Ultrasound-Assisted Enzymatic Protein Hydrolysis in Food Processing: Mechanism and Parameters
Abstract
:1. Introduction
2. Ultrasonic Pretreatment before Enzymatic Hydrolysis
2.1. Mechanism of Ultrasonic Pretreatment
2.1.1. Effect of Ultrasonic Pretreatment on the Surface Properties of Substrates
2.1.2. Effect of Ultrasonic Pretreatment on the Structure of Substrates
2.1.3. Effect of Ultrasonic Pretreatment on Thermodynamic and Dynamic Parameters
Effect of Ultrasonic Pretreatment on Dynamic Parameters
Effect of Ultrasonic Pretreatment on Thermodynamic Parameters
2.2. Effect of the Ultrasonic Pretreatment Conditions on Enzymolysis
3. Ultrasound–Enzyme Synergy (UES) in Protein Hydrolysis
3.1. Mechanism of UES
3.1.1. Effect of UES on the Enzyme Structure
3.1.2. Effect of UES on the Substrate Structure
3.2. Key Parameters in UES
3.3. Application of Ultrasound-Assisted Enzymatic Hydrolysis in Food Processing
4. Devices for Ultrasound-Assisted Enzymatic Hydrolysis
5. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviation | Term |
US | Ultrasound |
SEM | Scanning electron microscopy |
IDF | Insoluble dietary fiber |
UP | Ultrasonic pretreatment |
AFM | Atomic force microscopy |
WG | Wheat gluten |
CD | Circular dichroism |
FTIR | Fourier transform infrared spectrum |
DO | Degree of order |
DD | Double helix |
N-O’KI | Infrared crystal index spectra |
KM | Michaelis–Menten constant |
UTRP | Ultrasound-pretreated tea residue protein |
KA | Association constant |
Ea | Activation energy |
ΔH | Change in enthalpy |
ΔS | Change in entropy |
ΔG | Change in Gibbs free energy |
DFU | Dual-frequency ultrasound |
DH | Hydrolysis degree |
ACE | Angiotensin-I-converting enzyme |
LPDU | Low-power-density ultrasound |
CGM | Corn gluten meal |
EBNH | Edible bird’s nest hydrolysate |
UAE | Ultrasound-assisted enzymatic |
UAEE | Ultrasound-assisted aqueous enzymatic extraction |
GSP-U | Glycyrrhiza uralensis seed protein |
References
- Sango, D.M.; Abela, D.; McElhatton, A.; Valdramidis, V.P. Assisted ultrasound applications for the production of safe foods. J. Appl. Microbiol. 2014, 116, 1067–1083. [Google Scholar] [CrossRef]
- Rathnakumar, K.; Kalaivendan, R.G.T.; Eazhumalai, G.; Raja Charles, A.P.; Verma, P.; Rustagi, S.; Bharti, S.; Kothakota, A.; Siddiqui, S.A.; Manuel Lorenzo, J.; et al. Applications of ultrasonication on food enzyme inactivation- recent review report (2017–2022). Ultrason. Sonochem. 2023, 96, 106407. [Google Scholar] [CrossRef] [PubMed]
- Gallo, M.; Ferrara, L.; Naviglio, D. Application of ultrasound in food science and technology: A perspective. Foods 2018, 7, 164. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.; Zhu, J.Q.; Zhao, Y.M.; Ma, H. Effects of dual-frequency slit ultrasound on the enzymolysis of high-concentration hydrolyzed feather meal: Biological activities and structural characteristics of hydrolysates. Ultrason. Sonochem. 2022, 89, 106135. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Bai, M.; Li, C.; Cui, H.; Lin, L. Advances in the mechanism of different antibacterial strategies based on ultrasound technique for controlling bacterial contamination in food industry. Trends Food Sci. Technol. 2020, 105, 211–222. [Google Scholar] [CrossRef]
- Nishiguchi, K.; Nagaura, S.; Yamamoto, K. Effects of the initial concentration of microorganisms on inactivation by ultrasonic cavitation. Jpn. J. Appl. Phys. 2023, 62, 1009. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, X.; Zhang, Y.; Zhang, R.; Liu, J.; Fan, B.; Wang, F.; Li, L. Application progress of ultrasonication in flour product processing: A review. Ultrason. Sonochem. 2023, 99, 106538. [Google Scholar] [CrossRef]
- Zhang, Q.-A.; Zheng, H.; Lin, J.; Nie, G.; Fan, X.; García-Martín, J.F. The state-of-the-art research of the application of ultrasound to winemaking: A critical review. Ultrason. Sonochem. 2023, 95, 106384. [Google Scholar] [CrossRef]
- Beitia, E.; Gkogka, E.; Chanos, P.; Hertel, C.; Heinz, V.; Valdramidis, V.; Aganovic, K. Microbial decontamination assisted by ultrasound-based processing technologies in food and model systems: A review. Compr. Rev. Food Sci. Food Saf. 2023, 22, 2802–2849. [Google Scholar] [CrossRef]
- Guo, L.; Xu, X.; Zhang, X.; Chen, Z.; He, R.; Ma, H. Application of simultaneous ultrasonic curing on pork (Longissimus dorsi): Mass transport of NaCl, physical characteristics, and microstructure. Ultrason. Sonochem. 2023, 92, 106267. [Google Scholar] [CrossRef]
- Bai, M.; Dai, J.; Li, C.; Cui, H.; Lin, L. Antibacterial and antibiofilm performance of low-frequency ultrasound against Escherichia coli O157:H7 and its application in fresh produce. Int. J. Food Microbiol. 2023, 400, 110266. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Zhou, Y.; Chang, R.; Zhou, Y.; Hu, X.; Hu, J.; Yang, C.; Chen, J.; Zhang, Z.; Yao, J. Investigating synergism and mechanism during sequential inactivation of Staphylococcus aureus with ultrasound followed by UV/peracetic acid. J. Hazard. Mater. 2024, 462, 132609. [Google Scholar] [CrossRef]
- Firouz, M.S.; Farahmandi, A.; Hosseinpour, S. Recent advances in ultrasound application as a novel technique in analysis, processing and quality control of fruits, juices and dairy products industries: A review. Ultrason. Sonochem. 2019, 57, 73–88. [Google Scholar] [CrossRef] [PubMed]
- Alexandre, E.M.C.; Moreira, S.A.; Castro, L.M.G.; Pintado, M.; Saraiva, J.A. Emerging technologies to extract high added value compounds from fruit residues: Sub/supercritical, ultrasound-, and enzyme-assisted extractions. Food Rev. Int. 2018, 34, 581–612. [Google Scholar] [CrossRef]
- Kumari, B.; Tiwari, B.K.; Hossain, M.B.; Brunton, N.P.; Rai, D.K. Recent advances on application of ultrasound and pulsed electric field technologies in the extraction of bioactives from agro-industrial by-products. Food Bioprocess Technol. 2018, 11, 223–241. [Google Scholar] [CrossRef]
- Maric, M.; Grassino, A.N.; Zhu, Z.; Barba, F.J.; Brncic, M.; Brncic, S.R. An overview of the traditional and innovative approaches for pectin extraction from plant food wastes and by-products: Ultrasound-, microwaves-, and enzyme-assisted extraction. Trends Food Sci. Technol. 2018, 76, 28–37. [Google Scholar] [CrossRef]
