Physicochemical, Microbiological, and Toxicological Characterization of Pâté Prepared from the Meat and Liver of Bullfrog (Aquarana catesbeiana) Carcasses
Abstract
:1. Introduction
2. Material and Methods
2.1. Liver Pâté Development
2.2. Physicochemical Characterization
2.3. Microbiological Characterization
2.4. Toxicological Evaluation
2.5. Statistical Analyses
3. Results and Discussion
3.1. Body Part Weight-Ratio and Carcass Utilization
3.2. Development and Characterization of Bullfrog Pâtés
3.3. Macro- and Micronutrient Pâté Contents
3.4. Microbiological and Toxicological Characterizations of the Formulated Pâté
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mancera-Rodriguez, L.; Muñoz-Ramirez, A.P.; Lopez-Vargas, J.H.; Simal-Gandara, J. Development, characterization and stability of a white cachama pâté-type product (Piaractus brachypomus). Food Chem. 2022, 375, 131660. [Google Scholar] [CrossRef] [PubMed]
- Pateiro, M.; Lorenzo, J.M.; Amado, I.R.; Franco, D. Effect of addition of green tea, chestnut and grape extract on the shelf-life of pig liver pâté. Food Chem. 2014, 147, 386–394. [Google Scholar] [CrossRef]
- Estévez, M.; Ventanas, S.; Cava, R. Effect of natural and synthetic antioxidants on protein oxidation and colour and texture changes in refrigerated stored porcine liver pâté. Meat Sci. 2006, 74, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Barbut, S.; Wood, J.; Marangoni, A. Potential use of organogels to replace animal fat in comminuted meat products. Meat Sci. 2016, 122, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Tiensa, B.E.; Barbut, S.; Marangoni, A.G. In fluence of fat structure on the mechanical properties of commercial pate products. Food Res. Int. 2017, 100, 558–565. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation; FAO: Rome, Italy, 2022. [Google Scholar]
- Ayres, A.A.C.; Damasceno, D.Z.; Moro, E.B.; Maccari, G.M.R.; Nervis, J.A.L.; Bittencourt, F. Carcass yield and proximate composition of bullfrog (Lithobates catesbeianus). Acta Sci.—Anim. Sci. 2015, 37, 329–333. [Google Scholar] [CrossRef]
- Rodrigues, E.; Seixas Filho, J.T.D.; Mello, S.C.R.P.; Castagna, A.A.; Sousa, M.A.D.; Silva, U.P. Frog meat microbiota (Lithobates catesbeianus) used in infant food. Food Sci. Technol. 2014, 34, 51–54. [Google Scholar] [CrossRef]
- Seixas Filho, J.T.D.; Ide, L.K.; Mello, S.C.R.P.; Cafiero, J.T.G.; Rodrigues, E. Production of flour made from bullfrog’s meat and bone. Food Sci. Technol. 2020, 40, 374–379. [Google Scholar] [CrossRef]
- Farias, V.M.; Andrade, N.M.; Calixto, F.A.A.; Duarte, M.C.K.H.; Keller, L.A.M.; Mesquita, E.F.M. Fish products developed from ground rainbow trout and tilapia fillet mixtures: Physico-chemical, microbiological and toxicological analyses. Arq. Bras. Med. Vet. 2021, 73, 1128–1136. [Google Scholar] [CrossRef]
- Ide, L.K.; de Seixas Filho, J.T.; Mello, S.C.R.P.; Cafiero, J.T.G. New cuts of bullfrog carcass and its application in asian gastronomy. Res. Soc. Dev. 2021, 10, e47810212732. [Google Scholar]
- Zhu, Y.; Bao, M.; Chen, C.; Yang, X.; Yan, W.; Ren, F.; Wang, P.; Wen, P. Comparison of the nutritional composition of bullfrog meat from different parts of the animal. Food Sci. Anim. Resour. 2021, 41, 1049. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, D.S.; Calixto, F.A.A.; Guimarães, J.L.B.; Aronovich, M.; Keller, L.A.M.; Mesquita, E.F.M. Produtos de pescado elaborados com resíduos de arrasto: Análise físico-química, microbiológica e toxicológica. Arq. Bras. Med. Vet. 2018, 70, 238–246. [Google Scholar] [CrossRef]
