The Effect of Exogenous Cadmium and Zinc Applications on Cadmium, Zinc and Essential Mineral Bioaccessibility in Three Lines of Rice That Differ in Grain Cadmium Accumulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Growth
2.2. Physiologically Based Extraction Test
2.3. Mineral Analysis
2.4. Dietary Exposure
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Proshad, R.; Kormoker, T.; Mursheed, N.; Islam, M.M.; Bhuyan, M.I.; Islam, M.S.; Mithu, T.N. Heavy metal toxicity in agricultural soil due to rapid industrialization in Bangladesh: A review. Int. J. Adv. Geosci. 2018, 6, 83. [Google Scholar] [CrossRef]
- Ali, W.; Mao, K.; Zhang, H.; Junaid, M.; Xu, N.; Rasool, A.; Feng, X.; Yang, Z. Comprehensive review of the basic chemical behaviours, sources, processes, and endpoints of trace element contamination in paddy soil-rice systems in rice-growing countries. J. Hazard. Mater. 2020, 397, 122720. [Google Scholar] [CrossRef] [PubMed]
- Kubier, A.; Wilkin, R.T.; Pichler, T. Cadmium in soils and groundwater: A review. Appl. Geochem. 2019, 108, 104388. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Luo, T.; Liu, X.; Hua, H.; Zhuang, Y.; Zhang, X.; Zhang, L.; Zhang, Y.; Xu, W.; Ren, J. Tracing anthropogenic cadmium emissions: From sources to pollution. Sci. Total Environ. 2019, 676, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Niño-Savala, A.G.; Zhuang, Z.; Ma, X.; Fangmeier, A.; Li, H.; Tang, A.; Liu, X. Cadmium pollution from phosphate fertilizers in arable soils and crops: An overview. Front. Agric. Sci. Eng. 2019, 6, 419–430. [Google Scholar] [CrossRef]
- Yin, X.; Wei, R.; Chen, H.; Zhu, C.; Liu, Y.; Wen, H.; Guo, Q.; Ma, J. Cadmium isotope constraints on heavy metal sources in a riverine system impacted by multiple anthropogenic activities. Sci. Total Environ. 2021, 750, 141233. [Google Scholar] [CrossRef]
- Huang, X.; Duan, S.; Wu, Q.; Yu, M.; Shabala, S. Reducing cadmium accumulation in plants: Structure–function relations and tissue-specific operation of transporters in the spotlight. Plants 2020, 9, 223. [Google Scholar] [CrossRef]
- Ma, J.F.; Shen, R.F.; Shao, J.F. Transport of cadmium from soil to grain in cereal crops: A review. Pedosphere 2021, 31, 3–10. [Google Scholar] [CrossRef]
- Clemens, S.; Ma, J.F. Toxic Heavy Metal and Metalloid Accumulation in Crop Plants and Foods. Annu. Rev. Plant Biol. 2016, 67, 489–512. [Google Scholar] [CrossRef]
- Guttieri, M.J.; Baenziger, S.P.; Frels, K.; Carver, B.; Arnall, B.; Wang, S.; Akhunov, E.; Waters, B.M. Prospects for selecting wheat with increased zinc and decreased cadmium concentration in grain. Crop Sci. 2015, 55, 1712–1728. [Google Scholar] [CrossRef]
- Tavarez, M.; Macri, A.; Sankaran, R. Cadmium and zinc partitioning and accumulation during grain filling in two near isogenic lines of durum wheat. Plant Physiol. Biochem. 2015, 97, 461–469. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Zhu, W.; Yang, W.T.; Gu, J.F.; Gao, Z.X.; Chen, L.W.; Du, W.Q.; Zhang, P.; Peng, P.Q.; Liao, B.H. Cadmium uptake, accumulation, and remobilization in iron plaque and rice tissues at different growth stages. Ecotoxicol. Environ. Saf. 2018, 152, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Järup, L.; Åkesson, A. Current status of cadmium as an environmental health problem. Toxicol. Appl. Pharmacol. 