Enhanced High-Fructose Corn Syrup Production: Immobilizing Serratia marcescens Glucose Isomerase on MOF (Co)-525 Reduces Co2+ Dependency in Glucose Isomerization to Fructose
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Synthesis and Characterization of MOF (Co)-525-GI
2.2.1. Purification and Culture of SmGI
2.2.2. Preparation of MOF (Co)-525
2.2.3. Characterization of MOF (Co)-525 and MOF (Co)-525-GI
2.3. Analysis of Enzymatic Activity of MOF (Co)-525-GI
2.3.1. Determination of SmGI Loading Rate
2.3.2. Effects of pH and Temperature on Immobilized and Free SmGI Enzymatic Activities
2.3.3. Determination of Biochemical and Operation Properties
2.3.4. Assessments of Reusability and Storage Stability of MOF (Co)-525-GI
2.4. Statistical Analysis
3. Results and Discussion
3.1. Characterization of MOF (Co)-525-GI Structural Features and Elemental Composition
3.1.1. SDS-Page of SmGI and SEM-EDS Analysis of MOF (Co)-525-GI
3.1.2. Results of XRD, UV Absorption Spectroscopy, FTIR Spectroscopy, and Zeta Potential Analyses
3.2. Effects of Temperature and pH on SmGI Enzymatic Activity
3.3. Kinetic Studies of MOF (Co)-525-GI Activity
3.4. Assessments of MOF (Co)-525-GI Reusability and Stability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Souzanchi, S.; Nazari, L.; Rao, K.T.V.; Yuan, Z.S.; Tan, Z.C.; Xu, C.B. 5-HMF production from industrial grade sugar syrups derived from corn and wood using niobium phosphate catalyst in a biphasic continuous-flow tubular reactor. Catal. Today 2023, 407, 274–280. [Google Scholar] [CrossRef]
- Sharma, M.; Mehta, N.; Suravajhala, R.; Meza, C.; Sarkar, S.; Banerjee, A. Temperature-Dependent Structure-Function Properties of Bacterial Xylose Isomerase Enzyme for Food Applications: An In Silico Study. Clean Technol. 2022, 4, 1317–1329. [Google Scholar] [CrossRef]
- Kennedy, P.L.; Garcia-Fuentes, P.A.; Ferreira, G.F.C. An assessment of the relationship between sweetener prices and high fructose corn syrup deliveries in the United States. J. Appl. Econ. 2021, 24, 633–650. [Google Scholar] [CrossRef]
- Jin, L.Q.; Jin, Y.T.; Zhang, J.W.; Liu, Z.Q.; Zheng, Y.G. Enhanced catalytic efficiency and thermostability of glucose isomerase from Thermoanaerobacter ethanolicus via site-directed mutagenesis. Enzym. Microb. Technol. 2022, 152, 9. [Google Scholar] [CrossRef] [PubMed]
- Nam, K.H. Glucose Isomerase: Functions, Structures, and Applications. Appl. Sci. 2022, 12, 428. [Google Scholar] [CrossRef]
- Miyamoto, R.Y.; de Melo, R.R.; Sampaio, I.L.D.; de Sousa, A.S.; Morais, E.R.; Sargo, C.R.; Zanphorlin, L.M. Paradigm shift in xylose isomerase usage: A novel scenario with distinct applications. Crit. Rev. Biotechnol. 2022, 42, 693–712. [Google Scholar] [CrossRef]
- Fatima, B.; Aftab, M.N.; Ikram-ul, H. Kinetics and thermodynamics for aldo/keto conversion of D-xylose and D-glucose catalyzed by xylose isomerase from Thermotoga naphthophila RKU-10. J. Chem. Technol. Biotechnol. 2021, 96, 2755–2766. [Google Scholar] [CrossRef]
- Singh, T.A.; Jajoo, A.; Bhasin, S. Optimization of various encapsulation systems for efficient immobilization of actinobacterial glucose isomerase. Biocatal. Agric. Biotechnol. 2020, 29, 101766. [Google Scholar] [CrossRef]