- Lepaus, B.M.; Valiati, B.S.; Machado, B.G.; Domingos, M.M.; Silva, M.N.; Faria-Silva, L.; Bernardes, P.C.; Oliveira, D.d.S.; de São José, J.F.B. Impact of ultrasound processing on the nutritional components of fruit and vegetable juices. Trends Food Sci. Technol. 2023, 138, 752–765. [Google Scholar] [CrossRef]
- Kesavan, R.k.; Gogoi, S.; Nayak, P.K. Influence of thermosonication and pasteurization on the quality attributes of kutkura (Meyna spinosa) juice. Appl. Food Res. 2023, 3, 100268. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Z.; Zhao, S.; Zhang, L.; Li, C.; Liu, S. Effect of combined ultrasonic and enzymatic extraction technique on the quality of noni (Morinda citrifolia L.) juice. Ultrason. Sonochem. 2023, 92, 106231. [Google Scholar] [CrossRef]
- Indriani, S.; Sae-Leaw, T.; Benjakul, S.; Hong Quan, T.; Karnjanapratum, S.; Nalinanon, S. Impact of different ultrasound-assisted processes for preparation of collagen hydrolysates from Asian bullfrog skin on characteristics and antioxidative properties. Ultrason. Sonochem. 2022, 89, 106163. [Google Scholar] [CrossRef]
- Alenyorege, E.A.; Ma, H.; Ayim, I.; Aheto, J.H.; Hong, C.; Zhou, C. Reduction of Listeria innocua in fresh-cut Chinese cabbage by a combined washing treatment of sweeping frequency ultrasound and sodium hypochlorite. LWT Food Sci. Technol. 2019, 101, 410–418. [Google Scholar] [CrossRef]
- Wu, W.; Gao, H.; Chen, H.; Fang, X.; Han, Q.; Zhong, Q. Combined effects of aqueous chlorine dioxide and ultrasonic treatments on shelf-life and nutritional quality of bok choy (Brassica chinensis). LWT Food Sci. Technol. 2019, 101, 757–763. [Google Scholar] [CrossRef]
- Balthazar, C.F.; Santillo, A.; Guimaraes, J.T.; Bevilacqua, A.; Corbo, M.R.; Caroprese, M.; Marino, R.; Esmerino, E.A.; Silva, M.C.; Raices, R.S.L.; et al. Ultrasound processing of fresh and frozen semi-skimmed sheep milk and its effects on microbiological and physical-chemical quality. Ultrason. Sonochem. 2019, 51, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Sarkinas, A.; Sakalauskiene, K.; Raisutis, R.; Zeime, J.; Salaseviciene, A.; Puidaite, E.; Mockus, E.; Cernauskas, D. Inactivation of some pathogenic bacteria and phytoviruses by ultrasonic treatment. Microb. Pathog. 2018, 123, 144–148. [Google Scholar] [CrossRef]
- Rodriguez, O.; Eim, V.; Rossello, C.; Femenia, A.; Carcel, J.A.; Simal, S. Application of power ultrasound on the convective drying of fruits and vegetables: Effects on quality. J. Sci. Food Agric. 2018, 98, 1660–1673. [Google Scholar] [CrossRef]
- Fan, K.; Zhang, M.; Mujumdar, A.S. Application of airborne ultrasound in the convective drying of fruits and vegetables: A review. Ultrason. Sonochem. 2017, 39, 47–57. [Google Scholar] [CrossRef]
- Yao, Y. Enhancement of mass transfer by ultrasound: Application to adsorbent regeneration and food drying/dehydration. Ultrason. Sonochem. 2016, 31, 512–531. [Google Scholar] [CrossRef]
- Musielak, G.; Mierzwa, D.; Kroehnke, J. Food drying enhancement by ultrasound—A review. Trends Food Sci. Technol. 2016, 56, 126–141. [Google Scholar] [CrossRef]
- Tao, Y.; Sun, D.-W. Enhancement of Food Processes by Ultrasound: A Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 570–594. [Google Scholar] [CrossRef]
- Ying, Y.; Xiang, Y.; Liu, J.; Chen, X.; Hu, L.; Li, Y.; Hu, Y. Optimization of ultrasonic-assisted freezing of Penaeus chinensis by response surface methodology. Food Qual. Saf. 2021, 5, 1–9. [Google Scholar] [CrossRef]
- Lu, P.; Guo, J.; Fan, J.; Wang, P.; Yan, X. Combined effect of konjac glucomannan addition and ultrasound treatment on the physical and physicochemical properties of frozen dough. Food Chem. 2023, 411, 135516. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Niu, H.; Chen, Q.; Xia, X.; Kone, B. Influence of ultrasound-assisted immersion freezing on the freezing rate and quality of porcine longissimus muscles. Meat Sci. 2018, 136, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Taha, A.; Hu, T.; Zhang, Z.; Bakry, A.M.; Khalifa, I.; Pan, S.; Hu, H. Effect of different oils and ultrasound emulsification conditions on the physicochemical properties of emulsions stabilized by soy protein isolate. Ultrason. Sonochem. 2018, 49, 283–293. [Google Scholar] [CrossRef]
- Qin, X.; Yang, R.; Zhong, J.; Shabani, K.I.; Liu, X. Ultrasound-assisted preparation of a human milk fat analog emulsion: Understanding factors affecting formation and stability. J. Food Eng. 2018, 238, 103–111. [Google Scholar] [CrossRef]
- Contreras, M.; Benedito, J.; Garcia-Perez, J.V. Ultrasonic characterization of salt, moisture and texture modifications in dry-cured ham during post-salting. Meat Sci. 2021, 172, 108356. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, M.; Zhang, L.; Liu, Y. Effect of ultrasound combined with sodium bicarbonate pretreatment on the taste and flavor of chicken broth. J. Food Process Eng. 2022, 46, 14072. [Google Scholar] [CrossRef]
- Hammed, A.M.; Jaswir, I.; Amid, A.; Alam, Z.; Asiyanbi-H, T.T.; Ramli, N. Enzymatic Hydrolysis of plants and algae for extraction of bioactive compounds. Food Rev. Int. 2013, 29, 352–370. [Google Scholar] [CrossRef]
- El Kantar, S.; Boussetta, N.; Rajha, H.N.; Maroun, R.G.; Louka, N.; Vorobiev, E. High voltage electrical discharges combined with enzymatic hydrolysis for extraction of polyphenols and fermentable sugars from orange peels. Food Res. Int. 2018, 107, 755–762. [Google Scholar] [CrossRef]
- Guo, J.; Yan, Y.; Wang, M.; Wu, Y.; Liu, S.-Q.; Chen, D.; Lu, Y. Effects of enzymatic hydrolysis on the chemical constituents in jujube alcoholic beverage fermented with Torulaspora delbrueckii. LWT Food Sci. Technol. 2018, 97, 617–623. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, X.; Li, P.; Zhang, J.; Wang, S.; Ma, H. Effects of low intensity ultrasound on cellulase pretreatment. Bioresour. Technol. 2012, 117, 222–227. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Z.; Hu, D.; Xiao, K.; Wu, J.-Y. Efficient extraction of pectin from sisal waste by combined enzymatic and ultrasonic process. Food Hydrocoll. 2018, 79, 189–196. [Google Scholar] [CrossRef]
- Li, S.; Yang, Y.; Li, J.; Zhu, Z.; Lorenzo, J.M.; Barba, F.J. Increasing yield and antioxidative performance of litchi pericarp procyanidins in baked food by ultrasound-assisted extraction coupled with enzymatic treatment. Molecules 2018, 23, 2089. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Liang, Q.; Ma, H. Effects of sweeping frequency ultrasound pretreatment on the hydrolysis of zein: Angiotensin-converting enzyme inhibitory activity and thermodynamics analysis. J. Food Sci. Technol.-Mysore 2018, 55, 4020–4027. [Google Scholar] [CrossRef] [PubMed]