2009, 238, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Zhong, M.S.; Jiang, L.; Han, D.; Xia, T.X.; Yao, J.J.; Jia, X.Y.; Peng, C. Cadmium exposure via diet and its implication on the derivation of health-based soil screening values in China. J. Expo. Sci. Environ. Epidemiol. 2015, 25, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Buha, A.; Jugdaohsingh, R.; Matovic, V.; Bulat, Z.; Antonijevic, B.; Kerns, J.G.; Goodship, A.; Hart, A.; Powell, J.J. Bone mineral health is sensitively related to environmental cadmium exposure- experimental and human data. Environ. Res. 2019, 176, 108539. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Zhang, Q.; Zhang, S.; Zhang, T.; Pan, F.; Cui, Y.; Thomsen, S.T.; Jakobsen, L.S.; Liu, A.; Pires, S.M. Risk–Benefit Assessment of Consumption of Rice for Adult Men in China. Front. Nutr. 2021, 8, 694370. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Wang, Y.; Mao, W.; Sui, H.; Yong, L.; Yang, D.; Jiang, D.; Zhang, L.; Gong, Y. Dietary cadmium exposure assessment among the Chinese population. PLoS ONE 2017, 12, e0177978. [Google Scholar] [CrossRef]
- Kim, K.; Melough, M.M.; Vance, T.M.; Noh, H.; Koo, S.I.; Chun, O.K. Dietary cadmium intake and sources in the US. Nutrients 2019, 11, 2. [Google Scholar] [CrossRef]
- Satarug, S.; Haswell-Elkins, M.R.; Moore, M.R. Safe levels of cadmium intake to prevent renal toxicity in human subjects. Br. J. Nutr. 2000, 84, 791–802. [Google Scholar] [CrossRef]
- Schaefer, H.R.; Dennis, S.; Fitzpatrick, S. Cadmium: Mitigation strategies to reduce dietary exposure. J. Food Sci. 2020, 85, 260–267. [Google Scholar] [CrossRef]
- Awika, J.M. Major cereal grains production and use around the world. In Advances in Cereal Science: Implications to Food Processing and Health Promotion; American Chemical Society: Washington, DC, USA, 2011; Volume 1089, pp. 1–13. [Google Scholar]
- Gardener, H.; Bowen, J.; Callan, S.P. Lead and cadmium contamination in a large sample of United States infant formulas and baby foods. Sci. Total Environ. 2019, 651, 822–827. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Carey, M.; Meharg, C.; Williams, P.N.; Signes-Pastor, A.J.; Triwardhani, E.A.; Pandiangan, F.I.; Campbell, K.; Elliott, C.; Marwa, E.M.; et al. Rice Grain Cadmium Concentrations in the Global Supply-Chain. Expo. Health 2020, 12, 869–876. [Google Scholar] [CrossRef]
- Parker, G.H.; Gillie, C.E.; Miller, J.V.; Badger, D.E.; Kreider, M.L. Human health risk assessment of arsenic, cadmium, lead, and mercury ingestion from baby foods. Toxicol. Rep. 2022, 9, 238–249. [Google Scholar] [CrossRef] [PubMed]
- Edward, M.; Muntean, N.; Creta, C.; Duda, M. Occurrence of Lead and Cadmium in some Baby Foods and Cereal Products. ProEnvironment/ProMediu 2013, 6, 587–590. [Google Scholar]
- Clever, J.B.S. China Releases the Standard for Maximum Levels of Contaminants in Foods; USDA FAS Gain Report; USDA Foreign Agricultural Service: Washington, DC, USA, 2018; p. 17CH18025. [Google Scholar]
