Effect of Support Matrix and Crosslinking Agents on Nutritional Properties of Orange Juice during Enzyme Clarification: A Comparative Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Pectinase Activity
2.3. Support Preparation
2.3.1. Chitosan Beads
2.3.2. Silica Particles
2.4. Support Activation and Enzyme Immobilization
2.4.1. Support Activation with Glutaraldehyde
2.4.2. Support Activation with Genipin
2.4.3. Enzyme Immobilization on the Activated Supports
2.5. Juice Clarification
2.6. Analytical Determinations
2.6.1. Turbidity
2.6.2. Total Soluble Solids (°Brix), Reducing Sugars, and pH of the Juice
2.6.3. Color Determination
2.6.4. Ascorbic Acid Analysis via HPLC-DAD
2.6.5. HPLC-DAD Analysis of Phenolic Compounds
3. Results and Discussion
3.1. Enzyme Immobilization
3.2. Juice Clarification
3.3. Total Soluble Solids, Reducing Sugars, and Color Parameters
3.4. Analysis of Phenolic Compounds in Orange Juice
3.5. Vitamin C
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kircher, M. The Emerging Bioeconomy: Industrial Drivers, Global Impact, and International Strategies. Ind. Biotechnol. 2014, 10, 11–18. [Google Scholar] [CrossRef]
- Neves, M.F.; Trombin, V.G.; Marques, V.N.; Martinez, L.F. Global Orange Juice Market: A 16-Year Summary and Opportunities for Creating Value. Trop. Plant Pathol. 2020, 45, 166–174. [Google Scholar] [CrossRef]
- Pan, X.; Bi, S.; Lao, F.; Wu, J. Factors Affecting Aroma Compounds in Orange Juice and Their Sensory Perception: A Review. Food Res. Int. 2023, 169, 112835. [Google Scholar] [CrossRef]
- Miles, E.A.; Calder, P.C. Effects of Citrus Fruit Juices and Their Bioactive Components on Inflammation and Immunity: A Narrative Review. Front. Immunol. 2021, 12, 712608. [Google Scholar] [CrossRef]
- Alhabeeb, H.; Sohouli, M.H.; Lari, A.; Fatahi, S.; Shidfar, F.; Alomar, O.; Salem, H.; Al-Badawi, I.A.; Abu-Zaid, A. Impact of Orange Juice Consumption on Cardiovascular Disease Risk Factors: A Systematic Review and Meta-Analysis of Randomized-Controlled Trials. Crit. Rev. Food Sci. Nutr. 2022, 62, 3389–3402. [Google Scholar] [CrossRef]
- Sarvarian, M.; Jafarpour, A.; Awuchi, C.G.; Adeleye, A.O.; Okpala, C.O.R. Changes in Physicochemical, Free Radical Activity, Total Phenolic and Sensory Properties of Orange (Citrus sinensis L.) Juice Fortified with Different Oleaster (Elaeagnus angustifolia L.) Extracts. Molecules 2022, 27, 1530. [Google Scholar] [CrossRef]
- Pereira, G.S.; Honorio, A.R.; Gasparetto, B.R.; Lopes, C.M.A.; Lima, D.C.N.D.; Tribst, A.A.L. Influence of Information Received by the Consumer on the Sensory Perception of Processed Orange Juice. J. Sens. Stud. 2019, 34, e12497. [Google Scholar] [CrossRef]
- Bakshi, G.; Ananthanarayan, L. Cloud Stabilization of Citrus Fruit Juices Treated with Purified Pectin Methylesterase Inhibitor from Lemon (Citrus limon L.). J. Sci. Food Agric. 2022, 102, 6156–6162. [Google Scholar] [CrossRef]
