Recovery of Valuable Components and Inactivating Microorganisms in the Agro-Food Industry with Ultrasound-Assisted Supercritical Fluid Technology. J. Supercrit. Fluids 2018, 134, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Li, N.; Chen, F.; Zhang, J.; Sun, X.; Xu, L.; Fang, F. Review on the Release Mechanism and Debittering Technology of Bitter Peptides from Protein Hydrolysates. Compr. Rev. Food Sci. Food Saf. 2022, 21, 5153–5170. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Zheng, T.; Abdel-Halim, E.S.; Jiang, L.; Zhu, J.-J. A multifunctional core–shell nanoplatform for enhanced cancer cell apoptosis and targeted chemotherapy. J. Mater. Chem. B 2016, 4, 2887–2894. [Google Scholar] [CrossRef]
- Gómez, B.; Munekata, P.E.S.; Gavahian, M.; Barba, F.J.; Martí-Quijal, F.J.; Bolumar, T.; Campagnol, P.C.B.; Tomasevic, I.; Lorenzo, J.M. Application of Pulsed Electric Fields in Meat and Fish Processing Industries: An Overview. Food Res. Int. 2019, 123, 95–105. [Google Scholar] [CrossRef]
- Guérard, F.; Shahidi, F. Enzymatic Methods for Marine By-Products Recovery. In Maximising Value Marine By-Products; Woodhead Publishing: Sawston, UK, 2007. [Google Scholar]
- Kristinsson, H.G.; Rasco, B.A. Fish Protein Hydrolysates: Production, Biochemical, and Functional Properties. Crit. Rev. Food Sci. Nutr. 2000, 40, 43–81. [Google Scholar] [CrossRef]
- Liu, J.; Hocquette, É.; Ellies-Oury, M.-P.; Chriki, S.; Hocquette, J.-F. Chinese Consumers’ Attitudes and Potential Acceptance toward Artificial Meat. Foods 2021, 10, 353. [Google Scholar] [CrossRef] [PubMed]
- Volkov, V.; Mezenova, O.; Moersel, J.-T.; Kuehn, S.; Grimm, T.; Hoehling, A.; Barabanov, S.; Volkov, K. Hydrolysis Products from Sockeye (Oncorhynchus Nerka L.) Heads from the Kamchatka Peninsula Produced by Different Methods: Biological Value. Foods Raw Mater. 2021, 9, 10–18. [Google Scholar] [CrossRef]
- Ajiboye, B.O.; Ojo, O.A.; Okesola, M.A.; Akinyemi, A.J.; Talabi, J.Y.; Idowu, O.T.; Fadaka, A.O.; Boligon, A.A.; Anraku de Campos, M.M. In Vitro Antioxidant Activities and Inhibitory Effects of Phenolic Extract of Senecio Biafrae (Oliv and Hiern) against Key Enzymes Linked with Type II Diabetes Mellitus and Alzheimer’s Disease. Food Sci. Nutr. 2018, 6, 1803–1810. [Google Scholar] [CrossRef] [Green Version]
- Rajendran, S.R.C.K.; Mohan, A.; Khiari, Z.; Udenigwe, C.C.; Mason, B. Yield, Physicochemical, and Antioxidant Properties of Atlantic Salmon Visceral Hydrolysate: Comparison of Lactic Acid Bacterial Fermentation with Flavourzyme Proteolysis and Formic Acid Treatment. J. Food Process. Preserv. 2018, 42, e13620. [Google Scholar] [CrossRef]
- Liu, Y.; Ramakrishnan, V.V.; Dave, D. Enzymatic Hydrolysis of Farmed Atlantic Salmon By-Products: Investigation of Operational Parameters on Extracted Oil Yield and Quality. Process Biochem. 2021, 100, 10–19. [Google Scholar] [CrossRef]
- Routray, W.; Dave, D.; Ramakrishnan, V.V.; Murphy, W. Production of High Quality Fish Oil by Enzymatic Protein Hydrolysis from Cultured Atlantic Salmon By-Products: Investigation on Effect of Various Extraction Parameters Using Central Composite Rotatable Design. Waste Biomass Valorization 2018, 9, 2003–2014. [Google Scholar] [CrossRef]
- Kvangarsnes, K.; Kendler, S.; Rustad, T.; Aas, G.H. Induced Oxidation and Addition of Antioxidant before Enzymatic Hydrolysis of Heads of Rainbow Trout (Oncorhynchus Mykiss)—Effect on the Resulting Oil and Protein Fraction. Heliyon 2021, 7, e06816. [Google Scholar] [CrossRef] [PubMed]
- Nikoo, M.; Benjakul, S.; Ahmadi Gavlighi, H.; Xu, X.; Regenstein, J.M. Hydrolysates from Rainbow Trout (Oncorhynchus Mykiss) Processing by-Products: Properties When Added to Fish Mince with Different Freeze-Thaw Cycles. Food Biosci. 2019, 30, 100418. [Google Scholar] [CrossRef]
- Aspevik, T.; Thoresen, L.; Steinsholm, S.; Carlehög, M.; Kousoulaki, K. Sensory and Chemical Properties of Protein Hydrolysates Based on Mackerel (Scomber Scombrus) and Salmon (Salmo Salar) Side Stream Materials. J. Aquat. Food Prod. Technol. 2021, 30, 176–187. [Google Scholar] [CrossRef]