- Dabbour, M.; He, R.; Mintah, B.; Tang, Y.; Ma, H. Ultrasound assisted enzymolysis of sunflower meal protein: Kinetics and thermodynamics modeling. J. Food Process Eng. 2018, 41, 12865. [Google Scholar] [CrossRef]
- Khedmat, L.; Izadi, A.; Mofid, V.; Mojtahedi, S.Y. Recent advances in extracting pectin by single and combined ultrasound techniques: A review of techno-functional and bioactive health-promoting aspects. Carbohydr. Polym. 2020, 229, 115474. [Google Scholar] [CrossRef]
- Umego, E.C.; He, R.; Ren, W.; Xu, H.; Ma, H. Ultrasonic-assisted enzymolysis: Principle and applications. Process Biochem. 2021, 100, 59–68. [Google Scholar] [CrossRef]
- Nadar, S.S.; Rathod, V.K. Ultrasound assisted intensification of enzyme activity and its properties: A mini-review. World J. Microbiol. Biotechnol. 2017, 33, 170. [Google Scholar] [CrossRef] [PubMed]
- Tomadoni, B.; Cassani, L.; Viacava, G.; Del Rosario Moreira, M.; Ponce, A. Effect of ultrasound and storage time on quality attributes of strawberry juice. J. Food Process Eng. 2017, 40, 12533. [Google Scholar] [CrossRef]
- Bansode, S.R.; Rathod, V.K. An investigation of lipase catalysed sonochemical synthesis: A review. Ultrason. Sonochem. 2017, 38, 503–529. [Google Scholar] [CrossRef]
- Wang, D.; Yan, L.; Ma, X.; Wang, W.; Zou, M.; Zhong, J.; Ding, T.; Ye, X.; Liu, D. Ultrasound promotes enzymatic reactions by acting on different targets: Enzymes, substrates and enzymatic reaction systems. Int. J. Biol. Macromol. 2018, 119, 453–461. [Google Scholar] [CrossRef]
- Soares, A.d.S.; Duarte Augusto, P.E.; de Castro Leite Junior, B.R.; Nogueira, C.A.; Rufino Vieira, E.N.; Ribeiro de Barros, F.A.; Stringheta, P.C.; Ramos, A.M. Ultrasound assisted enzymatic hydrolysis of sucrose catalyzed by invertase: Investigation on substrate, enzyme and kinetics parameters. LWT Food Sci. Technol. 2019, 107, 164–170. [Google Scholar] [CrossRef]
- Huang, L.; Ding, X.; Zhao, Y.; Li, Y.; Ma, H. Modification of insoluble dietary fiber from garlic straw with ultrasonic treatment. J. Food Process. Preserv. 2018, 42, 13399. [Google Scholar] [CrossRef]
- Zhong, C.; Jia, H.; Wei, P. Enhanced saccharification of wheat straw with the application of ultrasonic-assisted quaternary ammonium hydroxide pretreatment. Process Biochem. 2017, 53, 180–187. [Google Scholar] [CrossRef]
- Idrovo Encalada, A.M.; Perez, C.D.; Flores, S.K.; Rossetti, L.; Fissore, E.N.; Rojas, A.M. Antioxidant pectin enriched fractions obtained from discarded carrots (Daucus carota L.) by ultrasound-enzyme assisted extraction. Food Chem. 2019, 289, 453–460. [Google Scholar] [CrossRef]
- Ivetic, D.Z.; Omorjan, R.P.; Dordevic, T.R.; Antov, M.G. The impact of ultrasound pretreatment on the enzymatic hydrolysis of cellulose from sugar beet shreds: Modeling of the experimental results. Environ. Prog. Sustain. Energy 2017, 36, 1164–1172. [Google Scholar] [CrossRef]
- Yang, X.; Li, Y.; Li, S.; Oladejo, A.O.; Ruan, S.; Wang, Y.; Huang, S.; Ma, H. Effects of ultrasound pretreatment with different frequencies and working modes on the enzymolysis and the structure characterization of rice protein. Ultrason. Sonochem. 2017, 38, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Liu, B.; Ma, H.; Zhang, X. Combined effect of ultrasound and enzymatic treatments on production of ACE inhibitory peptides from wheat germ protein. J. Food Process. Preserv. 2014, 38, 1632–1640. [Google Scholar] [CrossRef]
- Li, M.; Li, J.; Zhu, C. Effect of ultrasound pretreatment on enzymolysis and physicochemical properties of corn starch. Int. J. Biol. Macromol. 2018, 111, 848–856. [Google Scholar] [CrossRef]
- Shabana, S.; Prasansha, R.; Kalinina, I.; Potoroko, I.; Bagale, U.; Shirish, S.H. Ultrasound assisted acid hydrolyzed structure modification and loading of antioxidants on potato starch nanoparticles. Ultrason. Sonochem. 2019, 51, 444–450. [Google Scholar] [CrossRef]
- Bai, H.; Li, L.; Wu, Y.; Chen, S.; Zhao, Y.; Cai, Q.; Wang, Y. Ultrasound improves the low-sodium salt curing of sea bass: Insights into the effects of ultrasound on texture, microstructure, and flavor characteristics. Ultrason. Sonochem. 2023, 100, 106597. [Google Scholar] [CrossRef]
- Ding, Q.; Zhang, T.; Niu, S.; Cao, F.; Wu-Chen, R.A.; Luo, L.; Ma, H. Impact of of ultrasound pretreatment on hydrolysate and digestion products of grape seed protein. Ultrason. Sonochem. 2018, 42, 704–713. [Google Scholar] [CrossRef]
- Zhou, C.; Hu, J.; Yu, X.; Yagoub, A.E.A.; Zhang, Y.; Ma, H.; Gao, X.; Otu, P.N.Y. Heat and/or ultrasound pretreatments motivated enzymolysis of corn gluten meal: Hydrolysis kinetics and protein structure. LWT Food Sci. Technol. 2017, 77, 488–496. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, H.; Wang, B.; Qu, W.; Li, Y.; He, R.; Wali, A. Effects of ultrasound pretreatment on the enzymolysis and structural characterization of wheat gluten. Food Biophys. 2015, 10, 385–395. [Google Scholar] [CrossRef]
- Abdualrahman, M.A.Y.; Zhou, C.; Zhang, Y.; Yagoub, A.E.A.; Ma, H.; Mao, L.; Wang, K. Effects of ultrasound pretreatment on enzymolysis of sodium caseinate protein: Kinetic study, angiotensin-converting enzyme inhibitory activity, and the structural characteristics of the hydrolysates. J. Food Process. Preserv. 2017, 41, 13276. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.; He, R.; Mintah, B.K.; Dabbour, M.; Qu, W.; Liu, D.; Ma, H. Proteolysis efficiency and structural traits of corn gluten meal: Impact of different frequency modes of a low-power density ultrasound. Food Chem. 2021, 344, 128609. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, J.; Li, S.; Ma, H.; Zhang, H. Mechanism study of multimode ultrasound pretreatment on the enzymolysis of wheat gluten. J. Sci. Food Agric. 2018, 98, 1530–1538. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Atungulu, G.G.; Khir, R.; Geng, J.; Ma, H.; Li, Y.; Wu, B. Ultrasonic treatment effect on enzymolysis kinetics and activities of ACE-inhibitory peptides from oat-isolated protein. Food Biophys. 2015, 10, 244–252. [Google Scholar] [CrossRef]
