Bongkrekic Acid and Burkholderia gladioli pathovar cocovenenans: Formidable Foe and Ascending Threat to Food Safety
Abstract
:1. Introduction
2. A Dual Biography of Burkholderia gladioli pathovar cocovenenans and Bongkrekic Acid
3. Pathogenesis of Bongkrekic Acid
4. Genomic Characteristics of Burkholderia gladioli pathovar cocovenenans
4.1. Genomic Diversity and Prevalence
4.2. The Bon Gene Cluster and Bongkrekic Acid Biosynthesis
5. Characteristics of Burkholderia gladioli pathovar cocovenenans
5.1. Bongkrekic Acid Production in Culture Media
5.2. Effect of Food Ingredients on the Production of Bongkrekic Acid
5.3. Bongkrekic Acid Production under Co-Culture Conditions
6. Detection and Analytical Advancements
6.1. Detections of Bongkrekic Acid
6.2. Detections of Burkholderia gladioli pathovar cocovenenans and Gene
Food Matrix | Target | Analytical Method | Limit of Detection | Reference |
---|---|---|---|---|
Glutinous rice flour, corn flour, tremella (white wood ear mushrooms) | BKA | Mixed-mode weak anion exchange solid-phase extraction combined with HPLC and diode array detection | 30 μg/kg | [81] |
Formula rice powder | Liquid chromatography–electrospray ionization quadrupole time of flight mass spectrometry | 2 μg/kg | [82] | |
Liquor fermentation culture | UPLC–MS/MS | 0.4 μg/kg | [83] | |
Rice noodle | HPLC-Orbitrap High-Resolution MS with a Fe3O4/Halloysite nanotubes procedure | 0.3 μg/kg | [33] | |
Auricularia heimuer (black wood ear mushroom) | HPLC–MS/MS with novel sample preparation technique | 1.0 μg/kg | [84] | |
Rice, corn flour, and fermented corn noodle | UPLC-MS/MS | 0.12 μg/kg | [72] | |
tremella | Visual detection using cysteamine modified gold nanoparticles | 3.43 nM | [85] | |
Auricularia heimuer, tremella, and rice noodle | Colloidal gold immunochromatography assay | 1.2 μg/k | [73] | |
tremella | B. gladioli pv. cocovenenans | Loop-mediated isothermal amplification technology on 16S–23S rRNA-encoding region | 76 CFU/mL | [78] |
Glutinous rice soup | Quantitative PCR on 16S–23S rRNA-encoding region | 361 CFU/mL | [74] | |
Rice noodle, fresh white noodle, and glutinous rice flour | Pathogenic and non-pathogenic B. gladioli | Recombinant enzyme polymerase amplification with CRISPR/Cas12a system | 10–100 CFU/mL | [77] |
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- WHO. WHO Estimates of the Global Burden of Foodborne Diseases: Foodborne Disease Burden Epidemiology Reference Group 2007–2015; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Pires, S.M.; Desta, B.N.; Mughini-Gras, L.; Mmbaga, B.T.; Fayemi, O.E.; Salvador, E.M.; Gobena, T.; Majowicz, S.E.; Hald, T.; Hoejskov, P.S. Burden of foodborne diseases: Think global, act local. Curr. Opin. Food Sci. 2021, 39, 152–159. [Google Scholar] [CrossRef]
- Anwar, M.; Kasper, A.; Steck, A.R.; Schier, J.G. Bongkrekic acid—A review of a lesser-known mitochondrial toxin. J. Med. Toxicol. 2017, 13, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Moebius, N.; Ross, C.; Scherlach, K.; Rohm, B.; Roth, M.; Hertweck, C. Biosynthesis of the respiratory toxin bongkrekic acid in the pathogenic bacterium Burkholderia gladioli. Chem. Biol. 2012, 19, 1164–1174. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.; Huang, X.; Zhu, W.; Chen, J.; Huang, Y.; Zhao, Z.; Weng, J.; Che, Y.; Wang, J.; Wang, X. Pan-genome analysis of the Burkholderia gladioli pv. cocovenenans reveal the extent of variation in the toxigenic gene cluster. Food Microbiol. 2023, 113, 104249. [Google Scholar]