- Araujo, J.; Sica, P.; Costa, C.; Márquez, M.C. Enzymatic Hydrolysis of Fish Waste as an Alternative to Produce High Value-Added Products. Waste Biomass Valorization 2021, 12, 847–855. [Google Scholar] [CrossRef]
- Yi, R.; Tan, F.; Liao, W.; Wang, Q.; Mu, J.; Zhou, X.; Yang, Z.; Zhao, X. Isolation and Identification of Lactobacillus plantarum HFY05 from Natural Fermented Yak Yogurt and Its Effect on Alcoholic Liver Injury in Mice. Microorganisms 2019, 7, 530. [Google Scholar] [CrossRef] [Green Version]
- Zapata Montoya, J.E.; Giraldo-Rios, D.E.; Baéz-Suarez, A.J. Kinetic modeling of the enzymatic hydrolysis of proteins of visceras from red tilapia (Oreochromis Sp.): Effect of substrate and enzyme concentration. Rev. Vitae 2018, 25, 17–25. [Google Scholar] [CrossRef]
- Jiang, W.; Liu, Y.; Yang, X.; Wang, P.; Hu, S.; Li, J. Recovery of Proteins from Squid By-Products with Enzymatic Hydrolysis and Increasing the Hydrolysate’s Bioactivity by Maillard Reaction. J. Aquat. Food Prod. Technol. 2018, 27, 900–911. [Google Scholar] [CrossRef]
- Srikanya, A.; Dhanapal, K.; Sravani, K.; Madhavi, K.; Kumar, G.P. A Study on Optimization of Fish Protein Hydrolysate Preparation by Enzymatic Hydrolysis from Tilapia Fish Waste Mince. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 3220–3229. [Google Scholar] [CrossRef]
- Villamil, O.; Váquiro, H.; Solanilla, J.F. Fish Viscera Protein Hydrolysates: Production, Potential Applications and Functional and Bioactive Properties. Food Chem. 2017, 224, 160–171. [Google Scholar] [CrossRef] [PubMed]
- Petrova, I.; Tolstorebrov, I.; Eikevik, T.M. Production of Fish Protein Hydrolysates Step by Step: Technological Aspects, Equipment Used, Major Energy Costs and Methods of Their Minimizing. Int. Aquat. Res. 2018, 10, 223–241. [Google Scholar] [CrossRef] [Green Version]
- Stormo, S.K.; Skipnes, D.; Sone, I.; Skuland, A.; Heia, K.; Skåra, T. Modeling-Assisted Minimal Heat Processing of Atlantic Cod (Gadus Morhua). J. Food Process Eng. 2017, 40, e12555. [Google Scholar] [CrossRef]
- Rahman, M.S. Food Preservation: An Overview. In Handbook of Food Preservation; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Vinet, L.; Zhedanov, A. A “Missing” Family of Classical Orthogonal Polynomials. J. Phys. A Math. Theor. 2011, 44, 085201. [Google Scholar] [CrossRef]
- Hassoun, A.; Cropotova, J.; Rustad, T.; Heia, K.; Lindberg, S.-K.; Nilsen, H. Use of Spectroscopic Techniques for a Rapid and Non-Destructive Monitoring of Thermal Treatments and Storage Time of Sous-Vide Cooked Cod Fillets. Sensors 2020, 20, 2410. [Google Scholar] [CrossRef]
- Ketnawa, S.; Liceaga, A.M. Effect of Microwave Treatments on Antioxidant Activity and Antigenicity of Fish Frame Protein Hydrolysates. Food Bioprocess Technol. 2017, 10, 582–591. [Google Scholar] [CrossRef]
- Aydin, C.; Kurt, Ü.; Kaya, Y. Comparison of the Effects of Ohmic and Conventional Heating Methods on Some Quality Parameters of the Hot-Smoked Fish Pâté. J. Aquat. Food Prod. Technol. 2020, 29, 407–416. [Google Scholar] [CrossRef]
- Semedo Tavares, W.P.; Dong, S.; Yang, Y.; Zeng, M.; Zhao, Y. Influence of Cooking Methods on Protein Modification and in Vitro Digestibility of Hairtail (Thichiurus Lepturus) Fillets. LWT 2018, 96, 476–481. [Google Scholar] [CrossRef]
- Skipnes, D.; Johnsen, S.O.; Skåra, T.; Sivertsvik, M.; Lekang, O. Optimization of Heat Processing of Farmed Atlantic Cod (Gadus Morhua) Muscle with Respect to Cook Loss, Water Holding Capacity, Color, and Texture. J. Aquat. Food Prod. Technol. 2011, 20, 331–340. [Google Scholar] [CrossRef]
- Soldo, B.; Šimat, V.; Vlahović, J.; Skroza, D.; Ljubenkov, I.; Generalić Mekinić, I. High Quality Oil Extracted from Sardine By-Products as an Alternative to Whole Sardines: Production and Refining. Eur. J. Lipid Sci. Technol. 2019, 121, 1800513. [Google Scholar] [CrossRef]