- Satyannarayana, K.V.V.; Sandhya Rani, S.L.; Vinoth Kumar, R. Clarification of Citrus Fruit Juices Using Microfiltration Technique Equipped with Indigenously Developed Novel Ceramic Membrane. J. Food Sci. Technol. 2023, 60, 2001–2011. [Google Scholar] [CrossRef]
- Severcan, S.S.; Uzal, N.; Kahraman, K. Clarification of Apple Juice Using New Generation Nanocomposite Membranes Fabricated with TiO2 and Al2O3 Nanoparticles. Food Bioprocess Technol. 2020, 13, 391–403. [Google Scholar] [CrossRef]
- Ghosh, P.; Pradhan, R.C.; Mishra, S.; Rout, P.K. Quantification and Concentration of Anthocyanidin from Indian Blackberry (Jamun) by Combination of Ultra- and Nano-Filtrations. Food Bioprocess Technol. 2018, 11, 2194–2203. [Google Scholar] [CrossRef]
- Gulec, H.A.; Bagci, P.O.; Bagci, U. Clarification of Apple Juice Using Polymeric Ultrafiltration Membranes: A Comparative Evaluation of Membrane Fouling and Juice Quality. Food Bioprocess Technol. 2017, 10, 875–885. [Google Scholar] [CrossRef]
- Sagu, S.T.; Karmakar, S.; Nso, E.J.; Kapseu, C.; De, S. Ultrafiltration of Banana (Musa Acuminata) Juice Using Hollow Fibers for Enhanced Shelf Life. Food Bioprocess Technol. 2014, 7, 2711–2722. [Google Scholar] [CrossRef]
- Lipnizki, F. Cross-Flow Membrane Applications in the Food Industry. In Membrane Technology; Peinemann, K.-V., Nunes, S.P., Giorno, L., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2010; pp. 1–24. [Google Scholar]
- Esawy, M.A.; Gamal, A.A.; Kamel, Z.; Ismail, A.-M.S.; Abdel-Fattah, A.F. Evaluation of Free and Immobilized Aspergillus Niger NRC1ami Pectinase Applicable in Industrial Processes. Carbohydr. Polym. 2013, 92, 1463–1469. [Google Scholar] [CrossRef]
- de Souza, T.S.P.; Kawaguti, H.Y. Cellulases, Hemicellulases, and Pectinases: Applications in the Food and Beverage Industry. Food Bioprocess Technol. 2021, 14, 1446–1477. [Google Scholar] [CrossRef]
- Rodrigues, R.C.; Berenguer-Murcia, Á.; Carballares, D.; Morellon-Sterling, R.; Fernandez-Lafuente, R. Stabilization of Enzymes via Immobilization: Multipoint Covalent Attachment and Other Stabilization Strategies. Biotechnol. Adv. 2021, 52, 107821. [Google Scholar] [CrossRef]
- Bolivar, J.M.; Woodley, J.M.; Fernandez-Lafuente, R. Is Enzyme Immobilization a Mature Discipline? Some Critical Considerations to Capitalize on the Benefits of Immobilization. Chem. Soc. Rev. 2022, 51, 6251–6290. [Google Scholar] [CrossRef]
- dos Santos, J.C.S.; Barbosa, O.; Ortiz, C.; Berenguer-Murcia, A.; Rodrigues, R.C.; Fernandez-Lafuente, R. Importance of the Support Properties for Immobilization or Purification of Enzymes. ChemCatChem 2015, 7, 2413–2432. [Google Scholar] [CrossRef]
- Verma, M.L.; Kumar, S.; Das, A.; Randhawa, J.S.; Chamundeeswari, M. Chitin and Chitosan-Based Support Materials for Enzyme Immobilization and Biotechnological Applications. Environ. Chem. Lett. 2020, 18, 315–323. [Google Scholar] [CrossRef]
- Ribeiro, E.S.; de Farias, B.S.; Sant’Anna Cadaval Junior, T.R.; de Almeida Pinto, L.A.; Diaz, P.S. Chitosan–Based Nanofibers for Enzyme Immobilization. Int. J. Biol. Macromol. 2021, 183, 1959–1970. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, Y.; Yang, Y.; Yu, C. Silica-based Nanoparticles for Enzyme Immobilization and Delivery. Chem. An Asian J. 2022, 17, e202200573. [Google Scholar] [CrossRef]