- Yuan, M.; Han, R.; Bai, L.; Dong, Y.; Xi, Q.; Du, Q.; Yang, Y.; Forghani, F.; Yang, Q.; Ahn, J. Recent Advances in the Characterization of Burkholderia gladioli pv. cocovenenans and Its Toxin Production. Food Rev. Int. 2023, 1–16. [Google Scholar] [CrossRef]
- Falconer, T.M.; Kern, S.E.; Brzezinski, J.L.; Turner, J.A.; Boyd, B.L.; Litzau, J.J. Identification of the potent toxin bongkrekic acid in a traditional African beverage linked to a fatal outbreak. Forensic Sci. Int. 2017, 270, e5–e11. [Google Scholar] [CrossRef]
- Peng, Z.; Dottorini, T.; Hu, Y.; Li, M.; Yan, S.; Fanning, S.; Baker, M.; Xu, J.; Li, F. Comparative genomic analysis of the foodborne pathogen Burkholderia gladioli pv. cocovenenans harboring a bongkrekic acid biosynthesis gene cluster. Front. Microbiol. 2021, 12, 628538. [Google Scholar]
- Garcia, R.A. The effect of lipids on bongkrekic (Bongkrek) acid toxin production by Burkholderia cocovenenans in coconut media. Food Addit. Contam. 1999, 16, 63–69. [Google Scholar] [CrossRef]
- Zhao, N.; Ma, M.; Zhang, Y.; Xu, D. Comparative description of Pseudomonas cocovenenans (van Damme, Johannes, Cox, and Berends 1960) NCIB 9450T and strains isolated from cases of food poisoning caused by consumption of fermented corn flour in China. Int. J. Syst. Evol. Microbiol. 1990, 40, 452–455. [Google Scholar] [CrossRef]
- Lynch, K.; Dennis, J. Burkholderia; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Yuan, Y.; Gao, R.; Liang, Q.; Song, L.; Huang, J.; Lang, N.; Zhou, J. A Foodborne Bongkrekic Acid Poisoning Incident—Heilongjiang Province, 2020. China CDC Wkly. 2020, 2, 975. [Google Scholar] [CrossRef]
- Ruprecht, J.J.; King, M.S.; Zögg, T.; Aleksandrova, A.A.; Pardon, E.; Crichton, P.G.; Steyaert, J.; Kunji, E.R. The molecular mechanism of transport by the mitochondrial ADP/ATP carrier. Cell 2019, 176, 435–447.e15. [Google Scholar] [CrossRef] [PubMed]
- Ko, S. Growth and toxin production of Pseudomonas cocovenenans, the so-called ‘bongkrek bacteria’. ASEAN Food J. 1985, 1, 78. [Google Scholar]
- Cox, J.; Embit, K.; Buckle, K. Burkholderia cocovenenans. In Foodborne Microorganisms of Public Health Significance; Australian Institute of Food Science and Technology: Waterloo, Australia, 2003; pp. 605–614. [Google Scholar]
- Welling, W.; Cohen, J.; Berends, W. Disturbance of oxidative phosphorylation by an antibioticum produced by Pseudomonas cocovenenans. Biochem. Pharmacol. 1960, 3, 122–135. [Google Scholar] [CrossRef] [PubMed]
- ProMED-Mail. Burkholderia cocovenenans Foodborne Illness—Indonesia (Central Java). Available online: https://promedmail.org/promed-post/?id=20265 (accessed on 15 July 2023).
- ProMED-Mail. Burkholderia cocovenenans Foodborne Illness—China: (YN). Available online: https://promedmail.org/promed-post/?id=2587303 (accessed on 15 July 2023).