- Wang, X.; Muhoza, B.; Wang, X.; Feng, T.; Xia, S.; Zhang, X. Comparison between Microwave and Traditional Water Bath Cooking on Saltiness Perception, Water Distribution and Microstructure of Grass Crap Meat. Food Res. Int. 2019, 125, 108521. [Google Scholar] [CrossRef] [PubMed]
- Pietrzak-Fiećko, R.; Modzelewska-Kapituła, M.; Zakęś, Z.; Szczepkowski, M. The Effect of Thermal Treatment Method on Fatty Acid Composition in Northern Pike (Esox Lucius) Fillets. J. Aquat. Food Prod. Technol. 2017, 26, 1303–1311. [Google Scholar] [CrossRef]
- dos Santos Venâncio Costa, D.; Bragagnolo, N. Development and Validation of a Novel Microwave Assisted Extraction Method for Fish Lipids. Eur. J. Lipid Sci. Technol. 2017, 119, 1600108. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Pang, G.-F.; Chao, Y.-Z.; Fan, C.-L.; Zhang, J.-J.; Li, X.-M.; Zhao, T.-S. Modification of AOAC Multiresidue Method for Determination of Synthetic Pyrethroid Residues in Fruits, Vegetables, and Grains. Part I: Acetonitrile Extraction System and Optimization of Florisil Cleanup and Gas Chromatography. J. AOAC Int. 1995, 78, 1481–1488. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane Stanley, G.H.; Bligh, E.G.; Dyer, W.J. A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues; A Rapid Method of Total Lipid Extraction and Purification. Can. J. Biochem. Physiol. 1959, 226, 497–509. [Google Scholar]
- Blanco, M.; Vázquez, J.; Pérez-Martín, R.; Sotelo, C. Hydrolysates of Fish Skin Collagen: An Opportunity for Valorizing Fish Industry Byproducts. Mar. Drugs 2017, 15, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venkatesan, J.; Anil, S.; Kim, S.-K.; Shim, M.S. Marine Fish Proteins and Peptides for Cosmeceuticals: A Review. Mar. Drugs 2017, 15, 143. [Google Scholar] [CrossRef]
- Lutfee, T.; Alwan, N.F.; Alsaffar, M.A.; Ghany, M.A.R.A.; Mageed, A.K.; AbdulRazak, A.A. An Overview of the Prospects of Extracting Collagens from Waste Sources and Its Applications. Chem. Pap. 2021, 75, 6025–6033. [Google Scholar] [CrossRef]
- Alves, A.; Marques, A.; Martins, E.; Silva, T.; Reis, R. Cosmetic Potential of Marine Fish Skin Collagen. Cosmetics 2017, 4, 39. [Google Scholar] [CrossRef] [Green Version]
- Devita, L.; Nurilmala, M.; Lioe, H.N.; Suhartono, M.T. Chemical and Antioxidant Characteristics of Skin-Derived Collagen Obtained by Acid-Enzymatic Hydrolysis of Bigeye Tuna (Thunnus Obesus). Mar. Drugs 2021, 19, 222. [Google Scholar] [CrossRef] [PubMed]
- Haryati, D.; Nadhifa, L.; Humairah; Abdullah, N. Extraction and Characterization of Gelatin from Rabbitfish Skin (Siganus Canaliculatus) with Enzymatic Method Using Bromelin Enzyme. IOP Conf. Ser. Earth Environ. Sci. 2019, 355, 012095. [Google Scholar] [CrossRef]
- Zarubin, N.Y.; Kharenko, E.N.; Bredikhina, O.V.; Arkhipov, L.O.; Zolotarev, K.V.; Mikhailov, A.N.; Nakhod, V.I.; Mikhailova, M.V. Application of the Gadidae Fish Processing Waste for Food Grade Gelatin Production. Mar. Drugs 2021, 19, 455. [Google Scholar] [CrossRef]
- Gvozdenko, A.A.; Siddiqui, S.A.; Blinov, A.V.; Golik, A.B.; Nagdalian, A.A.; Maglakelidze, D.G.; Statsenko, E.N.; Pirogov, M.A.; Blinova, A.A.; Sizonenko, M.N.; et al. Synthesis of CuO Nanoparticles Stabilized with Gelatin for Potential Use in Food Packaging Applications. Sci. Rep. 2022, 12, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Derkach, S.R.; Kuchina, Y.A.; Baryshnikov, A.V.; Kolotova, D.S.; Voron’Ko, N.G. Tailoring Cod Gelatin Structure and Physical Properties with Acid and Alkaline Extraction. Polymers 2019, 11, 1724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamdi, M.; Hammami, A.; Hajji, S.; Jridi, M.; Nasri, M.; Nasri, R. Chitin Extraction from Blue Crab (Portunus Segnis) and Shrimp (Penaeus Kerathurus) Shells Using Digestive Alkaline Proteases from P. Segnis Viscera. Int. J. Biol. Macromol. 2017, 101, 455–463. [Google Scholar] [CrossRef]
- Mhamdi, S.; Ktari, N.; Hajji, S.; Nasri, M.; Sellami Kamoun, A. Alkaline Proteases from a Newly Isolated Micromonospora Chaiyaphumensis S103: Characterization and Application as a Detergent Additive and for Chitin Extraction from Shrimp Shell Waste. Int. J. Biol. Macromol. 2017, 94, 415–422. [Google Scholar] [CrossRef]