- Dai, C.X.; Miao, T.T.; Hai, J.P.; Xiao, Y.Y.; Li, Y.; Zhao, J.R.; Qiu, H.L.; Xu, B. A Novel Glucose Isomerase from Caldicellulosiruptor bescii with Great Potentials in the Production of High-Fructose Corn Syrup. BioMed Res. Int. 2020, 2020, 1871934. [Google Scholar] [CrossRef]
- Deng, H.; Chen, S.; Wu, D.; Chen, J.; Wu, J. Heterologous expression and biochemical characterization of glucose isomerase from Thermobifida fusca. Bioprocess. Biosyst. Eng. 2014, 37, 1211–1219. [Google Scholar] [CrossRef]
- Neifar, S.; Ben Hlima, H.; Mhiri, S.; Mezghani, M.; Bouacem, K.; Ibrahim, A.H.; Jaouadi, B.; Bouanane-Darenfed, A.; Bejar, S. A novel thermostable and efficient Class II glucose isomerase from the thermophilic Caldicoprobacter algeriensis: Biochemical characterization, molecular investigation, and application in High Fructose Syrup production. Int. J. Biol. Macromol. 2019, 129, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Jia, D.X.; Wang, T.; Liu, Z.J.; Jin, L.Q.; Li, J.J.; Liao, C.J.; Chen, D.S.; Zheng, Y.G. Whole cell immobilization of refractory glucose isomerase using tris(hydroxymethyl)phosphine as crosslinker for preparation of high fructose corn syrup at elevated temperature. J. Biosci. Bioeng. 2018, 126, 176–182. [Google Scholar] [CrossRef]
- He, J.; Sun, S.S.; Lu, M.Z.; Yuan, Q.P.; Liu, Y.H.; Liang, H. Metal-nucleobase hybrid nanoparticles for enhancing the activity and stability of metal-activated enzymes. Chem. Commun. 2019, 55, 6293–6296. [Google Scholar] [CrossRef]
- Xu, W.; Yan, M.; Xu, L.; Ding, L.; Ouyang, P. Engineering the activity of thermophilic xylose isomerase by site-directed mutation at subunit interfaces. Enzym. Microb. Technol. 2009, 44, 77–83. [Google Scholar] [CrossRef]
- Zhang, F.; Duan, X.G.; Chen, S.; Wu, D.; Chen, J.; Wu, J. The addition of Co2+ enhances the catalytic efficiency and thermostability of recombinant glucose isomerase from Thermobifida fusca. Process Biochem. 2013, 48, 1502–1508. [Google Scholar] [CrossRef]
- Singh, R.S.; Dhaliwal, R.; Puri, M. Production of high fructose syrup from Asparagus inulin using immobilized exoinulinase from Kluyveromyces marxianus YS-1. J. Ind. Microbiol. Biotechnol. 2007, 34, 649–655. [Google Scholar] [CrossRef]
- Leyssens, L.; Vinck, B.; Van Der Straeten, C.; Wuyts, F.; Maes, L. Cobalt toxicity in humans-A review of the potential sources and systemic health effects. Toxicology 2017, 387, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.C.; Li, M.X.; Zhang, Y.; Yang, H.Y.; Yang, Y.Q.; Xu, X.; Wang, Z.L.; Wang, S.F. Discovery of a novel camphor-based fluorescent probe for Co2 in fresh vegetables with high selectivity and sensitivity. Spectrochim. Acta Part A-Mol. Biomol. Spectrosc. 2021, 248, 119213. [Google Scholar] [CrossRef] [PubMed]
- Bedade, D.K.; Sutar, Y.B.; Singhal, R.S. Chitosan coated calcium alginate beads for covalent immobilization of acrylamidase: Process parameters and removal of acrylamide from coffee. Food Chem. 2019, 275, 95–104. [Google Scholar] [CrossRef]
- Neifar, S.; Cervantes, F.V.; Bouanane-Darenfed, A.; BenHlima, H.; Ballesteros, A.O.; Plou, F.J.; Bejar, S. Immobilization of the glucose isomerase from Caldicoprobacter algeriensis on Sepabeads EC-HA and its efficient application in continuous High Fructose Syrup production using packed bed reactor. Food Chem. 2020, 309, 8. [Google Scholar] [CrossRef]