- Gudo, E.S.; Cook, K.; Kasper, A.M.; Vergara, A.; Salomão, C.; Oliveira, F.; Ismael, H.; Saeze, C.; Mosse, C.; Fernandes, Q. Description of a mass poisoning in a rural district in Mozambique: The first documented bongkrekic acid poisoning in Africa. Clin. Infect. Dis. 2018, 66, 1400–1406. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhou, L.; Long, C.; Fang, L.; Chen, Q.; Chen, Q.; Liang, J.; Yang, Y.; Zhu, H.; Chen, Z. An investigation of Bongkrekic acid poisoning caused by consumption of a nonfermented rice noodle product without noticeable signs of spoilage. J. Food Prot. 2019, 82, 1650–1654. [Google Scholar] [CrossRef]
- Shi, R.; Long, C.; Dai, Y.; Huang, Q.; Gao, Y.; Zhang, N.; Chen, Y.; Liu, S.; Ma, Q.; Quan, L. Bongkrekic acid poisoning: Severe liver function damage combined with multiple organ failure caused by eating spoiled food. Leg. Med. 2019, 41, 101622. [Google Scholar] [CrossRef]
- Chhetri, V.; Pokhrel, H.P.; Dorji, T. A review on foodborne disease outbreaks in Bhutan. WHO South-East Asia. J. Public Health 2021, 10, 101–104. [Google Scholar]
- Van Veen, A. The Bongkrek Toxins; MIT Press: Cambridge, UK, 1967. [Google Scholar]
- Henderson, P.J.; Lardy, H.A. Bongkrekic acid: An inhibitor of the adenine nucleotide translocase of mitochondria. J. Biol. Chem. 1970, 245, 1319–1326. [Google Scholar] [CrossRef]
- Zhang, H.; Guo, Y.; Chen, L.; Liu, Z.; Liang, J.; Shi, M.; Gao, F.; Song, Y.; Chen, J.; Fu, P. Epidemiology of foodborne bongkrekic acid poisoning outbreaks in China, 2010 to 2020. PLoS ONE 2023, 18, e0279957. [Google Scholar] [CrossRef]
- Nout, M. Fermented foods and food safety. Food Res. Int. 1994, 27, 291–298. [Google Scholar] [CrossRef]
- Anal, A.K.; Perpetuini, G.; Petchkongkaew, A.; Tan, R.; Avallone, S.; Tofalo, R.; Van Nguyen, H.; Chu-Ky, S.; Ho, P.H.; Phan, T.T. Food safety risks in traditional fermented food from South-East Asia. Food Control 2020, 109, 106922. [Google Scholar] [CrossRef]
- Tamang, J.P.; Cotter, P.D.; Endo, A.; Han, N.S.; Kort, R.; Liu, S.Q.; Mayo, B.; Westerik, N.; Hutkins, R. Fermented foods in a global age: East meets West. Compr. Rev. Food Sci. Food Saf. 2020, 19, 184–217. [Google Scholar] [CrossRef]
- Buckle, K.; Kartadarma, E. Inhibition of bongkrek acid and toxoflavin production in tempe bongkrek containing Pseudomonas cocovenenans. J. Appl. Microbiol. 1990, 68, 571–576. [Google Scholar] [CrossRef]
- Šubík, J.; Behúň, M. Effect of bongkrekic acid on growth and metabolism of filamentous fungi. Arch. Microbiol. 1974, 97, 81–88. [Google Scholar] [CrossRef]
- Voragen, A.; De Kok, H.; Kelholt, A.; Schols, H.; Djien, K.S. Determination of bongkrek acid and toxoflavin by high pressure liquid chromatography. Food Chem. 1982, 9, 167–174. [Google Scholar] [CrossRef]
- Somprasong, N.; McMillan, I.; Karkhoff-Schweizer, R.R.; Mongkolsuk, S.; Schweizer, H.P. Methods for genetic manipulation of Burkholderia gladioli pathovar cocovenenans. BMC Res. Notes 2010, 3, 308. [Google Scholar] [CrossRef]
- Liang, M.; Chen, R.; Xian, Y.; Hu, J.; Hou, X.; Wang, B.; Wu, Y.; Wang, L. Determination of bongkrekic acid and isobongkrekic acid in rice noodles by HPLC-Orbitrap HRMS technology using magnetic halloysite nanotubes. Food Chem. 2021, 344, 128682. [Google Scholar] [CrossRef] [PubMed]
- Cissé, G. Food-borne and water-borne diseases under climate change in low-and middle-income countries: Further efforts needed for reducing environmental health exposure risks. Acta Trop. 2019, 194, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Caniça, M.; Manageiro, V.; Abriouel, H.; Moran-Gilad, J.; Franz, C.M. Antibiotic resistance in foodborne bacteria. Trends Food Sci. Technol. 2019, 84, 41–44. [Google Scholar] [CrossRef]
