To Eat or Not to Eat?—Food Safety Aspects of Essential Metals in Seafood
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Preparation of Samples
2.3. Chemicals and Standards
2.4. Analytical Method
2.5. Validation of the Method
2.6. Statistical Analysis
3. Results
4. Discussion
4.1. Cobalt
4.2. Chromium
4.3. Copper
4.4. Manganese
4.5. Molybdenum
4.6. Nickel
4.7. Zinc
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, C.; Ralston, N.V.C. Seafood and Health: What You Need to Know? In Advances in Food and Nutrition Research; Chapter Seven; Toldrá, F., Ed.; Academic Press: Cambridge, MA, USA, 2021; Volume 97, pp. 275–318, ISSN 1043-4526; ISBN 9780128245804. [Google Scholar] [CrossRef]
- European Commission, Directorate-General for Maritime Affairs and Fisheries, The EU Fish Market—2022 Edition, Publications Office of the European Union. 2022. Available online: https://data.europa.eu/doi/10.2771/716731 (accessed on 13 September 2023).
- Thomsen, S.T.; Assunção, R.; Afonso, C.; Boué, G.; Cardoso, C.; Cubadda, F.; Garre, A.; Kruisselbrink, J.W.; Mantovani, A.; Pitter, J.G.; et al. Human health risk–benefit assessment of fish and other seafood: A scoping review. Crit. Rev. Food Sci. Nutr. 2022, 62, 7479–7502. [Google Scholar] [CrossRef] [PubMed]
- Daschner, A. Risks and possible health effects of raw fish intake. In Fish and Fish Oil in Health and Disease Prevention; Chapter 31; Susan, K., Raatz, S.K., Bibus, D.M., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 341–353. [Google Scholar] [CrossRef]
- Abbas, K.; Alam, M.; Kamal, S. Heavy metals contamination in water bodies and its impact on fish health and fish nutritional value: A review. Int. J. Fauna. Biol. Stud. 2021, 8, 43–49. [Google Scholar] [CrossRef]
- Caradonna, F.; Consiglio, O.; Luparello, C.; Gentile, C. Science and healthy meals in the world: Nutritional epigenomics and nutrigenetics of the mediterranean diet. Nutrients 2020, 12, 1748. [Google Scholar] [CrossRef] [PubMed]
- Branciari, R.; Franceschini, R.; Roila, R.; Valiani, A.; Pecorelli, I.; Piersanti, A.; Haouet, N.; Framboas, M.; Ranucci, D. Nutritional value and contaminant risk assessment of some commercially important fishes and crawfish of lake Trasimeno, Italy. Int. J. Environ. Res. Public Health 2020, 17, 2545. [Google Scholar] [CrossRef]
- Prashanth, L.; Kattapagari, K.K.; Chitturi, R.T.; Baddam, V.R.; Prasad, L.K. A review on role of essential trace elements in health and disease. J. NTR Univ. Health Sci. 2015, 4, 75–78. [Google Scholar] [CrossRef]
- Belitz, H.D.; Grosch, W.; Schieberle, P. Food Chemistry; 4th Revised and Extended Edition; Springer: Berlin/Heidelberg, Germany, 2009; ISBN 978-3-540-69933-0. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Jafari, S.M. The importance of minerals in human nutrition: Bioavailability, food fortification, processing effects and nanoencapsulation. Trends Food Sci. Technol. 2017, 62, 119–132. [Google Scholar] [CrossRef]
- Ali, A.A.H. Overview of the vital roles of macro minerals in the human body. J. Trace Elem. Miner. 2023, 4, 100076. [Google Scholar] [CrossRef]
- Mertz, W. (Ed.) Trace Elements in Human and Animal Nutrition, 5th ed.; Academic Press: Cambridge, MA, USA, 1986; Volume 2, pp. 1–490. [Google Scholar]
- NRC (National Research Council); Committee on Diet and Health. Diet and Health: Implications for Reducing Chronic Disease Risk; National Academies Press (US): Washington, DC, USA, 1989. Available online: https://www.ncbi.nlm.nih.gov/books/NBK218751/ (accessed on 13 September 2023).