- Gan, J.S.; Bagheri, A.R.; Aramesh, N.; Gul, I.; Franco, M.; Almulaiky, Y.Q.; Bilal, M. Covalent organic frameworks as emerging host platforms for enzyme immobilization and robust biocatalysis—A review. Int. J. Biol. Macromol. 2021, 167, 502–515. [Google Scholar] [CrossRef]
- Rodrigues, R.C.; Berenguer-Murcia, A.; Carballares, D.; Morellon-Sterling, R.; Fernandez-Lafuente, R. Stabilization of enzymes via immobilization: Multipoint covalent attachment and other stabilization strategies. Biotechnol. Adv. 2021, 52, 37. [Google Scholar] [CrossRef]
- Ashkan, Z.; Hemmati, R.; Homaei, A.; Dinari, A.; Jamlidoost, M.; Tashakor, A. Immobilization of enzymes on nanoinorganic support materials: An update. Int. J. Biol. Macromol. 2021, 168, 708–721. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.W.; Khan, F.S.A.; Mubarak, N.M.; Karri, R.R.; Khalid, M.; Walvekar, R.; Abdullah, E.C.; Mazari, S.A.; Ahmad, A.; Dehghani, M.H. Insight into immobilization efficiency of Lipase enzyme as a biocatalyst on the graphene oxide for adsorption of Azo dyes from industrial wastewater effluent. J. Mol. Liq. 2022, 354, 15. [Google Scholar] [CrossRef]
- Zhou, W.T.; Zhang, W.X.; Cai, Y.P. Enzyme-enhanced adsorption of laccase immobilized graphene oxide for micro-pollutant removal. Sep. Purif. Technol. 2022, 294, 10. [Google Scholar] [CrossRef]
- Ngin, P.; Cho, K.; Han, O. Immobilization of Soybean Lipoxygenase on Nanoporous Rice Husk Silica by Adsorption: Retention of Enzyme Function and Catalytic Potential. Molecules 2021, 26, 291. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, R.R.C.; de Oliveira, A.L.B.; de Menezes, F.L.; de Souza, M.C.M.; Fechine, P.B.A.; dos Santos, J.C.S. Improvement of enzymatic activity and stability of lipase A from Candida antartica onto halloysite nanotubes with Taguchi method for optimized immobilization. Appl. Clay Sci. 2022, 228, 12. [Google Scholar] [CrossRef]
- Aggarwal, S.; Chakravarty, A.; Ikram, S. A comprehensive review on incredible renewable carriers as promising platforms for enzyme immobilization & thereof strategies. Int. J. Biol. Macromol. 2021, 167, 962–986. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Mu, W.M. Application prospects and opportunities of inorganic nanomaterials for enzyme immobilization in the food-processing industry. Curr. Opin. Food Sci. 2022, 47, 8. [Google Scholar] [CrossRef]
- Borzouee, F.; Varshosaz, J.; Cohan, R.A.; Norouzian, D.; Pirposhteh, R.T. A Comparative Analysis of Different Enzyme Immobilization Nano-materials: Progress, Constraints and Recent Trends. Curr. Med. Chem. 2021, 28, 3980–4003. [Google Scholar] [CrossRef]
- Feng, Y.M.; Xu, Y.; Liu, S.C.; Wu, D.; Su, Z.Q.; Chen, G.; Liu, J.H.; Li, G.L. Recent advances in enzyme immobilization based on novel porous framework materials and its applications in biosensing. Coord. Chem. Rev. 2022, 459, 27. [Google Scholar] [CrossRef]
- Birhanli, E.; Noma, S.A.A.; Boran, F.; Ulu, A.; Yesilada, O.; Ates, B. Design of laccase-metal-organic framework hybrid constructs for biocatalytic removal of textile dyes. Chemosphere 2022, 292, 11. [Google Scholar] [CrossRef]
- Silva, A.R.M.; Alexandre, J.; Souza, J.E.S.; Neto, J.G.L.; de Sousa, P.G.; Rocha, M.V.P.; dos Santos, J.C.S. The Chemistry and Applications of Metal-Organic Frameworks (MOFs) as Industrial Enzyme Immobilization Systems. Molecules 2022, 27, 4529. [Google Scholar] [CrossRef]