- Skowron, K.; Budzyńska, A.; Grudlewska-Buda, K.; Wiktorczyk-Kapischke, N.; Andrzejewska, M.; Wałecka-Zacharska, E.; Gospodarek-Komkowska, E. Two Faces of Fermented Foods—The Benefits and Threats of Its Consumption. Front. Microbiol. 2022, 13, 679. [Google Scholar] [CrossRef]
- Nugteren, D.; Berends, W. Investigations on bongkrekic acid, the toxine from Pseudomonas cocovenenans. Recl. Trav. Chim. PaysBas 1957, 76, 13–27. [Google Scholar] [CrossRef]
- Yabuuchi, E.; Kosako, Y.; Oyaizu, H.; Yano, I.; Hotta, H.; Hashimoto, Y.; Ezaki, T.; Arakawa, M. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol. Immunol. 1992, 36, 1251–1275. [Google Scholar] [CrossRef]
- Zhao, N.; Qu, C.; Wang, E.; Chen, W. Phylogenetic Evidence for the Transfer of Pseudomonas cocovenenans (van Damme et al. 1960) to the Genus Burkholderia as Burkholderia cocovenenans (van Damme et al. 1960) comb. nov. Int. J. Syst. Evol. Microbiol. 1995, 45, 600–603. [Google Scholar] [CrossRef]
- Coenye, T.; Holmes, B.; Kersters, K.; Govan, J.; Vandamme, P. Burkholderia cocovenenans and Burkholderia vandii are junior synonyms of Burkholderia gladioli (Severini 1913) and Burkholderia plantarii, respectively. Int. J. Syst. Evol. Microbiol. 1999, 49, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Helfrich, E.J.; Piel, J. Biosynthesis of polyketides by trans-AT polyketide synthases. Nat. Prod. Rep. 2016, 33, 231–316. [Google Scholar] [CrossRef] [PubMed]
- Mertens, W.; van Veen, A. A Fréquent Cause of Poisoning in Javanese. Bull. Société Pathol. Exot. 1934, 27. Available online: https://www.cabdirect.org/cabdirect/abstract/19342901639 (accessed on 15 July 2023).
- Van Veen, A.; Mertens, W. On the isolation of a toxic bacterial pigment (provisional communication). Proc. Konink. Akad. Wetensch. Amsterdam 1933, 36, 666–670. [Google Scholar]
- Van Veen, A.; Mertens, W. Toxoflavine, the yellow pigment of bongkrek. Recl. Trav. Chim. Pays-Bas Belg. 1934, 53, 398–404. [Google Scholar] [CrossRef]
- Van Veen, A.; Mertens, W. Bongkrek acid, a blood sugar lowering substance. Preliminary communication. Recl. Trav. Chim. Pays-Bas Belg. 1935, 54, 373–380. [Google Scholar] [CrossRef]
- Van Veen, A.; Mertens, W. The effect of the acid from bongkrek on carbohydrate metabolism. Geneeskd. Tijdschr. Voor Ned. Indie 1935, 75, 1059–1127. [Google Scholar]
- Jeong, Y.; Kim, J.; Kim, S.; Kang, Y.; Nagamatsu, T.; Hwang, I. Toxoflavin produced by Burkholderia glumae causing rice grain rot is responsible for inducing bacterial wilt in many field crops. Plant Dis. 2003, 87, 890–895. [Google Scholar] [CrossRef]
- Lee, J.; Park, J.; Kim, S.; Park, I.; Seo, Y.S. Differential regulation of toxoflavin production and its role in the enhanced virulence of Burkholderia gladioli. Mol. Plant Pathol. 2016, 17, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, Y.; Wang, R.; Wang, Q.; Lu, L. Toxoflavin produced by Burkholderia gladioli from Lycoris aurea is a new broad-spectrum fungicide. Appl. Environ. Microbiol. 2019, 85, e00106-19. [Google Scholar] [CrossRef]
- Van Damme, P.; Johannes, A.; Cox, H.; Berends, W. On toxoflavin, the yellow poison of Pseudomonas cocovenenans. Recl. Trav. Chim. Pays Bas 1960, 79, 255–267. [Google Scholar] [CrossRef]