- Alagöz, D.; Varan, N.E.; Toprak, A.; Yildirim, D.; Tukel, S.S.; Fernandez-Lafuente, R. Immobilization of Xylanase on Differently Functionalized Silica Gel Supports for Orange Juice Clarification. Process Biochem. 2022, 113, 270–280. [Google Scholar] [CrossRef]
- Benucci, I.; Mazzocchi, C.; Lombardelli, C.; Cacciotti, I.; Esti, M. Multi-Enzymatic Systems Immobilized on Chitosan Beads for Pomegranate Juice Treatment in Fluidized Bed Reactor: Effect on Haze-Active Molecules and Chromatic Properties. Food Bioprocess Technol. 2019, 12, 1559–1572. [Google Scholar] [CrossRef]
- Harutyunyan, L.R.; Lasareva, E.V. Chitosan and Its Derivatives: A Step Towards Green Chemistry. Biointerface Res. Appl. Chem. 2023, 13, 578. [Google Scholar]
- Krajewska, B. Application of Chitin- and Chitosan-Based Materials for Enzyme Immobilizations: A Review. Enzyme Microb. Technol. 2004, 35, 126–139. [Google Scholar] [CrossRef]
- Wu, H.; Mu, W. Application Prospects and Opportunities of Inorganic Nanomaterials for Enzyme Immobilization in the Food-Processing Industry. Curr. Opin. Food Sci. 2022, 47, 100909. [Google Scholar] [CrossRef]
- Montoya, N.A.; Roth, R.E.; Funk, E.K.; Gao, P.; Corbin, D.R.; Shiflett, M.B. Review on Porous Materials for the Thermal Stabilization of Proteins. Microporous Mesoporous Mater. 2022, 333, 111750. [Google Scholar] [CrossRef]
- Zucca, P.; Sanjust, E. Inorganic Materials as Supports for Covalent Enzyme Immobilization: Methods and Mechanisms. Molecules 2014, 19, 14139–14194. [Google Scholar] [CrossRef]
- Hartmann, M. Ordered Mesoporous Materials for Bioadsorption and Biocatalysis. Chem. Mater. 2005, 17, 4577–4593. [Google Scholar] [CrossRef]
- Govardhan, C.P. Crosslinking of Enzymes for Improved Stability and Performance. Curr. Opin. Biotechnol. 1999, 10, 331–335. [Google Scholar] [CrossRef]
- Alavarse, A.C.; Frachini, E.C.G.; da Silva, R.L.C.G.; Lima, V.H.; Shavandi, A.; Petri, D.F.S. Crosslinkers for Polysaccharides and Proteins: Synthesis Conditions, Mechanisms, and Crosslinking Efficiency, A Review. Int. J. Biol. Macromol. 2022, 202, 558–596. [Google Scholar] [CrossRef]
- Barbosa, O.; Ortiz, C.; Berenguer-Murcia, A.; Torres, R.; Rodrigues, R.C.; Fernandez-Lafuente, R. Glutaraldehyde in Bio-Catalysts Design: A Useful Crosslinker and a Versatile Tool in Enzyme Immobilization. RSC Adv. 2014, 4, 1583–1600. [Google Scholar] [CrossRef]
- Dal Magro, L.; Kornecki, J.F.J.F.; Klein, M.P.M.P.; Rodrigues, R.C.R.C.; Fernandez-Lafuente, R. Pectin Lyase Immobilization Using the Glutaraldehyde Chemistry Increases the Enzyme Operation Range. Enzyme Microb. Technol. 2020, 132, 109397. [Google Scholar] [CrossRef]