- Liang, J.Y.; Gao, S.; Liu, J.; Zulkifli, M.Y.B.; Xu, J.T.; Scott, J.; Chen, V.C.; Shi, J.F.; Rawal, A.; Liang, K. Hierarchically Porous Biocatalytic MOF Microreactor as a Versatile Platform towards Enhanced Multienzyme and Cofactor-Dependent Biocatalysis. Angew. Chem.-Int. Edit. 2021, 60, 5421–5428. [Google Scholar] [CrossRef]
- Zhu, L.Y.; Shen, B.W.; Song, Z.; Jiang, L. Permeabilized TreS-Expressing Bacillus subtilis Cells Decorated with Glucose Isomerase and a Shell of ZIF-8 as a Reusable Biocatalyst for the Coproduction of Trehalose and Fructose. J. Agric. Food Chem. 2020, 68, 4464–4472. [Google Scholar] [CrossRef] [PubMed]
- Kaushal, J.; Arya, S.K.; Khatri, M.; Singh, G.; Azelee, N.I.W.; Rajagopal, R.; Chang, S.W.; Ravindran, B.; Awasthi, M.K. Efficacious bioconversion of waste walnut shells to xylotetrose and xylopentose by free xylanase (Xy) and MOF immobilized xylanase (Xy-Cu-BTC). Bioresour. Technol. 2022, 357, 5. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.H.; Young, C.; Lee, M.H.; Salunkhe, R.R.; Alshehri, S.M.; Ahamad, T.; Islam, M.T.; Wu, K.C.W.; Hossain, M.S.A.; Yamauchi, Y.; et al. Synthesis of MOF-525 Derived Nanoporous Carbons with Different Particle Sizes for Supercapacitor Application. Chem.-Asian J. 2017, 12, 2857–2862. [Google Scholar] [CrossRef] [PubMed]
- Sharma, H.K.; Xu, C.B.; Qin, W.S. Isolation of Bacterial Strain with Xylanase and Xylose/Glucose Isomerase (GI) Activity and Whole Cell Immobilization for Improved Enzyme Production. Waste Biomass Valorization 2021, 12, 833–845. [Google Scholar] [CrossRef]
- Lee, D.G.; Choi, D.J.; Park, J.K. Ketoisomeric conversion of glucose derived from microalgal biomasses. Process Biochem. 2015, 50, 941–947. [Google Scholar] [CrossRef]
- Chen, B.; Zhou, X.; Wang, X.; Zhao, S.; Jing, Z.; Jin, Y.; Pi, X.; Du, Q.; Chen, L.; Li, Y. High-efficient removal of anionic dye from aqueous solution using metal-organic frameworks@chitosan aerogel rich in benzene structure. Int. J. Biol. Macromol. 2023, 256, 128433. [Google Scholar] [CrossRef]
- Herrera-Herrera, P.A.; Rodríguez-Sevilla, E.; Varela, A.S. The role of the metal center on charge transport rate in MOF-525: Cobalt and nickel porphyrin. Dalton Trans. 2021, 50, 16939–16944. [Google Scholar] [CrossRef] [PubMed]
- Torres-González, L.; Díaz-Ayala, R.; Vega-Olivencia, C.A.; López-Garriga, J. Characterization of Recombinant His-Tag Protein Immobilized onto Functionalized Gold Nanoparticles. Sensors 2018, 18, 4262. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Zhuang, H.; Zhang, M.; Wang, Y.F.; Zhai, D.; Ma, B.; Wang, X.; Qin, C.; Huan, Z.G.; Wu, C.T. Bone cements for therapy and regeneration for minimally invasive treatment of neoplastic bone defects. J. Mater. Chem. B 2021, 9, 4355–4364. [Google Scholar] [CrossRef] [PubMed]
- Velegol, D.; Feick, J.D.; Collins, L.R. Electrophoresis of spherical particles with a random distribution of zeta potential or surface charge. J. Colloid Interface Sci. 2000, 230, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.X.; Feng, A.R.; Liu, Z.J.; Li, D.Q. Zeta potentials of PDMS surfaces modified with poly(ethylene glycol) by physisorption. Electrophoresis 2020, 41, 761–768. [Google Scholar] [CrossRef] [PubMed]