- WHO (World Health Organization). Trace Elements in Human Nutrition and Health; World Health Organization: Geneva, Switzerland, 1996; pp. 1–343. Available online: https://www.who.int/publications/i/item/9241561734 (accessed on 13 September 2023).
- Nielsen, F.H. Trace elements. In Encyclopedia of Food Sceinces and Nutrition, 2nd ed.; Caballero, B., Trugo, L., Finglas, P.M., Eds.; Academic Press, Elsevier: London, UK, 2003; pp. 5820–5828. [Google Scholar] [CrossRef]
- Cannas, D.; Loi, E.; Serra, M.; Firinu, D.; Valera, P.; Zavattari, P. Relevance of Essential Trace Elements in Nutrition and Drinking Water for Human Health and Autoimmune Disease Risk. Nutrients 2020, 12, 2074. [Google Scholar] [CrossRef]
- Preeti Tomar, B.; Satya Ranjan, M.; Mohsina, H. Nutritional Aspects of Essential Trace Elements in Oral Health and Disease: An Extensive Review. Scientifica 2016, 2016, 5464373. [Google Scholar] [CrossRef]
- Gibson, M. Fish and shellfish. In Food Science and the Culinary Arts; Academic Press: London, UK, 2018; pp. 240–243. Available online: https://shop.elsevier.com/books/food-science-and-the-culinary-arts/gibson/978-0-12-811816-0 (accessed on 13 September 2023).
- Jomova, K.; Makova, M.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Rhodes, C.J.; Valko, M. Essential metals in health and disease. Chem. Biol. Interact. 2022, 367, 110173. [Google Scholar] [CrossRef]
- Venkatraman, V.; Wong, M.K.; Shalita, C.; Parente, B.; Lad, S.P. Cobalt-Induced Toxicity and Spasticity Secondary to Hip Arthroplasty: Case Report and Review of the Literature. Cureus 2020, 12, e12368. [Google Scholar] [CrossRef] [PubMed]
- Arinola, O.G. Essential trace elements and metal binding proteins in Nigerian consumers of alcoholic beverages. Pak. J. Nutr. 2008, 7, 763–765. [Google Scholar] [CrossRef]
- Yamada, K. Cobalt: Its Role in Health and Disease. In Interrelations between Essential Metal Ions and Human Diseases; Sigel, A., Sigel, H., Sigel, R., Eds.; Metal Ions in Life Sciences; Springer: Dordrecht, The Netherlands, 2013; Volume 13. [Google Scholar] [CrossRef]
- Lison, D.C. Cobalt. In Handbook on the Toxicology of Metals, 3rd ed.; Nordberg, G.F., Fowler, B.A., Nordberg, M., Friberg, L.T., Eds.; Academic Press: New York, NY, USA; Elsevier: London, UK, 2007; pp. 511–528. Available online: https://booksite.elsevier.com/samplechapters/9780123694133/Sample_Chapters/01~Front_Matter.pdf (accessed on 15 September 2023).
- Czarnek, K.; Terpiłowska, S.; Siwicki, A.K. Selected aspects of the action of cobalt ions in the human body. Cent. Eur. J. Immunol. 2015, 40, 236–242. [Google Scholar] [CrossRef]
- Murray, R.K.; Granner, D.K.; Mayes, P.A.; Rodwell, V.W. Harper’s Biochemistry, 25th ed.; McGraw-Hill, Health Profession Division: New York, NY, USA, 2000. [Google Scholar]
- Packer, M. Cobalt Cardiomyopathy: A Critical Reappraisal in Light of a Recent Resurgence. Circ Heart Fail. 2016, 9, e003604. [Google Scholar] [CrossRef] [PubMed]
- Leyssens, L.; Vinck, B.; Van Der Straeten, C.; Wuyts, F.; Maes, L. Cobalt toxicity in humans—A review of the potential sources and systemic health effects. Toxicology 2017, 387, 43–56. [Google Scholar] [CrossRef] [PubMed]
- van Gerwen, M.; Alerte, E.; Alsen, M.; Little, C.; Sinclair, C.; Genden, E. The role of heavy metals in thyroid cancer: A meta-analysis. J. Trace Elem. Med. Biol. 2022, 69, 126900. [Google Scholar] [CrossRef]
- Vincent, J.B.; Lukaski, H.C. Chromium. Adv. Nutr. 2018, 9, 505–506. [Google Scholar] [CrossRef]
- Pechova, A.; Pavlata, L. Chromium as an essential nutrient: A review. Vet. Med. 2007, 52, 1–18. [Google Scholar] [CrossRef]
- Eastmond, D.A.; MacGregor, J.T.; Slesinki, R.S. Trivalent Chromium: Assessing the genotoxic risk of the essential trace element and widely used human and animal nutritional supplement. Crit. Rev. Toxicol. 2008, 38, 173–190. [Google Scholar] [CrossRef]
- Brown, M. Harnessing chromium in the fight against diabetes. Drug Disc. Today 2003, 8, 962–963. [Google Scholar] [CrossRef]
- Staniek, H.; Wójciak, R.W. The combined effect of supplementary Cr(III) propionate complex and iron deficiency on the chromium and iron status in female rats. J. Trace Elem. Med. Biol. 2018, 45, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Soetan, K.O.; Olaiya, O.; Oyewole, O.E. The importance of mineral elements for humans, domestic animals and plants: A review. Afr. J. Food Sci. 2010, 4, 200–222. Available online: https://academicjournals.org/journal/AJFS/article-abstract/045441523024 (accessed on 10 September 2023).