- Jin, J.; Ma, H.; Wang, K.; Yagoub, A.E.-G.A.; Owusu, J.; Qu, W.; He, R.; Zhou, C.; Ye, X. Effects of multi-frequency power ultrasound on the enzymolysis and structural characteristics of corn gluten meal. Ultrason. Sonochem. 2015, 24, 55–64. [Google Scholar] [CrossRef]
- Li, S.; Yang, X.; Zhang, Y.; Ma, H.; Qu, W.; Ye, X.; Muatasim, R.; Oladejo, A.O. Enzymolysis kinetics and structural characteristics of rice protein with energy-gathered ultrasound and ultrasound assisted alkali pretreatments. Ultrason. Sonochem. 2016, 31, 85–92. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, Y.; Qu, W.; Ren, X.; Lu, F.; Tian, W.; Quaisie, J.; Azam, S.M.R.; Ma, H. Effect of innovative ultrasonic frequency excitation modes on rice protein: Enzymolysis and structure. LWT Food Sci. Technol. 2022, 153, 112435. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.; He, R.; Liu, D.; Mintah, B.K.; Dabbour, M.; Ma, H. Improvement in enzymolysis efficiency and changes in conformational attributes of corn gluten meal by dual-frequency slit ultrasonication action. Ultrason. Sonochem. 2020, 64, 105038. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Ma, H.; Qu, W.; Wang, K.; Zhou, C.; He, R.; Luo, L.; Owusu, J. Effects of multi-frequency power ultrasound on the enzymolysis of corn gluten meal: Kinetics and thermodynamics study. Ultrason. Sonochem. 2015, 27, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Ma, H.; Mao, S.; Zhou, H. Effects of sweeping frequency ultrasound treatment on enzymatic preparations of ACE-inhibitory peptides from zein. Eur. Food Res. Technol. 2014, 238, 435–442. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, Z.; Zheng, W.; Pan, Q.; Zhu, Y. Effect of multi-mode sweep frequency ultrasound pretreatment on properties of the zeins and ACE inhibitory peptides activity of the hydrolysates. Food Chem. 2023, 407, 135126. [Google Scholar] [CrossRef] [PubMed]
- Wali, A.; Ma, H.; Aadil, R.M.; Zhou, C.; Rashid, M.T.; Liu, X. Effects of multifrequency ultrasound pretreatment on the enzymolysis, ACE inhibitory activity, and the structure characterization of rapeseed protein. J. Food Process. Preserv. 2017, 41, 13413. [Google Scholar] [CrossRef]
- Li, Q.; Yang, H.; Coldea, T.E.; Andersen, M.L.; Li, W.; Zhao, H. Enzymolysis kinetics, thermodynamics and structural property of brewer’s spent grain protein pretreated with ultrasound. Food Bioprod. Process. 2022, 132, 130–140. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, B.; Zhou, C.; Atungulu, G.G.; Xu, K.; Ma, H.; Ye, X.; Abdualrahman, M.A.Y. Surface topography, nano-mechanics and secondary structure of wheat gluten pretreated by alternate dual-frequency ultrasound and the correlation to enzymolysis. Ultrason. Sonochem. 2016, 31, 267–275. [Google Scholar] [CrossRef]
- Yu, Z.-L.; Zeng, W.-C.; Zhang, W.-H.; Liao, X.-P.; Shi, B. Effect of ultrasonic pretreatment on kinetics of gelatin hydrolysis by collagenase and its mechanism. Ultrason. Sonochem. 2016, 29, 495–501. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, X.; Jia, J.; Kuang, C.; Yang, H. Effect of ultrasonic pretreatment on whey protein hydrolysis by alcalase: Thermodynamic parameters, physicochemical properties and bioactivities. Process Biochem. 2018, 67, 46–54. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, H.; Wang, B.; Qu, W.; Wali, A.; Zhou, C. Relationships between the structure of wheat gluten and ACE inhibitory activity of hydrolysate: Stepwise multiple linear regression analysis. J. Sci. Food Agric. 2016, 96, 3313–3320. [Google Scholar] [CrossRef]
- Qu, W.; Ma, H.; Liu, B.; He, R.; Pan, Z.; Abano, E.E. Enzymolysis reaction kinetics and thermodynamics of defatted wheat germ protein with ultrasonic pretreatment. Ultrason. Sonochem. 2013, 20, 1408–1413. [Google Scholar] [CrossRef] [PubMed]
- Ayim, I.; Ma, H.; Alenyorege, E.A.; Ali, Z.; Donkor, P.O. Influence of ultrasound pretreatment on enzymolysis kinetics and thermodynamics of sodium hydroxide extracted proteins from tea residue. J. Food Sci. Technol.-Mysore 2018, 55, 1037–1046. [Google Scholar] [CrossRef] [PubMed]
- Abdualrahman, M.A.Y.; Ma, H.; Zhou, C.; Yagoub, A.E.A.; Hu, J.; Yang, X. Thermal and single frequency counter-current ultrasound pretreatments of sodium caseinate: Enzymolysis kinetics and thermodynamics, amino acids composition, molecular weight distribution and antioxidant peptides. J. Sci. Food Agric. 2016, 96, 4861–4873. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Wang, D.; Chen, W.; Ismail, B.B.; Wang, W.; Lv, R.; Ding, T.; Ye, X.; Liu, D. Effects of ultrasound pretreatment on the enzymolysis of pectin: Kinetic study, structural characteristics and anti-cancer activity of the hydrolysates. Food Hydrocoll. 2018, 79, 90–99. [Google Scholar] [CrossRef]
- Huang, L.; Ma, H.; Peng, L.; Wang, Z.; Yang, Q. Enzymolysis kinetics of garlic powder with single frequency countercurrent ultrasound pretreatment. Food Bioprod. Process. 2015, 95, 292–297. [Google Scholar] [CrossRef]
- Ge, S.M.; He, C.Y.; Duan, Y.C.; Zhou, X.T.; Lei, J.L.; Tong, X.Y.; Wang, L.B.; Wu, Q.Y.; Jia, J.Q. Characteristics of enzymolysis of silkworm pupa protein after tri-frequency ultrasonic pretreatment: Kinetics, thermodynamics, structure and antioxidant changes. Front. Bioeng. Biotechnol. 2023, 11, 15. [Google Scholar] [CrossRef]
- Wali, A.; Ma, H.; Hayat, K.; Ren, X.; Ali, Z.; Duan, Y.; Rashid, M.T. Enzymolysis reaction kinetics and thermodynamics of rapeseed protein with sequential dual-frequency ultrasound pretreatment. Int. J. Food Sci. Technol. 2018, 53, 72–80. [Google Scholar] [CrossRef]
- Cheng, Y.; Liu, Y.; Wu, J.; Donkor, P.O.; Li, T.; Ma, H. Improving the enzymolysis efficiency of potato protein by simultaneous dual-frequency energy-gathered ultrasound pretreatment: Thermodynamics and kinetics. Ultrason. Sonochem. 2017, 37, 351–359. [Google Scholar] [CrossRef]
- Zhao, L.; Ouyang, D.; Cheng, X.; Zhou, X.; Lin, L.; Wang, J.; Wu, Q.; Jia, J. Multi-frequency ultrasound-assisted cellulase extraction of protein from mulberry leaf: Kinetic, thermodynamic, and structural properties. Ultrason. Sonochem. 2023, 99, 106554. [Google Scholar] [CrossRef]
- Li, H.; Xu, M.; Yao, X.; Wen, Y.; Lu, S.; Wang, J.; Sun, B. The promoted hydrolysis effect of cellulase with ultrasound treatment is reflected on the sonicated rather than native brown rice. Ultrason. Sonochem. 2022, 83, 105920. [Google Scholar] [CrossRef]