- Philmus, B.; Shaffer, B.T.; Kidarsa, T.A.; Yan, Q.; Raaijmakers, J.M.; Begley, T.P.; Loper, J.E. Investigations into the biosynthesis, regulation, and self-resistance of toxoflavin in Pseudomonas protegens Pf-5. ChemBioChem 2015, 16, 1782–1790. [Google Scholar] [CrossRef] [PubMed]
- Erdelt, H.; Weidemann, M.J.; Buchholz, M.; Klingenberg, M. Some principle effects of bongkrekic acid on the binding of adenine nucleotides to mitochondrial membranes. Eur. J. Biochem. 1972, 30, 107–122. [Google Scholar] [CrossRef] [PubMed]
- Klingenberg, M.; Appel, M.; Babel, W.; Aquila, H. The binding of bongkrekate to mitochondria. Eur. J. Biochem. 1983, 131, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Scherer, B.; Klingenberg, M. Demonstration of the relation between the adenine nucleotide carrier and the structural changes of mitochondria as induced by adenosine 5′-diphosphate. Biochemistry 1974, 13, 161–170. [Google Scholar] [CrossRef]
- Kunji, E.R.; Aleksandrova, A.; King, M.S.; Majd, H.; Ashton, V.L.; Cerson, E.; Springett, R.; Kibalchenko, M.; Tavoulari, S.; Crichton, P.G. The transport mechanism of the mitochondrial ADP/ATP carrier. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2016, 1863, 2379–2393. [Google Scholar] [CrossRef]
- Behl, A.; Nair, A.; Mohagaonkar, S.; Yadav, P.; Gambhir, K.; Tyagi, N.; Sharma, R.K.; Butola, B.S.; Sharma, N. Threat, challenges, and preparedness for future pandemics: A descriptive review of phylogenetic analysis based predictions. Infect. Genet. Evol. 2022, 98, 105217. [Google Scholar] [CrossRef]
- Baker, S.; Hanage, W.P.; Holt, K.E. Navigating the future of bacterial molecular epidemiology. Curr. Opin. Microbiol. 2010, 13, 640–645. [Google Scholar] [CrossRef]
- Tang, P.; Croxen, M.A.; Hasan, M.R.; Hsiao, W.W.; Hoang, L.M. Infection control in the new age of genomic epidemiology. Am. J. Infect. Control 2017, 45, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Pallen, M.J.; Loman, N.J.; Penn, C.W. High-throughput sequencing and clinical microbiology: Progress, opportunities and challenges. Curr. Opin. Microbiol. 2010, 13, 625–631. [Google Scholar] [CrossRef]
- Chen, H.; Du, L. Iterative polyketide biosynthesis by modular polyketide synthases in bacteria. Appl. Microbiol. Biotechnol. 2016, 100, 541–557. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.Q.; Coughlin, J.M.; Lim, S.K.; Shen, B. Type I polyketide synthases that require discrete acyltransferases. Meth. Enzymol. 2009, 459, 165–186. [Google Scholar]
- Walker, P.; Weir, A.; Willis, C.; Crump, M. Polyketide β-branching: Diversity, mechanism and selectivity. Nat. Prod. Rep. 2021, 38, 723–756. [Google Scholar] [CrossRef]
- Rohm, B.; Scherlach, K.; Hertweck, C. Biosynthesis of the mitochondrial adenine nucleotide translocase (ATPase) inhibitor bongkrekic acid in Burkholderia gladioli. Org. Biomol. Chem. 2010, 8, 1520–1522. [Google Scholar] [CrossRef]
- Kartadarma, E. Growth of Pseudomonas cocovenenans and Toxin Production in Tempe Bongkrek; University of New South Wales: Sydney, Australia, 1991. [Google Scholar]
- Fidan, H.; Esatbeyoglu, T.; Simat, V.; Trif, M.; Tabanelli, G.; Kostka, T.; Montanari, C.; Ibrahim, S.A.; Özogul, F. Recent developments of lactic acid bacteria and their metabolites on foodborne pathogens and spoilage bacteria: Facts and gaps. Food Biosci. 2022, 47, 101741. [Google Scholar] [CrossRef]
- Gao, Z.; Daliri, E.B.-M.; Wang, J.; Liu, D.; Chen, S.; Ye, X.; Ding, T. Inhibitory effect of lactic acid bacteria on foodborne pathogens: A review. J. Food Prot. 2019, 82, 441–453. [Google Scholar] [CrossRef]