- Juturu, V.; Komorowski, J.R. Chromium Supplements, glucose and insulin responses. Am. J. Clin. Nutr. 2003, 78, 190. [Google Scholar] [CrossRef]
- Hossini, H.; Shafie, B.; Niri, A.D.; Nazari, M.; Esfahlan, A.J.; Ahmadpour, M.; Nazmara, Z.; Ahmadimanesh, M.; Makhdoumi, P.; Mirzaei, N.; et al. A comprehensive review on human health effects of chromium: Insights on induced toxicity. Environ. Sci. Pollut. Res. 2022, 29, 70686–70705. [Google Scholar] [CrossRef] [PubMed]
- Uauy, R.; Olivares, M.; Gonzalez, M. Essentiality of copper in humans. Am. J. Clin. Nutr. 1998, 67, 952S–959S. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.C.; Burns, D.L.; Jones, H.R. Severe ataxia, myelopathy and peripheral neuropathy due to acquired copper deficiency in a patient with history of gastrectomy. J. Parenter. Nutr. 2006, 30, 446–450. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, V.K. Biochemistry for Students, 12th ed.; Jaypee Brothers Medical Publishers (P) Ltd.: New Delhi, India, 2012; Available online: https://www.jaypeedigital.com/book/9789350255049 (accessed on 10 September 2023).
- Scheiber, I.; Dringen, R.; Mercer, J.F.B. Copper: Effects of Deficiency and Overload. In Interrelations between Essential Metal Ions and Human Diseases; Sigel, A., Sigel, H., Sigel, R.K.O., Eds.; Metal Ions in Life Sciences; Springer: Berlin/Heidelberg, Germany, 2013; Volume 13, Chapter 11; pp. 359–387. [Google Scholar]
- Hajimohammadi, S.; Gharibi, S.; Pourbarkhordar, V.; Mousavi, S.R.; Izadi, H.S. Acute poisoning of copper sulfate: A case report and review literature. Egypt. J. Intern. Med. 2022, 34, 84. [Google Scholar] [CrossRef]
- Merck, V.M. The Merck Veterinary Manual, 11th ed.; A Handbook of Diagnosis, Therapy and Disease Prevention and Control for the Veterinarian; Merck and Co., Inc.: Rahway, NJ, USA, 2016. [Google Scholar]
- Chellan, P.; Sadler, P.J. The elements of life and medicines. Philos. Trans. A Math. Phys. Eng. Sci. 2015, 373, 20140182. [Google Scholar] [CrossRef]
- Chen, P.; Bornhorst, J.; Aschner, M. Manganese metabolism in humans. Front. Biosci. 2018, 23, 1655–1679. [Google Scholar] [CrossRef]
- Avila, D.S.; Puntel, R.L.; Aschner, M. Manganese in Health and Disease. In Interrelations between Essential Metal Ions and Human Diseases; Sigel, A., Sigel, H., Sigel, R., Eds.; Metal Ions in Life Sciences; Springer: Dordrecht, The Netherlands, 2013; Volume 13, pp. 199–227. [Google Scholar] [CrossRef]
- Li, L.; Yang, X. The Essential Element Manganese, Oxidative Stress, and Metabolic Diseases: Links and Interactions. Oxidative Med. Cell. Longev. 2018, 2018, 7580707. [Google Scholar] [CrossRef]
- Martinez-Finley, E.J.; Gavin, C.E.; Aschner, M.; Gunter, T.E. Manganese neurotoxicity and the role of reactive oxygen species. Free. Radic. Biol. Med. 2013, 62, 65–67. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, Z.Y.; Wang, Z.J.; Liu, R.; Liu, S.Q.; Wang, L. Effects of manganese deficiency on chondrocyte development in tibia growth plate of Arbor Acres chicks. J. Bone Miner. Metab. 2015, 33, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.Y.; Hu, D.W.; Zhao, F.J. Molybdenum: More than an essential element. J. Exp. Bot. 2022, 73, 1766–1774. [Google Scholar] [CrossRef] [PubMed]