- Lan, W.; Chen, S. Chemical kinetics, thermodynamics and inactivation kinetics of dextransucrase activity by ultrasound treatment. React. Kinet. Mech. Catal. 2020, 129, 843–864. [Google Scholar] [CrossRef]
- SriBala, G.; Chennuru, R.; Mahapatra, S.; Vinu, R. Effect of alkaline ultrasonic pretreatment on crystalline morphology and enzymatic hydrolysis of cellulose. Cellulose 2016, 23, 1725–1740. [Google Scholar] [CrossRef]
- Wali, A.; Ma, H.; Shahnawaz, M.; Hayat, K.; Xiaong, J.; Jing, L. Impact of power ultrasound on antihypertensive activity, functional properties, and thermal stability of rapeseed protein hydrolysates. J. Chem. 2017, 2017, 4373859. [Google Scholar] [CrossRef]
- Ge, S.; Tong, X.; Gao, C.; Xu, H.; He, R.; Wu, Q.; Wang, J. Kinetics of silkworm pupae protein extraction at different ultrasonic frequency and temperature: Effects on physicochemical properties, functional properties and oxidation resistance. Process Biochem. 2022, 122, 36–52. [Google Scholar] [CrossRef]
- Olawuyi, I.F.; Akbarovich, S.A.; Kim, C.K.; Lee, W.Y. Effect of combined ultrasound-enzyme treatment on recovery of phenolic compounds, antioxidant capacity, and quality of plum (Prunus salicina L.) juice. J. Food Process. Preserv. 2021, 45, 15074. [Google Scholar] [CrossRef]
- Wang, B.; Meng, T.; Ma, H.; Zhang, Y.; Li, Y.; Jin, J.; Ye, X. Mechanism study of dual-frequency ultrasound assisted enzymolysis on rapeseed protein by immobilized Alcalase. Ultrason. Sonochem. 2016, 32, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Mehrabani, A.; Jebelli Javan, A.; Hesarinejad, M.A.; Mahdavi, A.; Parsaeimehr, M. The combined effect of ultrasound treatment and leek (Allium ampeloprasum) extract on the quality properties of beef. Food Biosci. 2022, 47, 101622. [Google Scholar] [CrossRef]
- Pacheco, A.F.C.; de Souza, L.B.; Paiva, P.H.C.; Lelis, C.A.; Vieira, E.N.R.; Tribst, A.A.L.; Leite Júnior, B.R.d.C. Impact of ultrasound on pumpkin seed protein concentrate hydrolysis: Effects on Alcalase, protein, and assisted reaction. Appl. Food Res. 2023, 3, 100281. [Google Scholar] [CrossRef]
- Ma, H.; Huang, L.; Jia, J.; He, R.; Luo, L.; Zhu, W. Effect of energy-gathered ultrasound on Alcalase. Ultrason. Sonochem. 2011, 18, 419–424. [Google Scholar] [CrossRef]
- Wang, D.; Hou, F.; Ma, X.; Chen, W.; Yan, L.; Ding, T.; Ye, X.; Liu, D. Study on the mechanism of ultrasound-accelerated enzymatic hydrolysis of starch: Analysis of ultrasound effect on different objects. Int. J. Biol. Macromol. 2020, 148, 493–500. [Google Scholar] [CrossRef]
- Qu, W.; Sehemu, R.M.; Zhang, T.; Song, B.; Yang, L.; Ren, X.; Ma, H. Immobilized enzymolysis of corn gluten meal under triple-frequency ultrasound. Int. J. Food Eng. 2018, 14, 20170347. [Google Scholar] [CrossRef]
- Zhang, Z.; Shan, P.; Zhang, Z.-H.; He, R.; Xing, L.; Liu, J.; He, D.; Ma, H.; Wang, Z.; Gao, X. Efficient degradation of soybean protein B3 subunit in soy sauce by ultrasound-assisted prolyl endopeptidase and its primary mechanism. Food Chem. 2023, 429, 136972. [Google Scholar] [CrossRef] [PubMed]
- Tang, P.L.; Koh, X.J. Ultrasound-assisted enzymatic hydrolysis enhances anti-inflammatory and hypoglycemic activities of edible Bird’s nest. Food Biosci. 2023, 56, 103221. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, L.; Wang, W.; Zou, M.; Ding, T.; Ye, X.; Liu, D. Synergistic effect and mechanisms of combining ultrasound and pectinase on pectin hydrolysis. Food Bioprocess Technol. 2016, 9, 1249–1257. [Google Scholar] [CrossRef]
- Ma, X.; Wang, W.; Zou, M.; Ding, T.; Ye, X.; Liu, D. Properties and structures of commercial polygalacturonase with ultrasound treatment: Role of ultrasound in enzyme activation. RSC Adv. 2015, 5, 107591–107600. [Google Scholar] [CrossRef]
- Bashari, M.; Eibaid, A.; Wang, J.; Tian, Y.; Xu, X.; Jin, Z. Influence of low ultrasound intensity on the degradation of dextran catalyzed by dextranase. Ultrason. Sonochem. 2013, 20, 155–161. [Google Scholar] [CrossRef]
- Meng, H.; Li, D.; Zhu, C. The effect of ultrasound on the properties and conformation of glucoamylase. Int. J. Biol. Macromol. 2018, 113, 411–417. [Google Scholar] [CrossRef]
- Velmurugan, R.; Incharoensakdi, A. Proper ultrasound treatment increases ethanol production from simultaneous saccharification and fermentation of sugarcane bagasse. RSC Adv. 2016, 6, 91409–91419. [Google Scholar] [CrossRef]
- Feng, L.; Cao, Y.; Xu, D.; Zhang, D.; Huang, Z. Influence of chitosan-sodium alginate pretreated with ultrasound on the enzyme activity, viscosity and structure of papain. J. Sci. Food Agric. 2017, 97, 1567–1572. [Google Scholar] [CrossRef]
- Xu, B.; Chen, J.; Chitrakar, B.; Li, H.; Wang, J.; Wei, B.; Zhou, C.; Ma, H. Effects of flat sweep frequency and pulsed ultrasound on the activity, conformation and microstructure of mushroom polyphenol oxidase. Ultrason. Sonochem. 2022, 82, 105908. [Google Scholar] [CrossRef]
- Thi Thu Tra, T.; Khanh Tien, N.; Van Viet Man, L. Effects of ultrasonication variables on the activity and properties of alpha amylase preparation. Biotechnol. Prog. 2018, 34, 702–710. [Google Scholar] [CrossRef]
- Nadar, S.S.; Rathod, V.K. Sonochemical effect on activity and conformation of commercial lipases. Appl. Biochem. Biotechnol. 2017, 181, 1435–1453. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Wu, B.; Guo, X.; Liu, D.; Qiu, C.; Ma, H. Thermosonication inactivation of horseradish peroxidase with different frequency modes: Effect on activity, structure, morphology and mechanisms. Food Chem. 2022, 384, 132537. [Google Scholar] [CrossRef] [PubMed]
- Heidari, S.H.; Dinani, S.T. The study of ultrasound-assisted enzymatic extraction of oil from peanut seeds using response surface methodology. Eur. J. Lipid Sci. Technol. 2018, 120, 1700252. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, N.; Wang, Q.; Wang, P.; Yu, Y. A facile and eco-friendly approach for preparation of microkeratin and nanokeratin by ultrasound-assisted enzymatic hydrolysis. Ultrason. Sonochem. 2020, 68, 105201. [Google Scholar] [CrossRef]
- Ma, S.; Wang, C.; Guo, M. Changes in structure and antioxidant activity of beta-lactoglobulin by ultrasound and enzymatic treatment. Ultrason. Sonochem. 2018, 43, 227–236. [Google Scholar] [CrossRef]