- Gough, J.E.; Scotchford, C.A.; Downes, S. Cytotoxicity of Glutaraldehyde Crosslinked Collagen/Poly(Vinyl Alcohol) Films Is by the Mechanism of Apoptosis. J. Biomed. Mater. Res. 2002, 61, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.S.; Khodaiyan, F.; Mousavi, S.M.E.; Kennedy, J.F.; Azimi, S.Z. A Health-Friendly Strategy for Covalent-Bonded Immobilization of Pectinase on the Functionalized Glass Beads. Food Bioprocess Technol. 2021, 14, 177–186. [Google Scholar] [CrossRef]
- Yu, Y.; Xu, S.; Li, S.; Pan, H. Genipin-Cross-Linked Hydrogels Based on Biomaterials for Drug Delivery: A Review. Biomater. Sci. 2021, 9, 1583–1597. [Google Scholar] [CrossRef]
- Klein, M.P.; Hackenhaar, C.R.; Lorenzoni, A.S.G.G.; Rodrigues, R.C.; Costa, T.M.H.H.; Ninow, J.L.; Hertz, P.F. Chitosan Crosslinked with Genipin as Support Matrix for Application in Food Process: Support Characterization and β- d -Galactosidase Immobilization. Carbohydr. Polym. 2016, 137, 184–190. [Google Scholar] [CrossRef]
- Bellé, A.S.; Hackenhaar, C.R.; Spolidoro, L.S.; Rodrigues, E.; Klein, M.P.; Hertz, P.F. Efficient Enzyme-Assisted Extraction of Genipin from Genipap (Genipa Americana L.) and Its Application as a Crosslinker for Chitosan Gels. Food Chem. 2018, 246, 266–274. [Google Scholar] [CrossRef]
- Dal Magro, L.; Goetze, D.; Ribeiro, C.T.; Paludo, N.; Rodrigues, E.; Hertz, P.F.; Klein, M.P.; Rodrigues, R.C. Identification of Bioactive Compounds From Vitis Labrusca L. Variety Concord Grape Juice Treated With Commercial Enzymes: Improved Yield and Quality Parameters. Food Bioprocess Technol. 2016, 9, 365–377. [Google Scholar] [CrossRef]
- Miller, G.L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Klein, M.P.; Nunes, M.R.; Rodrigues, R.C.; Benvenutti, E.V.; Costa, T.M.H.H.; Hertz, P.F.; Ninow, J.L. Effect of the Support Size on the Properties of β-Galactosidase Immobilized on Chitosan: Advantages and Disadvantages of Macro and Nanoparticles. Biomacromolecules 2012, 13, 2456–2464. [Google Scholar] [CrossRef] [PubMed]
- Hench, L.L.; West, J.K. The Sol-Gel Process. Chem. Rev. 1990, 90, 33–72. [Google Scholar] [CrossRef]
- Dal Magro, L.; Silveira, V.C.C.; de Menezes, E.W.; Benvenutti, E.V.; Nicolodi, S.; Hertz, P.F.; Klein, M.P.; Rodrigues, R.C. Magnetic Biocatalysts of Pectinase and Cellulase: Synthesis and Characterization of Two Preparations for Application in Grape Juice Clarification. Int. J. Biol. Macromol. 2018, 115, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Flores, E.E.E.; Cardoso, F.D.; Siqueira, L.B.; Ricardi, N.C.; Costa, T.H.; Rodrigues, R.C.; Klein, M.P.; Hertz, P.F. Influence of Reaction Parameters in the Polymerization between Genipin and Chitosan for Enzyme Immobilization. Process Biochem. 2019, 84, 73–80. [Google Scholar] [CrossRef]
- Sheldon, R.A.; van Pelt, S. Enzyme Immobilisation in Biocatalysis: Why, What and How. Chem. Soc. Rev. 2013, 42, 6223–6235. [Google Scholar] [CrossRef]
- Boudrant, J.; Woodley, J.M.; Fernandez-Lafuente, R. Parameters Necessary to Define an Immobilized Enzyme Preparation. Process Biochem. 2020, 90, 66–80. [Google Scholar] [CrossRef]