- Novotny, J.A.; Peterson, C.A. Molybdenum. Adv. Nutr. 2018, 9, 272–273. [Google Scholar] [CrossRef]
- Reiss, J.; Johnson, J.L. Mutations in the molybdenum cofactor biosynthetic genes MOCS1, MOCS2, and GEPH. Human Mutat. 2003, 21, 569–576. [Google Scholar] [CrossRef]
- Anke, M.; Seifert, M.; Arnhold, W.; Anke, S.; Schäfer, U. The biological and toxicological importance of molybdenum in the environment and in the nutrition of plants, animals and man Part V: Essentiality and toxicity of molybdenum. Acta Aliment. 2010, 39, 12–26. [Google Scholar] [CrossRef]
- Barceloux, D.G. Molybdenum. Clin. Toxicol. 1999, 37, 231–237. [Google Scholar] [CrossRef]
- Kumar, S.; Trivedi, A.V. A Review on Role of Nickel in the Biological System. Int. J. Curr. Microbiol. App. Sci. 2016, 5, 719–727. [Google Scholar] [CrossRef]
- Begum, W.; Summi Rai, S.; Banerjee, S.; Bhattacharjee, S.; Mondal, M.H.; Bhattarai, A.; Saha, B. A comprehensive review on the sources, essentiality and toxicological profile of nickel. RSC Adv. 2022, 12, 9139–9153. [Google Scholar] [CrossRef]
- Genchi, G.; Carocci, A.; Lauria, G.; Sinicropi, M.S.; Catalano, A. Nickel: Human Health and Environmental Toxicology. Int. J. Environ. Res. Public Health 2020, 17, 679. [Google Scholar] [CrossRef]
- Salnikow, K.; Zhitkovich, A. Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: Nickel, arsenic, and chromium. Chem. Res. Toxicol. 2008, 21, 28–44. [Google Scholar] [CrossRef] [PubMed]
- Valko, M.; Morris, H.; Cronin, M.T. Metals, toxicity and oxidative stress. Curr. Med. Chem. 2005, 12, 1161–1208. [Google Scholar] [CrossRef]
- Stangl, G.I.; Roth-Maier, D.A.; Kirchgessner, M. Vitamin B-12 deficiency and hyperhomocysteinemia are partly ameliorated by cobalt and nickel supplementation in Pigs 1. J. Nutr. 2000, 130, 3038–3044. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Kumar, R.S. Role of Nickel in animal performance: A review. Pharma Innov. J. 2021, 10, 643–646. [Google Scholar]
- Das, K.K.; Reddy, R.C.; Bagoji, I.B.; Das, S.; Bagali, S.; Mullur, L.; Khodnapur, J.P.; Biradar, M.S. Primary concept of nickel toxicity—An overview. J. Basic Clin. Physiol. Pharmacol. 2019, 30, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Homady, M.; Hussein, H.; Jiries, A.; Mahasneh, A.; Al-Nasir, F.; Khleifat, K. Survey of some heavy metals in sediments from vehicular service stations in Jordan and their effects on social aggression in prepubertal male mice. Environ. Res. 2002, 89, 43–49. [Google Scholar] [CrossRef]
- Plum, L.M.; Rink, L.; Haase, H. The Essential Toxin: Impact of Zinc on Human Health. Int. J. Environ. Res. Public Health 2010, 7, 1342–1365. [Google Scholar] [CrossRef]
- Szabo, G.; Chavan, S.; Mandrekar, P.; Catalano, D. Acute alcoholic consumption attenuates IL-8 and MCP-1 induction in response to ex vivo stimulation. J. Clin. Immunol. 1999, 19, 67–76. [Google Scholar] [CrossRef]
- McDowell, L.R. Minerals in Animal and Human Nutrition; Academic Press Inc., Elsevier: Berkeley, CA, USA, 2003; Available online: https://shop.elsevier.com/books/minerals-in-animal-and-human-nutrition/mcdowell/978-0-444-51367-0 (accessed on 10 September 2023).