- Publications Office of the European Union. Commission of the European Communities Setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union 2006, 364, 5–24. [Google Scholar]
- Institute of Medicine. Dietary Reference Intakes: Guiding Principles for Nutrition Labeling and Fortification. Nutr. Rev. 2004, 62, 73–79. [Google Scholar] [CrossRef]
- Slamet-Loedin, I.H.; Johnson-Beebout, S.E.; Impa, S.; Tsakirpaloglou, N. Enriching rice with Zn and Fe while minimizing Cd risk. Front. Plant Sci. 2015, 6, 121. [Google Scholar] [CrossRef]
- Bashir, K.; Seki, M.; Nishizawa, N.K. The transport of essential micronutrients in rice. Mol. Breed. 2019, 39, 168. [Google Scholar] [CrossRef]
- Zhou, M.; Zheng, S.; Liu, R.; Lu, L.; Zhang, C.; Zhang, L.; Yant, L.; Wu, Y. The genome-wide impact of cadmium on microRNA and mRNA expression in contrasting Cd responsive wheat genotypes. BMC Genom. 2019, 20, 615. [Google Scholar] [CrossRef]
- Park, J.; Song, W.Y.; Ko, D.; Eom, Y.; Hansen, T.H.; Schiller, M.; Lee, T.G.; Martinoia, E.; Lee, Y. The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant J. 2012, 69, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Luo, N.; Li, Y.W.; Cai, Q.Y.; Li, H.Y.; Mo, C.H.; Wong, M.H. Cadmium in rice: Transport mechanisms, influencing factors, and minimizing measures. Environ. Pollut. 2017, 224, 622–630. [Google Scholar] [CrossRef] [PubMed]
- Ricachenevsky, F.K.; de Araújo Junior, A.T.; Fett, J.P.; Sperotto, R.A. You shall not pass: Root vacuoles as a symplastic checkpoint for metal translocation to shoots and possible application to grain nutritional quality. Front. Plant Sci. 2018, 9, 412. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.J.; Zhang, G.; Wu, F.; Wei, K.; Chen, Z. Zinc alleviates growth inhibition and oxidative stress caused by cadmium in rice. J. Plant Nutr. Soil Sci. 2005, 168, 255–261. [Google Scholar] [CrossRef]
- Roberts, T.L. Cadmium and phosphorous fertilizers: The issues and the science. Procedia Eng. 2014, 83, 52–59. [Google Scholar] [CrossRef]
- McLaughlin, M.J.; Parker, D.R.; Clarke, J.M. Metals and micronutrients—Food safety issues. Field Crop. Res. 1999, 60, 143–163. [Google Scholar] [CrossRef]
- Wang, M.Y.; Li, M.Y.; Ning, H.; Xue, R.Y.; Liang, J.H.; Wang, N.; Luo, X.S.; Li, G.; Juhasz, A.L.; Ma, L.Q.; et al. Cadmium oral bioavailability is affected by calcium and phytate contents in food: Evidence from leafy vegetables in mice. J. Hazard. Mater. 2022, 424, 127373. [Google Scholar] [CrossRef]
- Tavarez, M.; Grusak, M.A.; Sankaran, R.P. Effects of Zinc Fertilization on Grain Cadmium Accumulation, Gene Expression, and Essential Mineral Partitioning in Rice. Agronomy 2022, 12, 2182. [Google Scholar] [CrossRef]
- Lee, H.H.; Loh, S.P.; Bong, C.F.J.; Sarbini, S.R.; Yiu, P.H. Impact of phytic acid on nutrient bioaccessibility and antioxidant properties of dehusked rice. J. Food Sci. Technol. 2015, 52, 7806–7816. [Google Scholar] [CrossRef]
- Liu, C.; Guttieri, M.J.; Waters, B.M.; Eskridge, K.M.; Easterly, A.; Stephen Baenziger, P. Cadmium concentration in terminal tissues as tools to select low-cadmium wheat. Plant Soil 2018, 430, 127–138. [Google Scholar] [CrossRef]