- Castro, R.; Guerrero-Legarreta, I.; Bórquez, R. Chitin Extraction from Allopetrolisthes Punctatus Crab Using Lactic Fermentation. Biotechnol. Rep. 2018, 20, e00287. [Google Scholar] [CrossRef]
- Wai, A.L.S.; Man, R.C.; Mudalip, S.K.A.; Sulaiman, S.Z.; Arshad, Z.I.M.; Shaarani, S.M. Effects of Chemical Hydrolysis Operating Parameters on the Production of Antioxidant from Fish Waste. IOP Conf. Ser. Mater. Sci. Eng. 2020, 991, 012062. [Google Scholar] [CrossRef]
- Chakka, A.K.; Sriraksha, M.S.; Ravishankar, C.N. Sustainability of Emerging Green Non-Thermal Technologies in the Food Industry with Food Safety Perspective: A Review. LWT 2021, 151, 112140. [Google Scholar] [CrossRef]
- Režek Jambrak, A.; Nutrizio, M.; Djekić, I.; Pleslić, S.; Chemat, F. Internet of Nonthermal Food Processing Technologies (IoNTP): Food Industry 4.0 and Sustainability. Appl. Sci. 2021, 11, 686. [Google Scholar] [CrossRef]
- Barbosa-Cánovas, G.V.; Donsì, F.; Yildiz, S.; Candoğan, K.; Pokhrel, P.R.; Guadarrama-Lezama, A.Y. Nonthermal Processing Technologies for Stabilization and Enhancement of Bioactive Compounds in Foods. Food Eng. Rev. 2021, 14, 63–99. [Google Scholar] [CrossRef]
- Khan, M.K.; Ahmad, K.; Hassan, S.; Imran, M.; Ahmad, N.; Xu, C. Effect of Novel Technologies on Polyphenols during Food Processing. Innov. Food Sci. Emerg. Technol. 2018, 45, 361–381. [Google Scholar] [CrossRef]
- Tsironi, T.; Houhoula, D.; Taoukis, P. Hurdle Technology for Fish Preservation. Aquac. Fish. 2020, 5, 65–71. [Google Scholar] [CrossRef]
- Chai, H.-E.; Sheen, S. Effect of high pressure processing, allyl isothiocyanate, and acetic acid stresses on Salmonella survivals, storage, and appearance color in raw ground chicken meat. Food Control 2020, 123, 107784. [Google Scholar] [CrossRef]
- Pérez-Baltar, A.; Serrano, A.; Montiel, R.; Medina, M. Listeria Monocytogenes Inactivation in Deboned Dry-Cured Hams by High Pressure Processing. Meat Sci. 2020, 160, 107960. [Google Scholar] [CrossRef] [PubMed]
- García-Parra, J.; González-Cebrino, F.; Delgado-Adámez, J.; Cava, R.; Martín-Belloso, O.; Élez-Martínez, P.; Ramírez, R. Effect of High-Hydrostatic Pressure and Moderate-Intensity Pulsed Electric Field on Plum. Food Sci. Technol. Int. 2018, 24, 145–160. [Google Scholar] [CrossRef]
- Mostafidi, M.; Sanjabi, M.R.; Shirkhan, F.; Zahedi, M.T. A Review of Recent Trends in the Development of the Microbial Safety of Fruits and Vegetables. Trends Food Sci. Technol. 2020, 103, 321–332. [Google Scholar] [CrossRef]
- Cheng, C.; Jia, M.; Gui, Y.; Ma, Y. Comparison of the Effects of Novel Processing Technologies and Conventional Thermal Pasteurisation on the Nutritional Quality and Aroma of Mandarin (Citrus Unshiu) Juice. Innov. Food Sci. Emerg. Technol. 2020, 64, 102425. [Google Scholar] [CrossRef]
- Nor Hasni, H.; Koh, P.C.; Noranizan, M.A.; Megat Mohd Tahir, P.N.F.; Mohamad, A.; Limpot, N.; Hamid, N.; Aadil, R.M. High-pressure Processing Treatment for Ready-to-drink Sabah Snake Grass Juice. J. Food Process. Preserv. 2020, 44, e14508. [Google Scholar] [CrossRef]
- Pallarés, N.; Berrada, H.; Tolosa, J.; Ferrer, E. Effect of High Hydrostatic Pressure (HPP) and Pulsed Electric Field (PEF) Technologies on Reduction of Aflatoxins in Fruit Juices. LWT 2021, 142, 111000. [Google Scholar] [CrossRef]
- Ambrosi, V.; Polenta, G.; Gonzalez, C.; Ferrari, G.; Maresca, P. High Hydrostatic Pressure Assisted Enzymatic Hydrolysis of Whey Proteins. Innov. Food Sci. Emerg. Technol. 2016, 38, 294–301. [Google Scholar] [CrossRef]
- Maresca, P.; Ferrari, G. Modelling of the Kinetics of Bovine Serum Albumin Enzymatic Hydrolysis Assisted by High Hydrostatic Pressure. Food Bioprod. Process. 2017, 105, 1–11. [Google Scholar] [CrossRef]
- Akter, M.; Graham, H.; Iji, P.A. Interactions between Phytase and Different Dietary Minerals in in Vitro Systems. J. Food Agric. Environ. 2015, 13, 38–44. [Google Scholar]