- Adams, M.R.; Nicolaides, L. Review of the sensitivity of different foodborne pathogens to fermentation. Food Control 1997, 8, 227–239. [Google Scholar] [CrossRef]
- Ko, S.; Kelholt, A.J. The inhibitive effect of Rhizapus oligosparus on toxin production by Pseudomonas cocovenenans in “tempe” bongkrek. Ann. Bogor. 1981, 7, 97–106. [Google Scholar]
- Handoyo, T.; Morita, N. Structural and functional properties of fermented soybean (tempeh) by using Rhizopus oligosporus. Int. J. Food Prop. 2006, 9, 347–355. [Google Scholar] [CrossRef]
- Hachmeister, K.A.; Fung, D.Y. Tempeh: A mold-modified indigenous fermented food made from soybeans and/or cereal grains. Crit. Rev. Microbiol. 1993, 19, 137–188. [Google Scholar] [CrossRef]
- Lumbach, G.; Cox, H.; Berends, W. Elucidation of the chemical structure of bongkrekic acid—I: Isolation, purification and properties of bongkrekic acid. Tetrahedron 1970, 26, 5993–5999. [Google Scholar] [CrossRef]
- Hu, J.; Liang, M.; Xian, Y.; Chen, R.; Wang, L.; Hou, X.; Wu, Y. Development and validation of a multianalyte method for quantification of aflatoxins and bongkrekic acid in rice and noodle products using PRiME-UHPLC-MS/MS method. Food Chem. 2022, 395, 133598. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Xu, Z.; Su, Y.; Wang, Y.; Lei, H.; Xiao, J. The rapid detection of bongkrekic acid in foods using colloidal gold immunochromatographic assay. J. Chin. Inst. Food Sci. Technol. 2023, 23, 309–318. [Google Scholar]
- Li, H.-J.; Dong, L.-H.; Chen, G.-F.; Liu, S.-Y.; Yang, J.-Y.; Yang, J.-Y. Establishment of Droplet Digital PCR Assay for Quantitative Detection of Pseudomonas cocovenenans in Foods. Biotechnol. Bull. 2023, 39, 127. [Google Scholar]
- Mothershed, E.A.; Whitney, A.M. Nucleic acid-based methods for the detection of bacterial pathogens: Present and future considerations for the clinical laboratory. Clin. Chim. Acta 2006, 363, 206–220. [Google Scholar] [CrossRef]
- Huo, B.; Hu, Y.; Gao, Z.; Li, G. Recent advances on functional nucleic acid-based biosensors for detection of food contaminants. Talanta 2021, 222, 121565. [Google Scholar] [CrossRef]
- Zheng, J.; Liu, L.; Li, X.; Xu, Z.; Gai, Z.; Zhang, X.; Lei, H.; Shen, X. Rapid and Simple Detection of Burkholderia gladioli in Food Matrices Using RPA-CRISPR/Cas12a Method. Foods 2023, 12, 1760. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, Y.; Wang, Y.; Liu, Z.; Wang, X.; Zhang, W. Rapid detection of Pseudomonas cocovenenans by loop-mediated isothermal amplification. Sci. Technol. Food Ind. 2013, 34, 321–324. [Google Scholar]
- Sabat, A.J.; van Zanten, E.; Akkerboom, V.; Wisselink, G.; van Slochteren, K.; de Boer, R.F.; Hendrix, R.; Friedrich, A.W.; Rossen, J.W.; Kooistra-Smid, A.M. Targeted next-generation sequencing of the 16S-23S rRNA region for culture-independent bacterial identification-increased discrimination of closely related species. Sci. Rep. 2017, 7, 3434. [Google Scholar] [CrossRef]
- Chang, H.C.; Wei, Y.F.; Dijkshoorn, L.; Vaneechoutte, M.; Tang, C.T.; Chang, T.C. Species-level identification of isolates of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex by sequence analysis of the 16S-23S rRNA gene spacer region. J. Clin. Microbiol. 2005, 43, 1632–1639. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Jin, Y.; Huang, H.; Weng, C.; Hu, Y. Fast determination of bongkrekic acid in foods using mixed-mode weak anion exchange solid phase extraction coupled with high performance liquid chromatography with diode array detection (HPLC-DAD). Food Sci. 2016, 37, 247–251. [Google Scholar]