- Sun, S.; Zhou, X.; Li, Z.; Zhuang, P. In Vitro and In Vivo testing to determine Cd bioaccessibility and bioavailability in contaminated rice in relation to mouse chow. Int. J. Environ. Res. Public Health 2019, 16, 871. [Google Scholar] [CrossRef] [PubMed]
- Wahengbam, E.D.; Das, A.J.; Green, B.D.; Hazarika, M.K. Studies on in vitro bioavailability and starch hydrolysis in zinc fortified ready-to-eat parboiled rice (komal chawal). J. Food Sci. Technol. 2019, 56, 3399–3407. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Cao, X.; Pan, J.; Li, T.; Khan, M.B.; Gurajala, H.K.; He, Z.; Yang, X. Identification of wheat (Triticum aestivum L.) genotypes for food safety on two different cadmium contaminated soils. Environ. Sci. Pollut. Res. 2020, 27, 7943–7956. [Google Scholar] [CrossRef] [PubMed]
- Pinson, S.R.M.; Tarpley, L.; Yan, W.; Yeater, K.; Lahner, B.; Yakubova, E.; Huang, X.Y.; Zhang, M.; Guerinot, M.L.; Salt, D.E. Worldwide Genetic Diversity for Mineral Element Concentrations in Rice Grain. Crop Sci. 2015, 55, 294–311. [Google Scholar] [CrossRef]
- Arao, T.; Ae, N. Genotypic variations in cadmium levels of rice grain. Soil Sci. Plant Nutr. 2003, 49, 473–479. [Google Scholar] [CrossRef]
- Sriprachote, A.; Manantapong, K.; Kanyawongha, P.; Ochiai, K.; Matoh, T. Variations of grain iron and zinc concentrations among the promising low-grain cadmium rice (Oryza sativa L.) cultivars. Songklanakarin J. Sci. Technol. 2020, 42, 447–453. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Y.; Chen, W.; Wang, M.; Wang, T.; Dai, Y. Dynamic interactions between soil cadmium and zinc affect cadmium phytoavailability to rice and wheat: Regional investigation and risk modeling. Environ. Pollut. 2020, 267, 115613. [Google Scholar] [CrossRef]
- Cheng, M.; Kopittke, P.M.; Wang, A.; Sale, P.W.G.; Tang, C. Cadmium reduces zinc uptake but enhances its translocation in the cadmium-accumulator, Carpobrotus rossii, without affecting speciation. Plant Soil 2018, 430, 219–231. [Google Scholar] [CrossRef]
- Mohammad, A.; Moheman, A. The effects of cadmium and zinc interactions on the accumulation and tissue distribution of cadmium and zinc in tomato (Lycopersicon esculentum Mill.). Arch. Agron. Soil Sci. 2010, 56, 551–561. [Google Scholar] [CrossRef]
- Ruby, M.V.; Davis, A.; Schoof, R.; Eberle, S.; Sellstone, C.M. Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environ. Sci. Technol. 1996, 30, 422–430. [Google Scholar] [CrossRef]
- Choquette, S.; Gonzalez, C. Certificate of Analysis Standard Reference Material 1568b Rice Flour. Natl. Inst. Stand. Technol. 2021, SRM 1568b, 1–6. [Google Scholar]
- Narayanan, N.; Beyene, G.; Chauhan, R.D.; Gaitán-Solís, E.; Gehan, J.; Butts, P.; Siritunga, D.; Okwuonu, I.; Woll, A.; Jiménez-Aguilar, D.M.; et al. Biofortification of field-grown cassava by engineering expression of an iron transporter and ferritin. Nat. Biotechnol. 2019, 37, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Farnham, M.W.; Keinath, A.P.; Grusak, M.A. Mineral concentration of broccoli florets in relation to year of cultivar release. Crop Sci. 2011, 51, 2721–2727. [Google Scholar] [CrossRef]