- Dal Magro, L.; Pessoa, J.P.S.P.S.; Klein, M.P.P.; Fernandez-Lafuente, R.; Rodrigues, R.C.C. Enzymatic Clarification of Orange Juice in Continuous Bed Reactors: Fluidized-Bed versus Packed-Bed Reactor. Catal. Today 2021, 362, 184–191. [Google Scholar] [CrossRef]
- Anderson, C.W.; Geological, S. Turbidity. In Techniques of Water-Resources Investigations; Geological Survey (U.S.): Reston, VA, USA, 2005; Volume 2.1, p. 55. [Google Scholar]
- Ozturk, A.; Yildiz, K.; Ozturk, B.; Karakaya, O.; Gun, S.; Uzun, S.; Gundogdu, M. Maintaining Postharvest Quality of Medlar (Mespilus Germanica) Fruit Using Modified Atmosphere Packaging and Methyl Jasmonate. LWT 2019, 111, 117–124. [Google Scholar] [CrossRef]
- Rodrigues, E.; Mariutti, L.R.B.; Mercadante, A.Z. Carotenoids and Phenolic Compounds from Solanum Sessiliflorum, an Unexploited Amazonian Fruit, and Their Scavenging Capacities against Reactive Oxygen and Nitrogen Species. J. Agric. Food Chem. 2013, 61, 3022–3029. [Google Scholar] [CrossRef]
- Tacias-Pascacio, V.G.; García-Parra, E.; Vela-Gutiérrez, G.; Virgen-Ortiz, J.J.; Berenguer-Murcia, Á.; Alcántara, A.R.; Fernandez-Lafuente, R. Genipin as An Emergent Tool in the Design of Biocatalysts: Mechanism of Reaction and Applications. Catalysts 2019, 9, 1035. [Google Scholar] [CrossRef]
- Miao, Q.; Zhang, C.; Zhou, S.; Meng, L.; Huang, L.; Ni, Y.; Chen, L. Immobilization and Characterization of Pectinase onto the Cationic Polystyrene Resin. ACS Omega 2021, 6, 31683–31688. [Google Scholar] [CrossRef] [PubMed]
- Muller, S.; Concha, D.; Vasquez, P.; Rodriguez-Nuñez, K.; Martinez, R.; Bernal, C. Effect of the Immobilization of Pectinase on the Molecular Weight Distribution of Pectin Oligosaccharides Obtained from Citrus Pectin. Biocatal. Agric. Biotechnol. 2022, 43, 102389. [Google Scholar] [CrossRef]
- Navarro-López, D.E.; Bautista-Ayala, A.R.; Rosales-De la Cruz, M.F.; Martínez-Beltrán, S.; Rojas-Torres, D.E.; Sanchez-Martinez, A.; Ceballos-Sanchez, O.; Jáuregui-Jáuregui, J.A.; Lozano, L.M.; Sepúlveda-Villegas, M.; et al. Nanocatalytic Performance of Pectinase Immobilized over in Situ Prepared Magnetic Nanoparticles. Heliyon 2023, 9, e19021. [Google Scholar] [CrossRef] [PubMed]
- Himmel, M.E.; Baker, J.O.; Adney, W.S.; Decker, S.R. Cellulases, Hemicellulases, and Pectinases. In Methods for General and Molecular Microbiology; Reddy, C., Beveridge, T., Breznak, J., Marzluf, G., Schmidt, T., Snyder, L., Eds.; ASM Press: Washington, DC, USA, 2007; pp. 596–610. [Google Scholar]
- Azimi, S.Z.; Hosseini, S.S.; Khodaiyan, F. Continuous Clarification of Grape Juice Using a Packed Bed Bioreactor Including Pectinase Enzyme Immobilized on Glass Beads. Food Biosci. 2021, 40, 100877. [Google Scholar] [CrossRef]
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A.-J. Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food Bioprocess Technol. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- Mejia, J.A.A.; Yáñez-Fernandez, J. Clarification Processes of Orange Prickly Pear Juice (Opuntia Spp.) by Microfiltration. Membranes 2021, 11, 354. [Google Scholar] [CrossRef]