- Porea, T.J.; Belmont, J.W.; Mahoney, D.H., Jr. Zinc-induced anemia and neutropenia in an adolescent. J. Pediatr. 2000, 136, 688–690. [Google Scholar] [CrossRef]
- Paun, S.; Tudosie, M.; Petris, R.; Macovei, R. The effects of Zinc on human body, including on renal failure and renal transplantation. J. Med. Life 2012, 5, 137–140. Available online: https://pubmed.ncbi.nlm.nih.gov/31803301 (accessed on 10 September 2023).
- Sidhu, P.; Gorg, M.L.; Morgenstern, P.; Vogt, J.; Butz, T.; Dhawan, D.K. Role of Zinc in regulating the levels of hepatic elements following nickel toxicity in rats. Biol. Trace Elem. Res. 2004, 102, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Commission Decision No. 2002/657/EC of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. Off. J. Eur. Union 2002, L 221/45. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32002D0657 (accessed on 10 September 2023).
- Tekindal, M.A.; Erdoğan, B.D.; Yavuz, Y. Evaluating Left-Censored Data Through Substitution, Parametric, Semi-parametric, and Nonparametric Methods: A Simulation Study. Interdiscip. Sci. Comput. Life Sci. 2015, 9, 153–172. [Google Scholar] [CrossRef] [PubMed]
- NIH (National Institutes of Health). Office of Dietary Supplements, USA, Dietary Supplement Fact Sheets. 2010. Available online: https://ods.od.nih.gov/factsheets/list-all/ (accessed on 12 December 2022).
- Szűcs, I. Consumption, production and trade of fisheries products in Europe. Hung. J. Food Nutr. Market 2009, VI, 29–38. [Google Scholar]
- Sivaperumal, P.; Sankar, P.G.; Viswanathan Nair, P.G. Heavy metal concentrations in fish, shellfish and fish products from internal markets of India vis-à -vis international standards. Food Chem. 2007, 102, 612–620. [Google Scholar] [CrossRef]
- El Nemr, A.; Khaled, A.; Moneer, A.A.; El Sikaily, A. Risk probability due to heavy metals in bivalve from Egyptian Mediterranean coast. Egypt J. Aquat. Res. 2012, 38, 67–75. [Google Scholar] [CrossRef]
- Grotto, D.; Batista, B.; Carneiro, M.; Barbosa, F., Jr. Evaluation by ICP-MS of Essential, Nonessential and Toxic Elements in Brazilian Fish and Seafood Samples. Food Nutr. Sci. 2012, 3, 1252–1260. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority) Scientific Opinion on Dietary Reference Values for cobalamin (vitamin B12). EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA). EFSA J. 2015, 13, 4150. [Google Scholar] [CrossRef]
- Hamed, M.A.; Emara, A.M. Marine mollusks as biomonitors for heavy metal levels in the Gulf of Suez, Red Sea. J. Mar. Syst. 2006, 60, 220–234. [Google Scholar] [CrossRef]
- Usero, J.; Gonzales-Regalado, E.; Gracia, I. Trace metals in bivalve mollusks Chamelea gallina from the Atlantic coast of southern Spain. Mar. Pollut. Bull. 1996, 32, 305–310. [Google Scholar] [CrossRef]
- De Mora, S.; Fowler, S.W.; Wyse, E.; Azemard, S. Distribution of heavy metals in marine bivalves, fish and coastal sediments in the Gulf and Gulf of Oman. Mar. Pollut. Bull. 2004, 49, 410–424. [Google Scholar] [CrossRef]
- Copat, C.; Grasso, A.; Fiore, M.; Cristaldi, A.; Zuccarello, P.; Signorelli, S.S.; Conti, G.O.; Ferrante, M. Trace elements in seafood from the Mediterranean Sea: An exposure risk assessment. Food Chem. Toxicol. 2018, 115, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, R.R.; Søndergaard, A.B.; Bøknæs, N.; Cederberg, T.L.; Sloth, J.J.; Granby, K. Effects of industrial processing on essential elements and regulated and emerging contaminant levels in seafood. Food Chem. Toxicol. 2017, 104, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Storelli, M.M. Intake of Essential Minerals and Metals via Consumption of Seafood from the Mediterranean Sea. J. Food Prot. 2009, 72, 1116–1120. [Google Scholar] [CrossRef] [PubMed]
- WHO (World Health Organization). Trace Elements in Human Nutrition and Health. Belgium, 1996; p. 343. Available online: https://apps.who.int/iris/handle/10665/37931 (accessed on 12 December 2022).