- Tang, G.; Jian, Q.; Dolnikowski, G.G.; Russell, R.M.; Grusak, M.A. Golden rice is an effective source of vitamin A. Am. J. Clin. Nutr. 2009, 89, 1776–1783. [Google Scholar] [CrossRef] [PubMed]
- La-Up, A.; Wiwatanadate, P.; Pruenglampoo, S.; Uthaikhup, S. Recommended rice intake levels based on average daily dose and urinary excretion of cadmium in a cadmium-contaminated area of northwestern Thailand. Toxicol. Res. 2017, 33, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Hambidge, K.M.; Miller, L.V.; Westcott, J.E.; Sheng, X.; Krebs, N.F. Zinc bioavailability and homeostasis. Am. J. Clin. Nutr. 2010, 91, 1478S–1483S. [Google Scholar] [CrossRef]
- Yang, L.S.; Zhang, X.W.; Li, Y.H.; Li, H.R.; Wang, Y.; Wang, W.Y. Bioaccessibility and risk assessment of cadmium from uncooked rice using an in vitro digestion model. Biol. Trace Elem. Res. 2012, 145, 81–86. [Google Scholar] [CrossRef]
- Zhang, H.; Reynolds, M. Cadmium exposure in living organisms: A short review. Sci. Total Environ. 2019, 678, 761–767. [Google Scholar] [CrossRef]
- Boim, A.G.F.; Wragg, J.; Canniatti-Brazaca, S.G.; Alleoni, L.R.F. Human intestinal CaCO2 cell line in vitro assay to evaluate the absorption of Cd, Cu, Mn and Zn from urban environmental matrices. Environ. Geochem. Health 2020, 42, 601–615. [Google Scholar] [CrossRef]
- Nishijo, M.; Nakagawa, H.; Suwazono, Y.; Nogawa, K.; Kido, T. Causes of death in patients with Itai-itai disease suffering from severe chronic cadmium poisoning: A nested case-control analysis of a follow-up study in Japan. BMJ Open 2017, 7, e015694. [Google Scholar] [CrossRef]
- Liu, P.; Xiao, W.; Wang, K.; Yang, Z.; Wang, L. Bioaccessibility of Cd and its Correlation with Divalent Mineral Nutrients in Locally Grown Rice from Two Provinces in China. Biol. Trace Elem. Res. 2021, 200, 1408–1417. [Google Scholar] [CrossRef] [PubMed]
- Jan, B.; Bhat, T.A.; Sheikh, T.A.; Wani, O.A.; Bhat, M.A.; Nazir, A.; Fayaz, S.; Mushtaq, T.; Farooq, A.; Wani, S.; et al. Agronomic Bio-fortification of Rice and Maize with Iron and Zinc: A Review. Int. Res. J. Pure Appl. Chem. 2020, 21, 28–37. [Google Scholar] [CrossRef]
- Ueno, D.; Yamaji, N.; Kono, I.; Huang, C.F.; Ando, T.; Yano, M.; Ma, J.F. Gene limiting cadmium accumulation in rice. Proc. Natl. Acad. Sci. USA 2010, 107, 16500–16505. [Google Scholar] [CrossRef] [PubMed]
- Lv, Q.; He, Q.; Wu, Y.; Chen, X.; Ning, Y.; Chen, Y. Investigating the Bioaccessibility and Bioavailability of Cadmium in a Cooked Rice Food Matrix by Using an 11-Day Rapid Caco-2/HT-29 Co-culture Cell Model Combined with an In Vitro Digestion Model. Biol. Trace Elem. Res. 2019, 190, 336–348. [Google Scholar] [CrossRef]
- Frontela, C.; Ros, G.; Martínez, C. Phytic acid content and “in vitro” iron, calcium and zinc bioavailability in bakery products: The effect of processing. J. Cereal Sci. 2011, 54, 173–179. [Google Scholar] [CrossRef]
- Islam, S.; Rahman, M.M.; Duan, L.; Islam, M.R.; Kuchel, T.; Naidu, R. Variation in arsenic bioavailability in rice genotypes using swine model: An animal study. Sci. Total Environ. 2017, 599–600, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Cakmak, I.; Kutman, U.B. Agronomic biofortification of cereals with zinc: A review. Eur. J. Soil Sci. 2018, 69, 172–180. [Google Scholar] [CrossRef]