- Guimarães, J.D.L.B.; Calixto, F.A.A.; Keller, L.A.D.M.; Silva, L.E.D.; Furtado, Â.A.L.; Mesquita, E.F.M. Development of a low commercial value fish-sausage from the fish trawling “mix” category. Food Sci. Technol. 2018, 39, 115–121. [Google Scholar] [CrossRef]
- Barcellos, C.C.C.; Bassil, P.E.; Duarte, M.C.K.H.; Franco, R.M.; Keller, L.A.M.; Mesquita, E.D.F.M.D. The effect of the commercial fish gelatin protein hydrolysate on rainbow trout (Oncorhynchus mykiss) fillet quality. Food Sci. Technol. 2020, 40, 929–937. [Google Scholar] [CrossRef]
- Haddad, L.R.; Tejada-Ortigoza, V.; Martín-del-Campo, S.T.; Balderas-León, I.; Morales-de la Peña, M.; Garcia-Amezquita, L.E.; Welti-Chanes, J. Evaluation of nutritional composition and technological functionality of whole American Bullfrog (Lithobates catesbeianus), its skin, and its legs as potential food ingredients. Food Chem. 2022, 372, 131232. [Google Scholar]
- Brasil, Ministério da Agricultura, Pecuária e Abastecimento. Regulamento técnico de identidade e qualidade de patê. Portaria Ministerial nº 574, de 8 de dezembro de 1998. Brasília: Ministério da Agricultura e do Abastecimento. Diário Oficial [da] União, 31 July 2000. [Google Scholar]
- Brasil, Ministério da Agricultura, Pecuária e Abastecimento. Métodos Analíticos Oficiais Físico-Químicos para Controle de Pescado e seus derivados. Instrução Normativa nº 25, de 2 de junho de2011. Diário Oficial [da] União, 3 June 2011. [Google Scholar]
- AOAC. Association of Official Analytical Chemists. Official Methods of Analysis of the Association of Official Analytical Chemistry, 18th ed.; AOAC: Gaithersburg, MD, USA, 2005. [Google Scholar]
- BRASIL. Ministério da Agricultura, Pecuária e Pesca. Instrução Normativa Nº 30, de 26 de junho de 2018. Ficam estabelecidos como oficiais os métodos constantes do Manual de Métodos Oficiais para Análise de Alimentos de Origem Animal. Diário Oficial [da] União, 13 July 2018. [Google Scholar]
- APHA. American Public Health Association. Compendium of Methods for the Microbiological Examination of Foods, 3rd ed.; APHA: Washington, DC, USA, 2015; 1219p. [Google Scholar]
- Agresti, A. Categorical Data Analysis, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2002; 721p. [Google Scholar]
- Magouz, F.I.; Bassuini, M.I.; Khalafalla, M.M.; Abbas, R.; Sewilam, H.; Aboelenin, S.M.; Soliman, M.M.; Amer, A.S.; Soliman, A.A.; Doan, H.V.; et al. Mannan oligosaccharide enhanced the growth rate, digestive enzyme activity, carcass composition, and blood chemistry of Thinlip grey mullet (Liza ramada). Animals 2021, 11, 3559. [Google Scholar] [CrossRef]
- Estévez, M.; Ventanas, S.; Cava, R. Physicochemical properties and oxidative stability of liver pâté as affected by fat content. Food Chem. 2005, 92, 449–457. [Google Scholar] [CrossRef]
- Tian, L.; Yang, K.; Zhang, S.; Yi, J.; Zhu, Z.; Decker, E.A.; McClements, D.J. Impact of tea polyphenols on the stability of oil-in-water emulsions coated by whey proteins. Food Chem. 2020, 343, 128448. [Google Scholar] [CrossRef]
- Abril, B.; Sánchez-Torres, E.A.; Toldrà, M.; Benedito, J.; García-Pérez, J.V. Physicochemical and techno-functional properties of dried and defatted porcine liver. Biomolecules 2022, 12, 926. [Google Scholar] [CrossRef]
- Hamzeh, A.; Azizieh, A.; Yazagy, S. The effect of the fat percentage and liver type in the stability and pH value of locally prepared Liver pate. Int. Food Res. J. 2016, 23, 1131–1135. [Google Scholar]