- Olmedo, P.; Hernández, A.F.; Pla, A.; Femia, P.; Navas-Acien, A.; Gil, F. Determination of essential elements (copper, manganese, selenium and zinc) in fish and shellfish samples. Risk and nutritional assessment and mercury-selenium balance. Food Chem. Toxicol. 2013, 62, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Alves, R.N.; Maulvault, A.L.; Barbosa, V.L.; Fernandez-Tejedor, M.; Tediosi, A.; Kotterman, M.; van den Heuvel, F.H.M.; Robbens, J.; Fernandes, J.O.; Rasmussen, R.R.; et al. Oral bioaccessibility of toxic and essential elements in raw and cooked commercial seafood species available in European markets. Food Chem. 2018, 267, 15–27. [Google Scholar] [CrossRef]
- Amiard, J.-C.; Amiard-Triquet, C.; Charbonnier, L.; Mesnil, A.; Rainbow, P.S.; Wang, W.-X. Bioaccessibility of essential and non-essential metals in commercial shellfish from Western Europe and Asia. Food Chem. Toxicol. 2008, 46, 2010–2022. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority) Scientific Opinion on Dietary Reference Values for copper. EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA). EFSA J. 2015, 13, 4253. [Google Scholar] [CrossRef]
- EUMOFA (European Market Observatory for Fisheries and Aquaculture Products). The EU Consumer Habits—Final Report. Directorate-General for Maritime Affairs and Fisheries of the European Commission. 2017. Available online: https://www.eumofa.eu/documents/20178/84590/EU+consumer+habits_final+report+.pdf/5c61348d-a69c-449e-a606-f5615a3a7e4c (accessed on 12 December 2022).
- Gutiérrez, A.J.; González-Weller, D.; González, T.; Burgos, A.; Lozano, G.; Hardisson, A. Content of trace metals (iron, zinc, manganese, chromium, copper, nickel) in canned variegated scallops (Chlamys varia). Int. J. Food Sci. Nutr. 2008, 59, 535–543. [Google Scholar] [CrossRef]
- España, A.M.S.; Rodríguez, E.M.; Díaz Romero, C. Manganese, nickel, selenium and cadmium in molluscs from the Magellan Strait, Chile. Food Addit. Contam. 2004, 21, 768–773. [Google Scholar] [CrossRef]
- Chaillou, G.; Anschutz, P.; Lavaux, G.; Schäfer, J.; Blanc, G. The distribution of Mo, U, and Cd in relation to major redox species in muddy sediments of the Bay of Biscay. Mar. Chem. 2002, 80, 41–59. [Google Scholar] [CrossRef]
- Ravera, O.; Cenci, R.; Beone, G.M.; Dantas, M.; Lodigiani, P. Trace element concentrations in freshwater mussels and macrophytes as related to those in their environment. J. Limnol. 2003, 62, 61–70. [Google Scholar] [CrossRef]
- Moradi, A.M.; Jalali, M.M.J.; Fatemi, M.R. A survey on the accumulation of heavy metals as indicator of oil pollution index (Vanadium and Nickel) in bivalve rock oyster (Saccostrea cucullata) in Qeshm Island coasts. J. Mar. Sci. Eng. 2011, 1, 51–58. [Google Scholar]