- Lu, M.; Cao, X.; Pan, J.; Gurajala, H.K.; He, Z.; Yang, X.; Khan, M.B. Genotypic variations in zinc accumulation and bioaccessibility among wheat (Triticum aestivum L.) genotypes under two different field conditions. J. Cereal Sci. 2020, 93, 102953. [Google Scholar] [CrossRef]
- Tefera, W.; Tang, L.; Lu, L.; Xie, R.; Seifu, W.; Tian, S. Rice cultivars significantly mitigate cadmium accumulation in grains and its bioaccessibility and toxicity in human HL-7702 cells. Environ. Pollut. 2021, 272, 116020. [Google Scholar] [CrossRef]
- Sharafi, K.; Nodehi, R.N.; Mahvi, A.H.; Pirsaheb, M.; Nazmara, S.; Mahmoudi, B.; Yunesian, M. Bioaccessibility analysis of toxic metals in consumed rice through an in vitro human digestion model—Comparison of calculated human health risk from raw, cooked and digested rice. Food Chem. 2019, 299, 125126. [Google Scholar] [CrossRef]
- Gu, Y.; Wang, P.; Zhang, S.; Dai, J.; Chen, H.P.; Lombi, E.; Howard, D.L.; Van Der Ent, A.; Zhao, F.J.; Kopittke, P.M. Chemical Speciation and Distribution of Cadmium in Rice Grain and Implications for Bioavailability to Humans. Environ. Sci. Technol. 2020, 54, 12072–12080. [Google Scholar] [CrossRef] [PubMed]
- Amos, A.; Alvan, A.; Florence, A. The Anti-nutritional Effect of Phytate on Zinc, Iron and Calcium Bioavailabilities of Some Cereals Staple Foods in Zaria, Nigeria. Eur. J. Nutr. Food Saf. 2020, 12, 1–6. [Google Scholar] [CrossRef]
- Wang, Y.; Meng, Y.; Ma, Y.; Liu, L.; Wu, D.; Shu, X.; Pan, L.; Lai, Q. Combination of High Zn Density and Low Phytic Acid for Improving Zn Bioavailability in Rice (Oryza stavia L.) Grain. Rice 2021, 14, 23. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.K.; Aggarwal, S.; Meena, V.; Kumar, A. Phytic Acid Reduction in Cereal Grains by Genome Engineering: Potential targets to achieve low phytate wheat. In Genome Engineering for Crop Improvement; Wiley: New York, NY, USA, 2021; pp. 146–156. [Google Scholar]
- Redekar, N.R.; Glover, N.M.; Biyashev, R.M.; Ha, B.K.; Raboy, V.; Maroof, M.A.S. Genetic interactions regulating seed phytate and oligosaccharides in soybean (Glycine max L.). PLoS ONE 2020, 15, e0235120. [Google Scholar] [CrossRef] [PubMed]
- Satarug, S.; Garrett, S.H.; Sens, M.A.; Sens, D.A. Cadmium, environmental exposure, and health outcomes. Environ. Health Perspect. 2010, 118, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.F.; Song, J.; Li, Y.Q.; Lai, Y.F.; Lin, J.; Pan, J.L.; Chi, H.Q.; Wang, Y.; Li, Z.Y.; Zhang, G.Q.; et al. Bioaccessibility and bioavailability adjusted dietary exposure of cadmium for local residents from a high-level environmental cadmium region. J. Hazard. Mater. 2021, 420, 126550. [Google Scholar] [CrossRef]
- Luo, J.; Meng, J.; Ye, Y.; Wang, Y.; Bai, L. Population health risk via dietary exposure to trace elements (Cu, Zn, Pb, Cd, Hg, and As) in Qiqihar, Northeastern China. Environ. Geochem. Health 2018, 40, 217–227. [Google Scholar] [CrossRef]
- Jean, J.; Sirot, V.; Hulin, M.; Le Calvez, E.; Zinck, J.; Noël, L.; Vasseur, P.; Nesslany, F.; Gorecki, S.; Guérin, T.; et al. Dietary exposure to cadmium and health risk assessment in children—Results of the French infant total diet study. Food Chem. Toxicol. 2018, 115, 358–364. [Google Scholar] [CrossRef]