- Delgado-Vargas, F.; Jiménez, A.R.; Paredes-López, O. Natural Pigments: Carotenoids, Anthocyanins, and Betalains—Characteristics, Biosynthesis, Processing, and Stability. Crit. Rev. Food Sci. Nutr. 2000, 40, 173–289. [Google Scholar] [CrossRef]
- Macedo, M.; Robrigues, R.D.P.; Pinto, G.A.S.; de Brito, E.S. Influence of Pectinolyttic and Cellulotyc Enzyme Complexes on Cashew Bagasse Maceration in Order to Obtain Carotenoids. J. Food Sci. Technol. 2014, 52, 3689–3693. [Google Scholar] [CrossRef]
- Mallmann, L.P.; Rios, A.O.; Rodrigues, E. MS-FINDER and SIRIUS for Phenolic Compound Identification from High-Resolution Mass Spectrometry Data. Food Res. Int. 2023, 163, 112315. [Google Scholar] [CrossRef]
- Popa, M.-I.; Aelenei, N.; Popa, V.I.; Andrei, D. Study of the Interactions between Polyphenolic Compounds and Chitosan. React. Funct. Polym. 2000, 45, 35–43. [Google Scholar] [CrossRef]
- Nunes, C.; Maricato, É.; Gonçalves, F.J.F.J.; da Silva, J.A.L.J.A.L.; Rocha, S.M.S.M.; Coimbra, M.A.M.A. Properties of Chitosan-Genipin Films Grafted with Phenolic Compounds from Red Wine. Trends Carbohydr. Res. 2015, 7, 25–32. [Google Scholar]
- Okino, S.; Kokawa, M.; Islam, M.Z.; Kitamura, Y. Effects of Apple Juice Manufacturing Processes on Procyanidin Concentration and Nondestructive Analysis by Fluorescence Fingerprint. Food Bioprocess Technol. 2021, 14, 692–701. [Google Scholar] [CrossRef]
- Timmermans, R.A.H.; Roland, W.S.U.; van Kekem, K.; Matser, A.M.; van Boekel, M.A.J.S. Effect of Pasteurization by Moderate Intensity Pulsed Electric Fields (PEF) Treatment Compared to Thermal Treatment on Quality Attributes of Fresh Orange Juice. Foods 2022, 11, 3360. [Google Scholar] [CrossRef] [PubMed]
Biocatalyst Activity (U·g−1) | IY (%) | IE (%) | RA (%) | |
---|---|---|---|---|
Chitosan | ||||
Genipin | 1211.21 ± 22.56 | 30.37 | 27.3 | 8.3 |
Glutaraldehyde | 535.17 ± 17.88 | 91.17 | 3.1 | 2.9 |
Silica | ||||
Genipin | 263.78 ± 7.23 | 20.12 | 44.02 | 8.86 |
Glutaraldehyde | 152.21 ± 12.49 | 8.86 | 57.66 | 5.11 |
Treatment | Turbidity Reduction (%) | TSS (°Brix) | Reducing Sugars (g·L−1) | pH | L* | a* | b* | C* |
---|---|---|---|---|---|---|---|---|
Orange juice | 0.00 d | 10.2 ± 0.3 a | 5.20 ± 0.13 c,d | 3.47 ± 0.27 a | 68.81 ± 1.43 b | −5.01 ± 0.03 b | 30.08 ± 1.22 a | 30.49 |
CH | 3.67 ± 0.43 c,d | 9.3 ± 0.4 a,b,c | 5.30 ± 0.01 a,b,c,d | 3.39 ± 0.03 a | 63.95 ± 2.23 b | −4.45 ± 0.42 b | 35.82 ± 0.31 a | 36.10 |
CH-GEN | 5.56 ± 0.33 c,d | 8.9 ± 0.1 a,b,c | 5.40 ± 0.07 a,b,c,d | 3.37 ± 0.12 a | 63.65 ± 1.66 b | −4.61 ± 0.21 b | 37.74 ± 0.88 a | 38.02 |
CH-GLU | 6.14 ± 1.21 c | 10.1 ± 0.2 a | 5.17 ± 0.12 d | 3.36 ± 0.01 a | 66.5 ± 2.98 b | −4.89 ± 0.55 b | 31.57 ± 0.92 a | 31.95 |
CH-GEN-E | 93.57 ± 2.27 a | 9.0 ± 0.9 a,b,c | 5.21 ± 0.15 c,d | 3.36 ± 0.04 a | 78.93 ± 2.40 a | −2.42 ± 0.12 a | 5.76 ± 0.25 b | 6.25 |
CH-GLU-E | 94.15 ± 4.11 a | 9.4 ± 0.5 a,b | 5.51 ± 0.04 a,b | 3.45 ± 0.13 a | 78.6 ± 1.41 a | −2.13 ± 0.15 a | 4.18 ± 0.13 b | 4.69 |
S | 6.88 ± 0.66 c | 10.1 ± 0.3 a | 5.47 ± 0.03 a,b,c | 3.34 ± 0.11 a | 67.14 ± 1.83 b | −4.96 ± 0.65 b | 33.94 ± 2.01 a | 34.30 |