- Marciniak, A.; Suwal, S.; Naderi, N.; Pouliot, Y.; Doyen, A. Enhancing Enzymatic Hydrolysis of Food Proteins and Production of Bioactive Peptides Using High Hydrostatic Pressure Technology. Trends Food Sci. Technol. 2018, 80, 187–198. [Google Scholar] [CrossRef]
- Boukil, A.; Perreault, V.; Chamberland, J.; Mezdour, S.; Pouliot, Y.; Doyen, A. High Hydrostatic Pressure-Assisted Enzymatic Hydrolysis Affect Mealworm Allergenic Proteins. Molecules 2020, 25, 2685. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, M.V.; Denoya, G.I.; Jagus, R.J.; Vaudagna, S.R.; Agüero, M.V. Microbiological, Antioxidant and Physicochemical Stability of a Fruit and Vegetable Smoothie Treated by High Pressure Processing and Stored at Room Temperature. LWT 2019, 105, 206–210. [Google Scholar] [CrossRef]
- Zhao, G.; Zhang, R.; Zhang, M. Effects of High Hydrostatic Pressure Processing and Subsequent Storage on Phenolic Contents and Antioxidant Activity in Fruit and Vegetable Products. Int. J. Food Sci. Technol. 2017, 52, 3–12. [Google Scholar] [CrossRef]
- Błaszczak, W.; Amarowicz, R.; Górecki, A.R. Antioxidant Capacity, Phenolic Composition and Microbial Stability of Aronia Juice Subjected to High Hydrostatic Pressure Processing. Innov. Food Sci. Emerg. Technol. 2017, 39, 141–147. [Google Scholar] [CrossRef]
- Grunovaitė, L.; Pukalskienė, M.; Pukalskas, A.; Venskutonis, P.R. Fractionation of Black Chokeberry Pomace into Functional Ingredients Using High Pressure Extraction Methods and Evaluation of Their Antioxidant Capacity and Chemical Composition. J. Funct. Foods 2016, 24, 85–96. [Google Scholar] [CrossRef]
- Hill, K.; Ostermeier, R.; Töpfl, S.; Heinz, V. Pulsed Electric Fields in the Potato Industry. In Food Engineering Series; Springer: Berlin, Germany, 2022; pp. 325–335. [Google Scholar]
- Liu, T.; Burritt, D.J.; Oey, I. Understanding the Effect of Pulsed Electric Fields on Multilayered Solid Plant Foods: Bunching Onions (Allium Fistulosum) as a Model System. Food Res. Int. 2019, 120, 560–567. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Li, Y.; Sun, D.-W.; Zhu, Z. Enhancing Food Processing by Pulsed and High Voltage Electric Fields: Principles and Applications. Crit. Rev. Food Sci. Nutr. 2018, 58, 2285–2298. [Google Scholar] [CrossRef] [PubMed]
- Xi, J.; Li, Z.; Fan, Y. Recent Advances in Continuous Extraction of Bioactive Ingredients from Food-Processing Wastes by Pulsed Electric Fields. Crit. Rev. Food Sci. Nutr. 2021, 61, 1738–1750. [Google Scholar] [CrossRef]
- Zhao, Y.-M.; de Alba, M.; Sun, D.-W.; Tiwari, B. Principles and Recent Applications of Novel Non-Thermal Processing Technologies for the Fish Industry—A Review. Crit. Rev. Food Sci. Nutr. 2019, 59, 728–742. [Google Scholar] [CrossRef]
- Režek Jambrak, A.; Vukušić, T.; Donsi, F.; Paniwnyk, L.; Djekic, I. Three Pillars of Novel Nonthermal Food Technologies: Food Safety, Quality, and Environment. J. Food Qual. 2018. [CrossRef]
- Vorobiev, E.; Lebovka, N. Pulsed Electric Field in Green Processing and Preservation of Food Products. In Green Food Processing Techniques; Elsevier: Amsterdam, The Netherlands, 2019; pp. 403–430. ISBN 9780128153536. [Google Scholar]
- Cropotova, J.; Tappi, S.; Genovese, J.; Rocculi, P.; Dalla Rosa, M.; Rustad, T. The Combined Effect of Pulsed Electric Field Treatment and Brine Salting on Changes in the Oxidative Stability of Lipids and Proteins and Color Characteristics of Sea Bass (Dicentrarchus Labrax). Heliyon 2021, 7, e05947. [Google Scholar] [CrossRef]
- He, G.; Yan, X.; Wang, X.; Wang, Y. Extraction and structural characterization of collagen from fishbone by high intensity pulsed electric fields. J. Food Process. Eng. 2019, 42, e13214. [Google Scholar] [CrossRef]
- Liang, R.; Zhang, Z.; Lin, S. Effects of Pulsed Electric Field on Intracellular Antioxidant Activity and Antioxidant Enzyme Regulating Capacities of Pine Nut (Pinus Koraiensis) Peptide QDHCH in HepG2 Cells. Food Chem. 2017, 237, 793–802. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, L.; Ju, H.; Bao, Z.; Zeng, X.; Lin, S. Research Advances and Application of Pulsed Electric Field on Proteins and Peptides in Food. Food Res. Int. 2021, 139, 109914. [Google Scholar] [CrossRef]