- Guerra-Fajardo, L.D.; Pavon-Perez, J.; Vallejos-Almirall, A.; Jorquera-Pereira, D. Advances in analytical techniques coupled to in vitro bioassays in the search for new peptides with functional activity in effect-directed analysis. Food Chem. 2022, 397, 133784. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Imran, M.; Nadeem, M.; Khan, M.K.; Sohaib, M.; Suleria, H.A.R.; Bashir, R. Oxidative stability and Sensoric acceptability of functional fish meat product supplemented with plant based polyphenolic optimal extracts. Lipids Health Dis. 2019, 18, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.; Ning, J.; Zhu, Z.; Cui, L.; Decker, E.A.; McClements, D.J. Impact of interfacial composition on co-oxidation of lipids and proteins in oil-in-water emulsions: Competitive displacement of casein by surfactants. Food Hydroc. 2018, 87, 20–28. [Google Scholar] [CrossRef]
- Tsareva, N.I.; Bychkova, T.S.; Artemova, E.N.; Kozlova, V.A.; Rogacheva, Y.V. Development of liver pate technology using pea meal. BIO Web Conf. 2020, 17, 00123. [Google Scholar] [CrossRef]
- Yessimbekov, Z.; Kakimov, A.; Caporaso, N.; Suychinov, A.; Kabdylzhar, B.; Shariati, M.A.; Baikadamova, A.; Domínguez, R.; Lorenzo, J.M. Use of meat-bone paste to develop calcium-enriched liver pâté. Foods 2021, 10, 2042. [Google Scholar] [CrossRef]
- Sakić-Dizdarević, S.; Dizdarević, T.; Kasumović, E.; Sarić, Z.; Mehmeti, I.; Abrahamsen, R.K.; Narvhus, J.A. Microbiological aspects of the traditional Travnik/Vlašić cheese manufactured in Bosnia and Herzegovina. J. Infect. Dev. Ctries. 2023, 17, 236–240. [Google Scholar] [CrossRef]
- Fudali, A.; Chełmecka, I.; Salejda, A.M.; Krasnowska, G. Microbiological Safety and Organoleptic Quality of Homogenized Sausages Manufactured with Commercial Functional Additives. Appl. Sci. 2021, 11, 11662. [Google Scholar] [CrossRef]
- Khilendra, B.; Laura, M.; Sanjeev, A.; Lloyd, M. Effect of midday pasteurizer washing on thermoduric organisms and their progression through Cheddar cheese manufacturing and ripening. J. Dairy Sci. 2022, 105, 109–122. [Google Scholar]
- Pereira, R.N.; Teixeira, J.A.; Vicente, A.A.; Cappato, L.P.; Ferreira, M.V.S.; Rocha, R.S.; Cruz, A.G. Ohmic heating for the dairy industry: A potential technology to develop probiotic dairy foods in association with modifications of whey protein structure. Curr. Opin. Food Sci. 2018, 22, 95–101. [Google Scholar] [CrossRef]
- Białkowska, A.; Majewska, E.; Olczak, A.; Twarda-clapa, A. Ice binding proteins: Diverse biological roles and applications in different types of industry. Biomolecules 2020, 10, 274. [Google Scholar] [CrossRef]
- Said, M.I. Role and function of gelatin in the development of the food and non-food industry: A review. IOP Conf. Ser. Earth Environ. Sci. 2020, 492, 012086. [Google Scholar] [CrossRef]
- Jayasena, D.D.; Kim, H.J.; Yong, H.I.; Park, S.; Kim, K.; Choe, W.; Jo, C. Flexible thin-layer dielectric barrier discharge plasma treatment of pork butt and beef loin: Effects on pathogen inactivation and meat-quality attributes. Food Microbiol. 2015, 46, 51–57. [Google Scholar] [CrossRef] [PubMed]
- FDA; U.S. Food and Drug Administration; U.S. Department of Health and Human Services. Food Additives and Ingredients: Overview of Food Ingredients, Additives and Colors. Nov. 2004. Rev. Apr. 2010. Available online: https://www.fda.gov/files/food/published/Food-Ingredients-and-Colors-%28PDF%29.pdf (accessed on 10 September 2023).