- Li, H.; Yuan, F.; Zhang, C. The research of detection bongkrekic acid (BA) by LC-ESI-TOF technology. Food Ind. 2018, 39, 319–323. [Google Scholar]
- Junhu, W.; Yongsheng, Q.; Jian, W.; Yuan, Z. Rapid determination of bongkrekic acid in Liushenqu by ultra performance liquid chromatography-tandem mass spectrometry. Chin. J. Chromatogr. 2019, 37, 963. [Google Scholar]
- Zhang, J.; Wang, X.; Ma, Q.; Zhang, X.; Su, Y.; Zhang, R. Determination of Bongkrekic Acid in Agaric by HPLC-MS/MS. Henan J. Prev. Med. 2021, 32, 496–499. [Google Scholar]
- Zhang, Y.; Hou, S.; Song, H.; Luo, X.; Wu, D.; Zheng, F.; Liu, W.; Ji, S. The dual-mode platform based on cysteamine-stabilized gold nanoparticles for the high throughput and on-site detection of bongkrekic acid. Food Control 2022, 136, 108887. [Google Scholar] [CrossRef]
Region (Country) | Year a | Food Matrix | Case-Fatality Rate (Deaths vs. Number of Illnesses) | Reference |
---|---|---|---|---|
Central Java (Indonesia) | 2007 | Fermented soybean pulp | 33.3% (10:30) | [17] |
Yunnan Province (Southern China) | 2014 | Fermented corn flour snacks | 22.7% (5:22) | [18] |
Southern Africa (Mozambique) | 2015 | Brewed corn flour alcoholic beverage | 32% (75:234) | [19] |
Guangdong Province (Southern China) | 2018 | Rice noodle (not fermented or spoiled) | 50% (2:4) | [20] |
Guangdong Province (Southern China) | 2019 (Publication year) | Rice noodle (expired) | 60% (3:5) (5 separated cases) | [21] |
Heilongjiang Province (Northern China) | 2020 | Fermented corn flour | 100% (9:9) | [12] |
Dagana District (Bhutan) | 2020 | Brewed corn alcohol (suspected) | 66.7% (4:6) | [22] |
Substrate Concentration a | Medium Type b | Culture Medium Formulation | Initial Bacterial Population (Log CFU/g or Log CFU/mL) | Bacterial Growth When the Substrate Exceeds the Concentration Range c | Reference |
---|---|---|---|---|---|
Between 0 and 10% glycerol | Wet | Coconut culture medium: prepared from water-pressed desiccated coconut with a final pH 6.9 | 5.96 | + | [64] |
Lower than 4% glucose | 4.54 | + | |||
Lower than 0.8% garlic powder | 4.64 | Unknown | |||
Lower than 0.6% onion power | 5.27 | Unknown | |||
Lower than 0.8% capsicum power | 3.64 | Unknown | |||
Lower than 0.6% turmeric power | 5.27 | Unknown | |||
Lower than 2% NaCl and pH value higher than 4.5 (adjusted using acetic acid) | 5.78 to 7.04 | − | [29] | ||
Higher than 10% coconut fat | Dry | Defatted rich coconut medium: prepared from water-blended fresh coconut meat with lipid content extracted | 8.95 | + | [9] |
3.31 mmol/g oleic acid | Wet | + | |||
Higher than 40% lauric acid | Dry | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, D.; Chen, J.; Chen, W.; Wang, Y. Bongkrekic Acid and Burkholderia gladioli pathovar cocovenenans: Formidable Foe and Ascending Threat to Food Safety. Foods 2023, 12, 3926. https://doi.org/10.3390/foods12213926
Han D, Chen J, Chen W, Wang Y. Bongkrekic Acid and Burkholderia gladioli pathovar cocovenenans: Formidable Foe and Ascending Threat to Food Safety. Foods. 2023; 12(21):3926. https://doi.org/10.3390/foods12213926
Chicago/Turabian StyleHan, Dong, Jian Chen, Wei Chen, and Yanbo Wang. 2023. "Bongkrekic Acid and Burkholderia gladioli pathovar cocovenenans: Formidable Foe and Ascending Threat to Food Safety" Foods 12, no. 21: 3926. https://doi.org/10.3390/foods12213926
APA StyleHan, D., Chen, J., Chen, W., & Wang, Y. (2023). Bongkrekic Acid and Burkholderia gladioli pathovar cocovenenans: Formidable Foe and Ascending Threat to Food Safety. Foods, 12(21), 3926. https://doi.org/10.3390/foods12213926