- Sabi, G.J.; Gama, R.S.; Fernandez-Lafuente, R.; Cancino-Bernardi, J.; Mendes, A.A. Decyl esters production from soybean-based oils catalyzed by lipase immobilized on differently functionalized rice husk silica and their characterization as potential biolubricants. Enzym. Microb. Technol. 2022, 157, 14. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.Q.; Chen, X.X.; Jin, Y.T.; Shentu, J.K.; Liu, Z.Q.; Zheng, Y.G. Immobilization of recombinant Escherichia coli cells expressing glucose isomerase using modified diatomite as a carrier for effective production of high fructose corn syrup in packed bed reactor. Bioprocess. Biosyst. Eng. 2021, 44, 1781–1792. [Google Scholar] [CrossRef]
- Ma, X.N.; Huang, W.R.; Song, Y.Q.; Han, J.; Wu, J.C.; Wang, L.; Wang, Y. Novel Recyclable UCST-Type Immobilized Glucose Isomerase Biocatalyst with Excellent Performance for Isomerization of Glucose to Fructose. J. Agric. Food Chem. 2022, 70, 13959–13968. [Google Scholar] [CrossRef]
- Morris, W.; Volosskiy, B.; Demir, S.; Gandara, F.; McGrier, P.L.; Furukawa, H.; Cascio, D.; Stoddart, J.F.; Yaghi, O.M. Synthesis, Structure, and Metalation of Two New Highly Porous Zirconium Metal-Organic Frameworks. Inorg. Chem. 2012, 51, 6443–6445. [Google Scholar] [CrossRef]
- Yu, K.; Lee, Y.R.; Seo, J.Y.; Baek, K.Y.; Chung, Y.M.; Ahn, W.S. Sonochemical synthesis of Zr-based porphyrinic MOF-525 and MOF-545: Enhancement in catalytic and adsorption properties. Microporous Mesoporous Mater. 2021, 316, 8. [Google Scholar] [CrossRef]
- Efome, J.E.; Rana, D.; Matsuura, T.; Lan, C.Q. Insight Studies on Metal-Organic Framework Nanofibrous Membrane Adsorption and Activation for Heavy Metal Ions Removal from Aqueous Solution. ACS Appl. Mater. Interfaces 2018, 10, 18619–18629. [Google Scholar] [CrossRef] [PubMed]
Vmax (μM/min) | Km (mM) | Kcat (S−1) | |
---|---|---|---|
SmGI | 34.46 ± 2.00 | 44.27 ± 3.10 | 68.53 ± 3.98 |
SmGI + Co2+ | 52.21 ± 1.86 | 28.67 ± 1.23 | 103.83 ± 3.70 |
MOF-525-GI | 23.11 ± 1.84 | 56.32 ± 5.43 | 46.53 ± 3.71 |
MOF-525-GI + Co2+ | 38.85 ± 1.71 | 52.58 ± 2.45 | 78.22 ± 3.45 |
MOF(Co)-525-GI | 37.24 ± 1.91 | 46.25 ± 3.03 | 90.2 ± 4.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, X.; Li, Y.; Wang, R.; Jiang, S.; Liang, Y.; Li, T.; Li, C.; Tao, J.; Li, Z. Enhanced High-Fructose Corn Syrup Production: Immobilizing Serratia marcescens Glucose Isomerase on MOF (Co)-525 Reduces Co2+ Dependency in Glucose Isomerization to Fructose. Foods 2024, 13, 527. https://doi.org/10.3390/foods13040527
Geng X, Li Y, Wang R, Jiang S, Liang Y, Li T, Li C, Tao J, Li Z. Enhanced High-Fructose Corn Syrup Production: Immobilizing Serratia marcescens Glucose Isomerase on MOF (Co)-525 Reduces Co2+ Dependency in Glucose Isomerization to Fructose. Foods. 2024; 13(4):527. https://doi.org/10.3390/foods13040527
Chicago/Turabian StyleGeng, Xu, Yi Li, Ruizhe Wang, Song Jiang, Yingchao Liang, Tao Li, Chen Li, Jin Tao, and Zhengqiang Li. 2024. "Enhanced High-Fructose Corn Syrup Production: Immobilizing Serratia marcescens Glucose Isomerase on MOF (Co)-525 Reduces Co2+ Dependency in Glucose Isomerization to Fructose" Foods 13, no. 4: 527. https://doi.org/10.3390/foods13040527
APA StyleGeng, X., Li, Y., Wang, R., Jiang, S., Liang, Y., Li, T., Li, C., Tao, J., & Li, Z. (2024). Enhanced High-Fructose Corn Syrup Production: Immobilizing Serratia marcescens Glucose Isomerase on MOF (Co)-525 Reduces Co2+ Dependency in Glucose Isomerization to Fructose. Foods, 13(4), 527. https://doi.org/10.3390/foods13040527