- Ma, Q.; Ji, Q.; Chen, L.; Zhu, Z.; Tu, S.; Okonkwo, C.E.; Out, P.; Zhou, C. Multimode ultrasound and ternary deep eutectic solvent sequential pretreatments enhanced the enzymatic saccharification of corncob biomass. Ind. Crops Prod. 2022, 188, 115574. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, M.; Law, C.L.; Wang, Y.; Liu, K. Optimization of ultrasonic-assisted enzymatic hydrolysis to extract soluble substances from edible fungi by-products. Food Bioprocess Technol. 2022, 16, 167–184. [Google Scholar] [CrossRef]
- Yun, C.; Ji, X.; Chen, Y.; Zhao, Z.; Gao, Y.; Gu, L.; She, D.; Ri, I.; Wang, W.; Wang, H. Ultrasound-assisted enzymatic extraction of Scutellaria baicalensis root polysaccharide and its hypoglycemic and immunomodulatory activities. Int. J. Biol. Macromol. 2023, 227, 134–145. [Google Scholar] [CrossRef]
- Le Guillard, C.; Bergé, J.-P.; Donnay-Moreno, C.; Bruzac, S.; Ragon, J.-Y.; Baron, R.; Fleurence, J.; Dumay, J. Soft liquefaction of the red seaweed Grateloupia turuturu Yamada by ultrasound-assisted enzymatic hydrolysis process. J. Appl. Phycol. 2016, 28, 2575–2585. [Google Scholar] [CrossRef]
- Chen, X.; Luo, Y.; Qi, B.; Luo, J.; Wan, Y. Improving the hydrolysis efficiency of soy sauce residue using ultrasonic probe-assisted enzymolysis technology. Ultrason. Sonochem. 2017, 35, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Hao, X.; Suo, H.; Zhang, G.; Xu, P.; Gao, X.; Du, S. Ultrasound-assisted enzymatic preparation of fatty acid ethyl ester in deep eutectic solvent. Renew. Energy 2021, 164, 937–947. [Google Scholar] [CrossRef]
- Tchabo, W.; Ma, Y.; Engmann, F.N.; Zhang, H. Ultrasound-assisted enzymatic extraction (UAEE) of phytochemical compounds from mulberry (Morus nigra) must and optimization study using response surface methodology. Ind. Crops Prod. 2015, 63, 214–225. [Google Scholar] [CrossRef]
- Liu, H.; Sun, H.-N.; Zhang, M.; Mu, T.-H.; Khan, N.M. Production, identification and characterization of antioxidant peptides from potato protein by energy-divergent and gathered ultrasound assisted enzymatic hydrolysis. Food Chem. 2023, 405, 134873. [Google Scholar] [CrossRef]
- Xu, L.; Guo, S.; Li, Y.; Guo, W.; Guo, X.; Hong, S.; Ahmed, M. Ultrasound-Assisted Enzymatic Extraction and Bioactivity Analysis of Polypeptides from Cordyceps militaris. J. Chem. 2023, 2023, 1233867. [Google Scholar] [CrossRef]
- Bosch, R.; Malgas, S. Ultrasound-assisted enzymatic extraction of orange peel pectin and its characterisation. Int. J. Food Sci. Technol. 2023. [Google Scholar] [CrossRef]
- Nag, S.; Sit, N. Optimization of ultrasound assisted enzymatic extraction of polyphenols from pomegranate peels based on phytochemical content and antioxidant property. J. Food Meas. Charact. 2018, 12, 1734–1743. [Google Scholar] [CrossRef]
- Wang, D.; Yuan, Y.; Xie, T.; Tang, G.; Song, G.; Li, L.; Yuan, T.; Zheng, F.; Gong, J. Ultrasound-assisted aqueous enzymatic extraction of gardenia fruits (Gardenia jasminoides Ellis) oil: Optimization and quality evaluation. Ind. Crops Prod. 2023, 191, 116021. [Google Scholar] [CrossRef]
- Liang, Q.; Ren, X.; Ma, H.; Li, S.; Xu, K.; Oladejo, A.O. Effect of low-frequency ultrasonic-assisted enzymolysis on the physicochemical and antioxidant properties of corn protein hydrolysates. J. Food Qual. 2017, 2017, 2784146. [Google Scholar] [CrossRef]
- Simayi, Z.; Aierken, W.; Rozi, P.; Ababaikeri, G.; Bo, C.; Chenglin, Z.; Askar, G.; Xiaojun, Y. Optimization of ultrasound-assisted extraction, structural, functional, and antioxidant properties of Glycyrrhiza uralensis seed protein. Process Biochem. 2023, 124, 1–12. [Google Scholar] [CrossRef]
- Lu, Z.-H.; Belanger, N.; Donner, E.; Liu, Q. Debranching of pea starch using pullulanase and ultrasonication synergistically to enhance slowly digestible and resistant starch. Food Chem. 2018, 268, 533–541. [Google Scholar] [CrossRef] [PubMed]
- Stefanovic, A.B.; Jovanovic, J.R.; Balanc, B.D.; Sekuljica, N.Z.; Tanaskovic, S.M.J.; Dojcinovic, M.B.; Knezevic-Jugovic, Z.D. Influence of ultrasound probe treatment time and protease type on functional and physicochemical characteristics of egg white protein hydrolysates. Poult. Sci. 2018, 97, 2218–2229. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.-S.; Sun, Q.-Q.; Zhao, Y.-Y.; Zhong, X.-Y.; Mu, D.-D.; Jiang, S.-T.; Luo, S.-Z.; Zheng, Z. Transglutaminase-set colloidal properties of wheat gluten with ultrasound pretreatments. Ultrason. Sonochem. 2017, 39, 137–143. [Google Scholar] [CrossRef]
- Yolandani; Ma, H.; Li, Y.; Liu, D.; Zhou, H.; Liu, X.; Wan, Y.; Zhao, X. Ultrasound-assisted limited enzymatic hydrolysis of high concentrated soy protein isolate: Alterations on the functional properties and its relation with hydrophobicity and molecular weight. Ultrason. Sonochem. 2023, 95, 106414. [Google Scholar] [CrossRef] [PubMed]
- Bautista-Ortin, A.B.; Jimenez-Martinez, M.D.; Jurado, R.; Iniesta, J.A.; Terrades, S.; Andres, A.; Gomez-Plaza, E. Application of high-power ultrasounds during red wine vinification. Int. J. Food Sci. Technol. 2017, 52, 1314–1323. [Google Scholar] [CrossRef]
- Bora, S.J.; Handique, J.; Sit, N. Effect of ultrasound and enzymatic pre-treatment on yield and properties of banana juice. Ultrason. Sonochem. 2017, 37, 445–451. [Google Scholar] [CrossRef]
- Qin, L.-M.; Yang, X.-A.; Leng, D.; Zhang, W.-B. Dual-frequency ultrasound assisted-enzyme digestion coupled with atomic fluorescence spectrometry as a green and efficient tool for cadmium detection in rice flour samples. Talanta 2018, 188, 308–315. [Google Scholar] [CrossRef]
- Yilmaz, E.; Soylak, M. Innovative, simple and green ultrasound assisted-enzyme based hydrolytic microextraction method for manganese at trace levels in food samples. Talanta 2017, 174, 605–609. [Google Scholar] [CrossRef]
- Yilmaz, E. Use of hydrolytic enzymes as green and effective extraction agents for ultrasound assisted-enzyme based hydrolytic water phase microextraction of arsenic in food samples. Talanta 2018, 189, 302–307. [Google Scholar] [CrossRef]
- Rahimpour, S.; Dinani, S.T. Lycopene extraction from tomato processing waste using ultrasound and cell-wall degrading enzymes. J. Food Meas. Charact. 2018, 12, 2394–2403. [Google Scholar] [CrossRef]
- Xie, J.; Chen, M.; Ren, T.; Zheng, Q. Optimization of ellagic acid extraction from blueberry pulp through enzymatic hydrolysis combined with ultrasound-assisted organic solvent. Environ. Technol. Innov. 2023, 31, 103147. [Google Scholar] [CrossRef]