Samples (*) | pH | TBARS (mg MDA kg−1) | Aw |
---|---|---|---|
Torso meat (C1) | 6.8 ± 0.10 A | 1.60 ± 1.10 A | 0.970 ± 0.10 A |
Liver paste (C2) | 6.60 ± 0.10 A | 1.70 ± 1.10 A | 0.980 ± 0.10 A |
Mixed pulp (T1) | 6.82 ± 0.10 A | 1.40 ± 1.10 A | 0.960 ± 0.10 A |
Mixed pulp (T2) | 6.72 ± 0.10 A | 1.30 ± 1.10 A | 0.960 ± 0.10 A |
Mixed pulp (T3) | 6.78 ± 0.10 A | 1.20 ± 1.10 A | 0.970 ± 0.10 A |
Mixed pulp (T4) | 6.99 ± 0.10 A | 1.20 ± 1.10 A | 0.960 ± 0.10 A |
Mixed pulp (T5) | 7.00 ± 0.10 A | 1.20 ± 1.10 A | 0.960 ± 0.10 A |
Samples (*) | Dry Matter (%) | Crude Protein (%) | Collagen (%) | Lipids (%) | Ash (%) |
---|---|---|---|---|---|
Torso meat (C1) | 27.20 ± 1.30 B | 25.60 ±1.04 B | 13.22 ± 1.04 B | 4.10 ± 0.31 B | 1.55 ± 0.14 A |
Liver paste (C2) | 12.90 ± 1.10 A | 17.80 ± 2.16 A | 0.10 ± 0.01 A | 6.20 ± 0.81 A | 1.15 ± 0.25 A |
Mixed pulp (T1) | 27.42 ± 1.46 B | 24.50 ± 1.10 B | 11.25 ± 1.10 B | 4.50 ± 0.62 B | 2.22 ± 0.25 B |
Mixed pulp (T2) | 28.72 ± 0.96 B | 23.33 ± 1.61 B | 12.53 ± 1.54 B | 4.44 ± 1.84 B | 2.08 ± 0.39 B |
Mixed pulp (T3) | 28.78 ± 2.10 B | 21.27 ± 0.91 B | 11.50 ± 1.22 B | 3.66 ± 0.71 B | 2.54 ± 0.16 B |
Mixed pulp (T4) | 27.99 ± 0.59 B | 19.14 ± 1.29 B | 12.20 ± 1.26 B | 3.79 ± 1.25 B | 2.14 ± 0.35 B |
Mixed pulp (T5) | 26.97 ± 1.00 B | 19.10 ± 0.88 B | 12.10 ± 1.23 B | 4.67 ± 0.79 B | 1.99 ± 0.30 B |
Samples (*) | K (%) | Ca (%) | P (%) | Na (%) | Mg (%) | Cu (%) |
---|---|---|---|---|---|---|
Torso meat (C1) | 0.200 ± 0.11 | 0.550 ± 0.14 | 0.005 ± 0.009 | 0.001 ± 0.001 | 0.001 ± 0.001 | 0.001 ± 0.001 |
Liver paste (C2) | 0.500 ± 0.12 | 0.050 ± 0.01 | 0.200 ± 0.110 | 0.001 ± 0.001 | 0.001 ± 0.001 | 0.001 ± 0.001 |
Mixed pulp (T1) | 0.22 ± 0.12 | 0.22 ± 0.20 | 0.015 ± 0.010 | 0.051 ± 0.010 | 0.001 ± 0.001 | 0.001 ± 0.001 |
Mixed pulp (T2) | 0.27 ± 0.12 | 0.18 ± 0.12 | 0.016 ± 0.010 | 0.052 ± 0.010 | 0.001 ± 0.001 | 0.001 ± 0.001 |
Mixed pulp (T3) | 0.34 ± 0.16 | 0.34 ± 0.16 | 0.013 ± 0.010 | 0.051 ± 0.010 | 0.001 ± 0.001 | 0.001 ± 0.001 |
Mixed pulp (T4) | 0.34 ± 0.10 | 0.24 ± 0.20 | 0.012 ± 0.010 | 0.051 ± 0.010 | 0.001 ± 0.001 | 0.001 ± 0.001 |
Mixed pulp (T5) | 0.29 ± 0.10 | 0.29 ± 0.20 | 0.017 ± 0.010 | 0.053 ± 0.010 | 0.001 ± 0.001 | 0.001 ± 0.001 |
Microorganisms | Brazilian Legislation * | C1 | C2 | T1 | T2 | T3 | T4 | T5 |
---|---|---|---|---|---|---|---|---|
Total mesophilic bacteria 1 | - | 5.50 | 2.95 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 |
coagulase-positive Staphylococcus 1 | 3.00 | 2.60 | 3.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 |
Total coliforms 1 | - | 2.50 | 2.50 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 |