- Cropotova, J.; Tappi, S.; Genovese, J.; Rocculi, P.; Laghi, L.; Dalla Rosa, M.; Rustad, T. Study of the Influence of Pulsed Electric Field Pre-Treatment on Quality Parameters of Sea Bass during Brine Salting. Innov. Food Sci. Emerg. Technol. 2021, 70, 102706. [Google Scholar] [CrossRef]
- Zhou, Y.; He, Q.; Zhou, D. Optimization Extraction of Protein from Mussel by High-Intensity Pulsed Electric Fields. J. Food Process. Preserv. 2017, 41, e12962. [Google Scholar] [CrossRef]
- Li, M.; Lin, J.; Chen, J.; Fang, T. Pulsed Electric Field-Assisted Enzymatic Extraction of Protein from Abalone (Haliotis Discus Hannai Ino) Viscera. J. Food Process Eng. 2016, 39, 702–710. [Google Scholar] [CrossRef]
- He, G.; Yin, Y.; Yan, X.; Wang, Y. Application of Pulsed Electric Field for Treatment of Fish and Seafood. In Handbook of Electroporation; Springer International Publishing: Cham, Switzerland, 2017; pp. 2637–2655. ISBN 9783319328867. [Google Scholar]
- De Aguiar Saldanha Pinheiro, A.C.; Martí-Quijal, F.J.; Barba, F.J.; Tappi, S.; Rocculi, P. Innovative Non-Thermal Technologies for Recovery and Valorization of Value-Added Products from Crustacean Processing By-Products—An Opportunity for a Circular Economy Approach. Foods 2021, 10, 2030. [Google Scholar] [CrossRef]
- Mannozzi, C.; Fauster, T.; Haas, K.; Tylewicz, U.; Romani, S.; Dalla Rosa, M.; Jaeger, H. Role of Thermal and Electric Field Effects during the Pre-Treatment of Fruit and Vegetable Mash by Pulsed Electric Fields (PEF) and Ohmic Heating (OH). Innov. Food Sci. Emerg. Technol. 2018, 48, 131–137. [Google Scholar] [CrossRef]
- Leong, T.S.H.; Zhou, M.; Kukan, N.; Ashokkumar, M.; Martin, G.J.O. Preparation of Water-in-Oil-in-Water Emulsions by Low Frequency Ultrasound Using Skim Milk and Sunflower Oil. Food Hydrocoll. 2017, 63, 685–695. [Google Scholar] [CrossRef]
- Blinov, A.V.; Siddiqui, S.A.; Blinova, A.A.; Khramtsov, A.G.; Oboturova, N.P.; Nagdalian, A.A.; Simonov, A.N.; Ibrahim, S.A. Analysis of the dispersed composition of milk using photon correlation spectroscopy. J. Food Compos. Anal. 2022, 108, 104414. [Google Scholar] [CrossRef]
- Arvanitoyannis, I.S.; Kotsanopoulos, K.V.; Savva, A.G. Use of ultrasounds in the food industry–Methods and effects on quality, safety, and organoleptic characteristics of foods: A review. Crit. Rev. Food Sci. Nutr. 2015, 57, 109–128. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Zhang, M.; Xu, B.; Adhikari, B.; Sun, J. The Principles of Ultrasound and Its Application in Freezing Related Processes of Food Materials: A Review. Ultrason. Sonochem. 2015, 27, 576–585. [Google Scholar] [CrossRef]
- Musielak, G.; Mierzwa, D.; Kroehnke, J. Food Drying Enhancement by Ultrasound—A Review. Trends Food Sci. Technol. 2016, 56, 126–141. [Google Scholar] [CrossRef]
- Huang, G.; Chen, S.; Dai, C.; Sun, L.; Sun, W.; Tang, Y.; Xiong, F.; He, R.; Ma, H. Effects of Ultrasound on Microbial Growth and Enzyme Activity. Ultrason. Sonochem. 2017, 37, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.K.; Kim, Y.H.; Kim, Y.J.; Park, H.J.; Lee, N.H. Effects of Ultrasonic Treatment on Collagen Extraction from Skins of the Sea Bass Lateolabrax Japonicus. Fish. Sci. 2012, 78, 485–490. [Google Scholar] [CrossRef]
- Gulzar, S.; Benjakul, S. Ultrasound Waves Increase the Yield and Carotenoid Content of Lipid Extracted from Cephalothorax of Pacific White Shrimp (Litopenaeus Vannamei). Eur. J. Lipid Sci. Technol. 2018, 120, 1700495. [Google Scholar] [CrossRef]