- Korsa, V.V. Ultrasound-assisted and enzymatic-based method for isolation of β-glucans from oat bran. Biotechnol. Acta 2023, 16, 51–56. [Google Scholar] [CrossRef]
- Chiplunkar, P.P.; Zhao, X.; Tomke, P.D.; Noro, J.; Xu, B.; Wang, Q.; Silva, C.; Pratap, A.P.; Cavaco-Paulo, A. Ultrasound-assisted lipase catalyzed hydrolysis of aspirin methyl ester. Ultrason. Sonochem. 2018, 40, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Deshmukh, A.R.; Rathod, V.K. Intensification of enzyme catalysed synthesis of hexyl acetate using sonication. Green Process. Synth. 2017, 6, 55–62. [Google Scholar] [CrossRef]
- Tomke, P.D.; Rathod, V.K. Ultrasound assisted lipase catalyzed synthesis of cinnamyl acetate via transesterification reaction in a solvent free medium. Ultrason. Sonochem. 2015, 27, 241–246. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Sicaire, A.-G.; Meullemiestre, A.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef]
- Dong, C.; Chen, J.; Guan, R.; Li, X.; Xin, Y. Dual-frequency ultrasound combined with alkali pretreatment of corn stalk for enhanced biogas production. Renew. Energy 2018, 127, 444–451. [Google Scholar] [CrossRef]
- Cheng, Y.; Donkor, P.O.; Ren, X.; Wu, J.; Agyemang, K.; Ayim, I.; Ma, H. Effect of ultrasound pretreatment with mono-frequency and simultaneous dual frequency on the mechanical properties and microstructure of whey protein emulsion gels. Food Hydrocoll. 2019, 89, 434–442. [Google Scholar] [CrossRef]
- Hu, A.; Li, Y.; Zheng, J. Dual-frequency ultrasonic effect on the structure and properties of starch with different size. LWT Food Sci. Technol. 2019, 106, 254–262. [Google Scholar] [CrossRef]
- Ma, H.; Huang, L.; Peng, L.; Wang, Z.; Yang, Q. Pretreatment of garlic powder using sweep frequency ultrasound and single frequency countercurrent ultrasound: Optimization and comparison for ACE inhibitory activities. Ultrason. Sonochem. 2015, 23, 109–115. [Google Scholar] [CrossRef]
- Koubaa, M.; Barba, F.J.; Grimi, N.; Mhemdi, H.; Koubaa, W.; Boussetta, N.; Vorobiev, E. Recovery of colorants from red prickly pear peels and pulps enhanced by pulsed electric field and ultrasound. Innov. Food Sci. Emerg. Technol. 2016, 37, 336–344. [Google Scholar] [CrossRef]
Substrate | Type | α-Helix (%) | β-Sheet (%) | β-Turn (%) | Random Coil (%) | Reference |
---|---|---|---|---|---|---|
Corn gluten meal | * | 4.1 | 42.1 | - | 53.8 | [62] |
** | 3.4 (−17.07%) | 42.3 (0.47%) | - | 54.2 (0.74%) | ||
Feather protein | * | 14.80 | 43.43 | 27.55 | 14.22 | [4] |
** | 13.47 | 42.01 | 26.30 | 18.22 | ||
Brewer’s spent grain protein | * | 7.41 | 44.71 | 31.07 | 16.82 | [76] |
** | 13.99 (+6.58%) | 23.21 (+21.50%) | 45.89 (+14.82%) | 16.92 (+0.10%) | ||
Rice protein | * | 18.85 | 27.76 | 35.02 | 18.37 | [56] |
** | 18.06 (−4%) | 28.69 (3%) | 33.95 (−3%) | 19.30 (5%) | ||
Sodium caseinate protein | * | 51 | 12 | 15 | 22 | [64] |
** | 46.5 (−8.82%) | 14.4 (20%) | 15.8 (5.33%) | 23.3 (5.91%) | ||
Rapeseed protein | * | 32 | 32.3 | 0.5 | 35.3 | [75] |
** | 31.6 (1.25%) | 40.3 (23.84%) | 0 (−100%) | 28.1 (−20.40%) | ||
Wheat gluten | * | 47.70 | 13.90 | 15.40 | 23.00 | [77] |
** | 46.30 (−1.3%) | 13.90 (0%) | 15.70 (10.3%) | 24.00 (1%) | ||
* | 17.69 | 5.96 | 10.31 | 15.24 | [63] | |
** | 12.96 (−26.74%) | 8.37 (40.44%) | 9.83 (−4.66%) | 19.60 (28.61%) | ||
Gelatin | * | 9.98 | 44.02 | 23.24 | 22.76 | [78] |
** | 7.18 (−28.06%) | 42.82 (−2.73%) | 30.75 (32.31%) | 19.26 (−15.38%) | ||
Whey protein | * | 46.23 | 11.25 | 16.26 | 26.25 | [79] |
** | 44.75 (−3.20%) | 12.28 (9.16%) | 16.60 (2.09%) | 26.37 (0.46%) |
Substrate | Treatment | KA (min−1) | KM (g/L) | Reference |
---|---|---|---|---|
Rapeseed protein | * | 0.075 | 13.940 | [87] |
** | 0.083 (+10.67%) | 11.490 (−17.58%) | ||
Corn gluten meal | * | 1.066 | 499.870 | [62] |
** | 1.183 (+10.98%) | 491.747 (−1.63%) | ||
Potato protein | * | 0.510 | 13.726 | [88] |
** | 0.490 (−3.92%) | 8.572 (−37.55%) | ||
Sodium caseinate protein | * | 0.754 | 25.017 | [64] |
** | 0.807 (+7.03%) | 20.233 (−19.13%) | ||
Corn gluten meal | * | 0.178 | 8.387 | [68] |
** | 0.191 (+7.30%) | 6.194 (−26.15%) | ||
Wheat gluten | * | 0.415 | 45.233 | [63] |
** | 0.427 (+2.89%) | 38.243 (−15.45%) | ||
Sunflower meal protein | * | 0.500 | 7.880 | [44] |
** | 0.510 (+2.00%) | 6.990 (−11.29%) | ||
Cellulase | * | 1.680 | 49.650 | [90] |
** | 1.75 (+4.17%) | 43.480 (−12.43%) | ||
Mulberry leaf | * | 0.767 | 41.336 | [89] |
** | 0.805 (+5.02%) | 35.522 (−14.07%) | ||
Silkworm pupa protein | * | 0.209 | 11.835 | [86] |
** | 0.244 (+16.75%) | 11.078 (−6.396%) |
Substrate | Type | Ea (kJ/mol) | ΔH (kJ/mol) | ΔS (J/mol·K−1) | ΔG (kJ/mol) | Reference |
---|---|---|---|---|---|---|
Corn gluten meal | * | 49.07 ± 1.12 | 46.63 ± 1.12 | −133.83 ± 3.82 | 85.86 | [68] |
** | 37.78 ± 0.93 (−23.00%) | 35.34 ± 0.93 (−24.21%) | −167.23 ± 3.17 (−24.96%) | 84.37 (−1.74%) | ||
Egg white protein | * | 86.70 ± 1.10 | 84.10 ± 1.80 | −226.80 ± 3.80 | 156.20 | [78] |
** | 33.20 ± 0.80 (−61.71%) | 30.60 ± 0.80 (−63.61%) | −236.60 ± 2.80 (−4.32%) | 105.80 (−32.27%) | ||
Whey protein | * | 46.92 ± 2.12 | 44.37 ± 1.87 | −140.74 ± 4.76 | 87.74 | [79] |
** | 39.46 ± 1.57 (−15.89%) | 36.90 ± 0.99 (−16.83%) | −163.87 ± 3.29 (−16.43%) | 87.40 (−0.39%) | ||
Sodium caseinate | * | 46.39 ± 0.03 | 43.65 ± 0.04 | −141.55 ± 0.21 | 90.10 | [83] |
** | 33.42 ± 0.02 (−27.96%) | 30.93 ± 0.13 (−29.14%) | −179.71 ± 0.12 (−26.96%) | 89.55 (−0.61%) | ||
Tea residue protein | * | 46.93 ± 0.47 | 44.24 ± 0.03 | 99.69 ± 0.70 | 30.72 | [82] |
** | 42.95 ± 0.62 (−8.48%) | 40.26 ± 0.58 (−9.00%) | 107.19 ± 1.55 (+7.52%) | 33.23 (+8.17%) | ||
Rapeseed protein | * | 39.66 ± 1.71 | 37.16 ± 1.23 | −192.87 ± 3.04 | 93.68 | [87] |
** | 27.94 ± 1.59 (−29.56%) | 25.35 ± 1.37 (−31.79%) | −228.80 ± 2.58 (−18.63%) | 92.39 (−1.37%) | ||
Zein | * | 48.55 ± 1.97 | 46.05 ± 0.99 | −154.47 ± 3.02 | 93.63 | [43] |
** | 39.06 ± 1.21 (−19.52%) | 36.55 ± 1.35 (−20.63%) | −163.98 ± 2.98 (−6.16%) | 87.06 (−7. 02%) | ||
Sunflower meal protein | * | 31.51 ± 0.38 | 28.93 ± 0.38 | −215.95 ± 1.24 | 92.20 | [44] |
** | 23.86 ± 0.29 (−24.28%) | 21.37 ± 0.28 (−26.13%) | −237.56 ± 0.92 (−9.10%) | 91.00 (−1.30%) | ||
Dextransucrase | * | 37.74 ± 2.41 | 35.29 ± 2.42 | −140.74 ± 8.18 | 77.93 | [91] |