- Zhuang, P.; Sun, S.; Zhou, X.; Mao, P.; McBride, M.B.; Zhang, C.; Li, Y.; Xia, H.; Li, Z. Bioavailability and bioaccessibility of cadmium in contaminated rice by in vivo and in vitro bioassays. Sci. Total Environ. 2020, 719, 137453. [Google Scholar] [CrossRef]
- Kim, M.S.; Yang, H.R.; Jeong, Y.H. Mineral Contents of Brown and Milled Rice. J. Korean Soc. Food Sci. Nutr. 2004, 33, 443–446. [Google Scholar] [CrossRef]
GSOR | Experimental ID | Country of Origin |
---|---|---|
310546 | 546 | Malaysia |
311667 | 667 | Mali |
310428 | 428 | Indonesia |
Treatment | Line | Ca | Cu | Fe | Mg | Ni | P | Zn | Cd |
---|---|---|---|---|---|---|---|---|---|
c0z2 | 546 | 1020.33 | 6.38 | 18.18 | 1358.99 | 1.71 | 2763.47 | 50.27 | 0.06 |
667 | 103.01 | 7.71 | 15.28 | 1608.48 | 6.96 | 4022.68 | 33.45 | 0.03 | |
428 | 131.37 | 9.4 | 30.98 | 1212.23 | 10.19 | 3512.65 | 48.83 | 0.03 | |
c1z2 | 546 | 140.62 | 5.76 | 14.67 | 1155.87 | 11.24 | 2588.96 | 41.84 | 0.3 |
667 | 69.25 | 8.75 | 20.19 | 1357.87 | 8.2 | 3672.58 | 27.2 | 1.09 | |
428 | 229.96 | 11.12 | 55.56 | 1621.95 | 11.58 | 3633.39 | 52.92 | 2 | |
c1z10 | 546 | 966.9 | 6.75 | 9.84 | 1417.82 | 2.49 | 3071.24 | 63.97 | 1.3 |
667 | 77.95 | 7.38 | 14.8 | 1336.84 | 7.63 | 3781.59 | 45.23 | 0.82 | |
428 | 99.66 | 9.88 | 26.73 | 1556.22 | 14.46 | 2769.52 | 73.29 | 4.04 |
Line | Treatment | DE (μg/kg/week) | |
---|---|---|---|
Children | Line 546 | c1z2 | 4.81 |
c1z10 | 126.81 | ||
Line 667 | c1z2 | 77.87 | |
c1z10 | 74.52 | ||
Line 428 | c1z2 | 121.07 | |
c1z10 | 197.29 | ||
Women | Line 546 | c1z2 | 3.34 |
c1z10 | 87.92 | ||
Line 667 | c1z2 | 53.99 | |
c1z10 | 51.67 | ||
Line 428 | c1z2 | 83.94 | |
c1z10 | 136.79 | ||
Men | Line 546 | c1z2 | 3.85 |
c1z10 | 101.50 | ||
Line 667 | c1z2 | 62.33 | |
c1z10 | 59.65 | ||
Line 428 | c1z2 | 96.91 | |
c1z10 | 157.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tavarez, M.; Grusak, M.A.; Sankaran, R.P. The Effect of Exogenous Cadmium and Zinc Applications on Cadmium, Zinc and Essential Mineral Bioaccessibility in Three Lines of Rice That Differ in Grain Cadmium Accumulation. Foods 2023, 12, 4026. https://doi.org/10.3390/foods12214026
Tavarez M, Grusak MA, Sankaran RP. The Effect of Exogenous Cadmium and Zinc Applications on Cadmium, Zinc and Essential Mineral Bioaccessibility in Three Lines of Rice That Differ in Grain Cadmium Accumulation. Foods. 2023; 12(21):4026. https://doi.org/10.3390/foods12214026
Chicago/Turabian StyleTavarez, Michael, Michael A. Grusak, and Renuka P. Sankaran. 2023. "The Effect of Exogenous Cadmium and Zinc Applications on Cadmium, Zinc and Essential Mineral Bioaccessibility in Three Lines of Rice That Differ in Grain Cadmium Accumulation" Foods 12, no. 21: 4026. https://doi.org/10.3390/foods12214026
APA StyleTavarez, M., Grusak, M. A., & Sankaran, R. P. (2023). The Effect of Exogenous Cadmium and Zinc Applications on Cadmium, Zinc and Essential Mineral Bioaccessibility in Three Lines of Rice That Differ in Grain Cadmium Accumulation. Foods, 12(21), 4026. https://doi.org/10.3390/foods12214026