- Sinthusamran, S.; Benjakul, S.; Kijroongrojana, K.; Prodpran, T.; Agustini, T.W. Yield and Chemical Composition of Lipids Extracted from Solid Residues of Protein Hydrolysis of Pacific White Shrimp Cephalothorax Using Ultrasound-Assisted Extraction. Food Biosci. 2018, 26, 169–176. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Sicaire, A.-G.; Meullemiestre, A.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Ultrasound Assisted Extraction of Food and Natural Products. Mechanisms, Techniques, Combinations, Protocols and Applications. A Review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Sun, D.-W. Enhancement of Food Processes by Ultrasound: A Review. Crit. Rev. Food Sci. Nutr. 2014, 55, 570–594. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.; Zhang, J.; Zhang, H.; Dzah, C.S.; Zandile, M.; Duan, Y.; Ma, H.; Luo, X. Advances in Ultrasound Assisted Extraction of Bioactive Compounds from Cash Crops—A Review. Ultrason. Sonochem. 2018, 48, 538–549. [Google Scholar] [CrossRef]
- Rasenberg, M.M.M.; Poelman, M.; Smith, S.R.; van Hoof, L.J.W. GHG Emissions in Aquatic Production Systems and Marine Fisheries; IMARES: Yerseke, The Netherlands, 2013; p. 12. [Google Scholar]
- Robb, D.; MacLeod, M.; Hasan, M.R.; Soto, D. Greenhouse Gas Emissions from Aquaculture: A Life Cycle Assessment of Three Asian Systems. FAO Fish. Aquac. Tech. Pap. 2017, 609, 1–5. [Google Scholar]
Approach | Characteristics | Efficiencies | Limitations | Benefits | References |
---|---|---|---|---|---|
Hydrolysis | |||||
Hydrolysis | Cleavage of peptide bonds in proteins with inclusion of water, resulting in production of smaller peptides and free amino acids | The yield of hydrolysis is influenced by the enzymes and residues used | Development of a bitter taste and unacceptable flavors | Obtained peptides have various advantageous bioactive properties, which are not active before treatment with enzymatic hydrolysis | [61,62] |
Conventional thermal treatment techniques | |||||
Cooking | Inactivation pathogenic microorganisms and endogenous enzymes for food safety as well as to modify properties for the benefit of consumer acceptance | Optimizing the processing of oleaginous by-products by combining them with enzymatic hydrolysis | Impairment of the quality of extracted lipids and proteins due to protein denaturation, including their aggregation and coagulation, variations in the yield and quality of extracted ingredients, impairment of nutritional, bioactive, and sensory properties due to overheating | Large knowledge base and long time for optimization due to the long existence | [63,64,65,66] |
Novel thermal heating techniques | |||||
Microwave cooking | Industrially used for drying, pre-cooking, and pasteurization of ready meals as well as tempering of meat and fish, based on converting electromagnetic energy into thermal energy | Compact structure of the meat with uniform salt distribution due to volumetric temperature rise and the more uniform coagulation of proteins | Meat inside the tail of crayfish is more susceptible to overheating during microwave treatment than during conventional boiling water cooking | Wide range of applications (e.g., drying, pre-cooking microwave-assisted extraction) | [67,68] |
Ohmic heating | Heating by passing an electric current | Ability to create pores in cell membranes, gentle extraction | Applications are mainly limited to microbial inactivation, electroporation, enzyme inactivation, and heating of meat products | Faster heating, no influence on the sensory food properties as well as the nutritional value | [69] |
Infrared heating technology | Heating and drying of the product due to oscillations of the water molecules on the product surface and the in-depth penetration | Ohmic pre-cooking or combined treatment recommended due to weak surface penetration for improved heat treatment | May increase peroxide levels due to reaction with free radicals and tocopherols due to cell wall breakdown | Extremely energy efficient, inhibits growth of bacteria, spores, yeasts and molds, and inactivates proteolytic enzymes | [70,71] |
Extraction techniques | |||||
Chemical extraction | Use of an acid and/or alkali to extract valuable compounds from various foods | Extraction of collagen/gelatin, chitin and chitosan, astaxanthin, vitamins, and minerals from marine raw materials and side-streams | Traditional methods for the recovery of chitin from shells of crustaceans are extremely hazardous, energy consuming, and environmentally polluting | Chemicals are applied for the extraction | [72] |