** | 25.15 ± 0.89 (−33.7%) | 22.69 ± 0.58 (−35.7%) | −181.33 ± 1.96 (−28.8%) | 77.63 (−0.38%) | ||
Mulberry leaf | * | 29.81 ± 1.84 | 27.29 ± 1.84 | −193.11 ± 6.12 | 83.30 | [89] |
** | 16.55 ± 1.68 (−44.48%) | 14.08 ± 1.68 (−48.41%) | –233.89 ± 5.45 (−21.12%) | 82.60 (−0.84%) |
Substrate | Ultrasonic Condition | Results | Reference |
---|---|---|---|
Cellulose | 20 kHz; 535 W; 25 °C; 2 and 4 h | The longer the exposure time of cellulose to ultrasound, the greater the swelling and decrease in Segal CI. The molecular size and surface area of cellulose increase with time. | [92] |
Citrus pectin | 22 kHz; 900 W; 20 °C; 0–27 W mL−1 | With an increase in the ultrasound intensity from 0 to 18 W mL−1, the molecular weight of pectin decreased significantly (from 485.10 kDa to 240.11 kDa). | [84] |
Whey protein | 20 kHz; 0–500 W; 25 °C; 0–20 min | With ultrasonic power and time increasing, the DH value initially increased to a point and then decreased gradually. | [79] |
Sugar beet shreds | 22–25 kHz; 540 W; 20 and 30 min | Compared with the other conditions, under 540 W, 20 min, a 66.7% duty cycle, and two solid conditions, the reducing sugar yield obtained by enzymolysis was the highest, about 780 mg/g of cellulose. | [55] |
Wheat gluten powder | 150 W L−1; 30 °C; 15 min | Alternating dual-frequency-ultrasound-assisted enzymolysis is better than simultaneous dual-frequency ultrasound, which may be due to the reduction in cavitation bubbles caused by the superposition of sound waves under dual-frequency ultrasound mode. | [66] |
Rice protein | 27.3 kHz; 120 W L−1; 50 °C | Random sweep frequency ultrasound pretreatment can significantly increase the inhibitory activities of DH and ACE and improve the enzymatic hydrolysis effect. | [70] |
Rapeseed protein | 20 kHz; 0–1200 W; 50 °C; 0–18 min | Compared with other UP conditions, a maximum DH of 22.07% and ACE inhibitory activity of 72.13% were achieved at 600 W with 12 min of pretreatment. | [93] |
Wheat gluten | 20/35 kHz; 0–300 W L−1; 0–25 min | The surface roughness of wheat protein was different under alternating dual-frequency UP with different durations and power intensities, and the change in the degree of the secondary conformation was different. | [77] |
Enzyme | Condition | α-Helix (%) | β-Sheet (%) | β-Turn (%) | Random Coil (%) | Activity | Reference |
---|---|---|---|---|---|---|---|
Pectinase | Control | 2.60 | 40.94 | 19.42 | 37.04 | 31.94% | [104] |
Sonicated | 2.70 | 41.06 | 19.38 | 36.86 | |||
Pectinase | Control | 2.60 | 40.86 | 19.48 | 37.06 | 20.41% | [105] |
Sonicated | 2.70 | 41.14 | 19.22 | 36.94 | |||
Alcalase | Control | 77.00 | 1.00 | - | 22.00 | 5.81% | [99] |
Sonicated | 81.00 | 0 | - | 19.00 | |||
Dextranase | Control | 19.70 | 24.10 | 19.20 | 37.00 | 13.57% | [106] |
Sonicated | 22.80 | 23.50 | 18.70 | 35.00 | |||
Cellulase | Control | 26.20 | 26.60 | 21.90 | 24.80 | 18.17% | [40] |
Sonicated | 23.40 | 25.00 | 23.70 | 32.10 | |||
Glucoamylase | Control | 13.50 | 13.30 | 22.60 | 42.70 | 27.52% | [107] |
Sonicated | 15.90 | 10.60 | 21.70 | 48.00 | |||
Endoglucanase | Control | 31.10 | 28.70 | - | - | 5.37% | [108] |
Sonicated | 31.20 | 28.60 | - | - | |||
Cellulase | Control | 7.05 | 36.10 | 56.85 | 19.05% | [90] | |
Sonicated | 1.85 | 39.00 | 59.15 |
Application | Case | Reference |
---|---|---|
Producing bioactive peptides | Produce zein peptides with high ACE inhibitory activity | [43] |
Produce wheat gluten peptides with high ACE inhibitory activity | [66] | |
Produce antioxidant peptides from corn | [129] | |
Produce antioxidant peptides from potato protein | [124] | |
Extract polypeptides from Cordyceps militaris | [125] | |
Improving the quality of the product | Increase the contents of slow digestible starch and resistant starch in pea starch | [131] |
Improve the solubility, foaming, and emulsifying properties of egg white protein | [132] | |
Enhance the gelation property of wheat gluten | [133] | |
Enhance the hydrophobic and antioxidant properties of soy protein isolate hydrolysate | [134] | |
Brewing red wine and developing juice drinks | Optimize the process of red wine impregnation and extract phenols and volatile compounds | [135] |
Enhance the yield, clarity, and total soluble solids content of banana juice | [136] | |
Enhance the extraction of compounds and chromatic properties of mulberry | [123] | |
Assisting with determining the hazardous heavy metals content in foods | Assist with determining the content of Cd in rice flour | [137] |
Assist with determining the content of Mn in onion, parsley, chili powder, black pepper, and tomato samples | [138] | |
Assist in determining the content of arsenic in rice and flour samples | [139] | |
Reusing food waste | Extract polyphenols from pomegranate peel waste | [127] |
Extract lycopene pigment from tomato processing waste | [140] | |
Extract high-quality pectin from sisal waste | [42] | |
Produce ellagic acid from blueberry pulp | [141] | |
Produce pectin from citrus processing waste | [126] | |
Isolate β-glucan from oat bran | [142] | |
Synthetizing food additives | Hydrolysis of aspirin to methyl salicylate | [143] |
Catalyze transesterification for the synthesis of hexyl acetate | [144] | |
Catalyze transesterification for the synthesis of cinnamyl acetate | [145] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, J.; Chen, D.; Zhang, Y.; Gao, X.; Xu, L.; Guan, G.; Wang, F. Ultrasound-Assisted Enzymatic Protein Hydrolysis in Food Processing: Mechanism and Parameters. Foods 2023, 12, 4027. https://doi.org/10.3390/foods12214027
Qian J, Chen D, Zhang Y, Gao X, Xu L, Guan G, Wang F. Ultrasound-Assisted Enzymatic Protein Hydrolysis in Food Processing: Mechanism and Parameters. Foods. 2023; 12(21):4027. https://doi.org/10.3390/foods12214027
Chicago/Turabian StyleQian, Jingya, Di Chen, Yizhong Zhang, Xianli Gao, Ling Xu, Guoqiang Guan, and Feng Wang. 2023. "Ultrasound-Assisted Enzymatic Protein Hydrolysis in Food Processing: Mechanism and Parameters" Foods 12, no. 21: 4027. https://doi.org/10.3390/foods12214027
APA StyleQian, J., Chen, D., Zhang, Y., Gao, X., Xu, L., Guan, G., & Wang, F. (2023). Ultrasound-Assisted Enzymatic Protein Hydrolysis in Food Processing: Mechanism and Parameters. Foods, 12(21), 4027. https://doi.org/10.3390/foods12214027