S-GEN | 8.61 ± 0.91 c | 8.5 ± 0.7 b,c | 5.34 ± 0.12 a,b,c,d | 3.27 ± 0.08 a | 63.68 ± 3.22 b | −4.5 ± 0.31 b | 36.22 ± 0.33 a | 36.50 |
S-GLU | 8.95 ± 0.87 c | 7.9 ± 0.4 c | 5.25 ± 0.11 b,c,d | 3.25 ± 0.02 a | 63.99 ± 1.89 b | −4.57 ± 0.27 b | 35.7 ± 1.66 a | 35.99 |
S-GEN-E | 89.33 ± 3.65 a | 8.0 ± 0.5 b,c | 5.40 ± 0.10 a,b,c,d | 3.28 ± 0.00 a | 78.43 ± 0.33 a | −2.15 ± 0.12 a | 4.19 ± 0.72 b | 4.71 |
S-GLU-E | 82.90 ± 2.13 b | 5.7 ± 0.5 d | 5.55 ± 0.07 a | 3.28 ± 0.14 a | 78.55 ± 1.54 a | −2.66 ± 0.19 a | 7.22 ± 0.64 b | 7.69 |
Treatment | 280 nm | 320 nm | 360 nm | Mean |
---|---|---|---|---|
Orange juice | 100.0 a | 100.0 a | 100.0 a | 100.0 |
CH | 95.3 ± 3.4 a | 104.0 ± 2.1 a | 93.2 ± 1.1 b | 97.5 |
CH-GEN | 62.4 ± 2.8 c | 76.6 ± 3.7 c | 63.5 ± 2.4 d | 67.5 |
CH-GLU | 87.4 ± 1.5 b | 99.5 ± 5.4 a | 92.2 ± 4.7 b | 93.0 |
CH-GEN-E | 59.4 ± 3.1 d | 67.3 ± 3.9 d | 59.8 ± 3.4 d | 62.2 |
CH-GLU-E | 80.7 ± 2.9 b | 87.0 ± 4.4 b | 78.6 ± 2.8 c | 82.1 |
S | 87.4 ± 4.4 b | 91.9 ± 1.8 b | 87.3 ± 2.5 b | 88.9 |
S-GEN | 61.5 ± 1.2 c,d | 70.7 ± 2.3 c,d | 58.9 ± 5.1 d | 63.7 |
S-GLU | 81.6 ± 3.9 b | 92.0 ± 1.6 b | 79.6 ± 4.4 c | 84.4 |
S-GEN-E | 67.2 ± 4.1 c | 74.6 ± 3.1 c | 62.0 ± 3.6 d | 67.9 |
S-GLU-E | 84.3 ± 2.0 b | 94.6 ± 3.4 a,b | 79.1 ± 2.5 c | 86.0 |
Treatment | Vitamin C |
---|---|
Orange juice | 100.0 a |
CH | 101.0 ± 2.4 a |
CH-GEN | 102.6 ± 1.6 a |
CH-GLU | 82.0 ± 4.3 c |
CH-GEN-E | 88.8 ± 2.8 b |
CH-GLU-E | 102.5 ± 3.1 a |
S | 105.0 ± 3.3 a |
S-GEN | 90.5 ± 2.5 b |
S-GLU | 103.1 ± 5.1 a |
S-GEN-E | 103.0 ± 3.7 a |
S-GLU-E | 102.0 ± 2.2 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva, P.M.; Esparza-Flores, E.E.; Virgili, A.H.; de Menezes, E.W.; Fernandez-Lafuente, R.; Dal Magro, L.; Rodrigues, R.C. Effect of Support Matrix and Crosslinking Agents on Nutritional Properties of Orange Juice during Enzyme Clarification: A Comparative Study. Foods 2023, 12, 3919. https://doi.org/10.3390/foods12213919
da Silva PM, Esparza-Flores EE, Virgili AH, de Menezes EW, Fernandez-Lafuente R, Dal Magro L, Rodrigues RC. Effect of Support Matrix and Crosslinking Agents on Nutritional Properties of Orange Juice during Enzyme Clarification: A Comparative Study. Foods. 2023; 12(21):3919. https://doi.org/10.3390/foods12213919
Chicago/Turabian Styleda Silva, Pâmela M., Eli Emanuel Esparza-Flores, Anike H. Virgili, Eliana W. de Menezes, Roberto Fernandez-Lafuente, Lucas Dal Magro, and Rafael C. Rodrigues. 2023. "Effect of Support Matrix and Crosslinking Agents on Nutritional Properties of Orange Juice during Enzyme Clarification: A Comparative Study" Foods 12, no. 21: 3919. https://doi.org/10.3390/foods12213919
APA Styleda Silva, P. M., Esparza-Flores, E. E., Virgili, A. H., de Menezes, E. W., Fernandez-Lafuente, R., Dal Magro, L., & Rodrigues, R. C. (2023). Effect of Support Matrix and Crosslinking Agents on Nutritional Properties of Orange Juice during Enzyme Clarification: A Comparative Study. Foods, 12(21), 3919. https://doi.org/10.3390/foods12213919