Thermotolerant coliforms 1 | 2.70 | 1.55 | 1.55 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 |
Salmonella spp. 1 | Abs. | Abs. | Abs. | Abs. | Abs. | Abs. | Abs. | Abs. |
Microorganisms | Brazilian Legislation * | 15 Days of Storage | 30 Days of Storage | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | T5 | T1 | T2 | T3 | T4 | T5 | ||
Total mesophilic bacteria 1 | - | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 |
coagulase-positive Staphylococcus 1 | 3.00 | <1.00 | <1.00 | 1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 |
Total coliforms 1 | - | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 |
Thermotolerant coliforms 1 | 2.70 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 |
Salmonella spp. 1 | Absent | Abs. | Abs. | Abs. | Abs. | Abs. | Abs. | Abs. | Abs. | Abs. | Abs. |
Samples (*) | Histamine (µg g−1) | H2S (mg 100 g−1) |
---|---|---|
Torso meat (C1) | ≤1.00 | ≤1.00 |
Liver paste (C2) | ≤1.00 | ≤1.00 |
Mixed pulp (T1) | ≤1.00 | ≤1.00 |
Mixed pulp (T2) | ≤1.00 | ≤1.00 |
Mixed pulp (T3) | ≤1.00 | ≤1.00 |
Mixed pulp (T4) | ≤1.00 | ≤1.00 |
Mixed pulp (T5) | ≤1.00 | ≤1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magalhães, L.R.G.; Moebus, V.F.; Castagna, A.A.; Aronovich, M.; Coutinho, C.E.R.; Favotto, S.; Piasentier, E.; Keller, L.A.M.; Mesquita, E.F.M. Physicochemical, Microbiological, and Toxicological Characterization of Pâté Prepared from the Meat and Liver of Bullfrog (Aquarana catesbeiana) Carcasses. Foods 2023, 12, 4064. https://doi.org/10.3390/foods12224064
Magalhães LRG, Moebus VF, Castagna AA, Aronovich M, Coutinho CER, Favotto S, Piasentier E, Keller LAM, Mesquita EFM. Physicochemical, Microbiological, and Toxicological Characterization of Pâté Prepared from the Meat and Liver of Bullfrog (Aquarana catesbeiana) Carcasses. Foods. 2023; 12(22):4064. https://doi.org/10.3390/foods12224064
Chicago/Turabian StyleMagalhães, Luiz Rogério G., Victor F. Moebus, Airton A. Castagna, Marcos Aronovich, Carlos Eduardo R. Coutinho, Saida Favotto, Edi Piasentier, Luiz A. M. Keller, and Eliana F. M. Mesquita. 2023. "Physicochemical, Microbiological, and Toxicological Characterization of Pâté Prepared from the Meat and Liver of Bullfrog (Aquarana catesbeiana) Carcasses" Foods 12, no. 22: 4064. https://doi.org/10.3390/foods12224064
APA StyleMagalhães, L. R. G., Moebus, V. F., Castagna, A. A., Aronovich, M., Coutinho, C. E. R., Favotto, S., Piasentier, E., Keller, L. A. M., & Mesquita, E. F. M. (2023). Physicochemical, Microbiological, and Toxicological Characterization of Pâté Prepared from the Meat and Liver of Bullfrog (Aquarana catesbeiana) Carcasses. Foods, 12(22), 4064. https://doi.org/10.3390/foods12224064