Supercritical fluid extraction using CO2 acidified water | Use of CO2 acidified water to extract collagen from fish skin | Water acidification by pressurized CO2 at 50 bar and 37 °C for 3 h results in 13.8% yield of collagen | Co-extraction of gelatin could not be excluded | Alternative, greener, and more sustainable way to extract collagen | [73] |
Innovative technological pre-treatments | |||||
High hydrostatic pressure (HHP) | Use of a liquid (usually water) as the medium, to apply the desired uniform pressure to a product | Inactivation of enzymes and spoilage microorganisms such as yeasts, molds, and gram-positive and gram-negative bacteria, industrially reliable technology that is commercially available in many countries | Positive effect on proteolysis may vary depending on extrinsic and intrinsic factors | Continuous and rapid pressurization of the product without gradient and at low temperatures, used as a cold pasteurization or non-thermal pre-treatment prior to enzymatic hydrolysis with several positive effects | [74,75,76,77,78,79] |
Pulsed electric field (PEF) | Application of short duration electric pulses (1–100 μs) in a wide range of electric field strengths for a very short period (from nanoseconds to milliseconds) | Improves extractability, extraction of thermolabile compounds from animal matrices | Exposure to high electrical pulses may trigger further protein oxidation reactions in fish species hydrolysates, a strong electric field could destroy the intra- and intermolecular electrostatic interactions of certain peptides, challenge for industrial development and commercial deployment due to the lack of reliable industrial equipment | Significant microbial inactivation with little impact on the nutritional value, physicochemical quality parameters and the number of health-promoting compounds due to the low treatment temperature, very short exposure time | [80,81,82,83,84,85] |
Ultrasound (US) | Reflection and scattering of acoustic waves, leading to increased mass transfer, turbulence, and energy generation | Great potential and a variety of applications in many fields due to its ability to produce permanent mechanical, chemical, and biochemical changes in fluids and gases | Plant design for large-scale commercial use with continuous flow systems has only recently been optimized | Maintaining the quality of food, ensuring its safety without compromising its nutritional value and health properties, inactivating degradative enzymes, eliminating spoilage-causing bacteria, facilitating the extraction of valuable ingredients with shorter extraction times and higher yields | [86,87,88,89] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siddiqui, S.A.; Schulte, H.; Pleissner, D.; Schönfelder, S.; Kvangarsnes, K.; Dauksas, E.; Rustad, T.; Cropotova, J.; Heinz, V.; Smetana, S. Transformation of Seafood Side-Streams and Residuals into Valuable Products. Foods 2023, 12, 422. https://doi.org/10.3390/foods12020422
Siddiqui SA, Schulte H, Pleissner D, Schönfelder S, Kvangarsnes K, Dauksas E, Rustad T, Cropotova J, Heinz V, Smetana S. Transformation of Seafood Side-Streams and Residuals into Valuable Products. Foods. 2023; 12(2):422. https://doi.org/10.3390/foods12020422
Chicago/Turabian StyleSiddiqui, Shahida Anusha, Henning Schulte, Daniel Pleissner, Stephanie Schönfelder, Kristine Kvangarsnes, Egidijus Dauksas, Turid Rustad, Janna Cropotova, Volker Heinz, and Sergiy Smetana. 2023. "Transformation of Seafood Side-Streams and Residuals into Valuable Products" Foods 12, no. 2: 422. https://doi.org/10.3390/foods12020422
APA StyleSiddiqui, S. A., Schulte, H., Pleissner, D., Schönfelder, S., Kvangarsnes, K., Dauksas, E., Rustad, T., Cropotova, J., Heinz, V., & Smetana, S. (2023). Transformation of Seafood Side-Streams and Residuals into Valuable Products. Foods, 12(2), 422. https://doi.org/10.3390/foods12020422