- Ross, A.C.; Taylor, C.L.; Yaktine, A.L. (Eds.) Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc, Institute of Medicine (US) Panel on Micronutrients; National Academies Press: Washington, DC, USA, 2011. [Google Scholar] [CrossRef]
- Campanella, L.; Conti, M.E.; Cubadda, F.; Sucapane, C. Trace metals in sea grass, algae and mollusks from an uncontaminated area in the Mediterranean. Environ. Pollut. 2001, 111, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Widdows, J.; Nasci, C.; Fossato, V.U. Effects of pollution on the scope for growth of mussels (Mytillus galloprovincialis) from the Venice lagoon, Italy. Mar. Environ. Res. 1997, 43, 69–79. [Google Scholar] [CrossRef]
- Conti, M.E.; Cecchetti, G. A biomonitoring study: Trace metals in algae and molluscs from Tyrrhenian coastal areas. Environ. Res. 2003, 93, 99–112. [Google Scholar] [CrossRef]
Element | Certified Value (mg/kg) | Measured Value (mg/kg) | Measured with Spike * (mg/kg) | LOD (mg/kg) | Recovery (%) |
---|---|---|---|---|---|
Chromium | 0.73 | 0.67 ± 0.01 | NA | 0.05 | 91.0 |
Cobalt | 0.21 | 0.22 ± 0.02 | NA | 0.05 | 104.7 |
Copper | 5.98 | 5.70 ± 0.14 | NA | 0.05 | 115.2 |
Manganese | 4.88 | 4.56 ± 0.05 | NA | 0.05 | 93.4 |
Molybdenum | ND | 0.43 ± 0.01 | 2.86 ± 0.04 | 0.5 | 97.0 |
Nickel | 0.69 | 0.67 ± 0.02 | NA | 0.2 | 97.1 |
Zinc | 71.00 | 70.90 ± 0.59 | NA | 0.05 | 99.8 |
Metal | LOD (mg/kg) | Squid | Oyster | Mussel | ||||||
---|---|---|---|---|---|---|---|---|---|---|
n | Mean | SE | n | Mean | SE | n | Mean | SE | ||
Cobalt | 0.05 | 19 | 0.05 a | 0.00 | 17 | 0.05 a | 0.00 | 21 | 0.16 b | 0.11 |
Chromium | 0.05 | 19 | 0.06 ab | 0.02 | 17 | 0.05 a | 0.00 | 21 | 0.11 b | 0.14 |
Copper | 0.05 | 19 | 7.20 b | 4.24 | 17 | 16.46 c | 9.87 | 21 | 1.16 a | 0.53 |
Manganese | 0.05 | 19 | 0.29 a | 0.12 | 17 | 4.88 c | 2.26 | 21 | 1.65 b | 1.23 |
Molybdenum | 0.50 | 38 | 0.05 a | 0.00 | 34 | 0.52 a | 0.07 | 42 | 0.55 a | 0.20 |
Nickel | 0.20 | 38 | 0.21 a | 0.04 | 34 | 0.23 a | 0.05 | 42 | 0.51 b | 0.65 |
Zinc | 0.05 | 38 | 11.32 a | 1.60 | 34 | 202.60 c | 88.41 | 42 | 24.96 b | 20.04 |
Metal | Measured Quantity (mg/kg) | SE | Average Metal Uptake (µg/kg) (Interval) | SE | RDA (µg/day) | UL (mg/day) | |
---|---|---|---|---|---|---|---|
Cobalt | Squid | 0.05 | 0.17 | 0.00 | 0.17 | ND | |
Oyster | 0.05 | 0.00 | 0.17 (0.16–0.17) | 0.00 | |||
Mussel | 0.16 | 0.11 | 0.53 (0.17–1.98) | 0.37 | |||
Chromium | Squid | 0.06 | 0.02 | 0.20 (0.02–0.50) | 0.08 | 20 | ND |
Oyster | 0.05 | 0.00 | 0.17 (0.17–0.25) | 0.01 | |||
Mussel | 0.11 | 0143 | 0.38 (0.20–2.19) | 0.49 | |||
Copper | Squid | 7.20 | 4.24 | 23.97 (4.20–81.44) | 14.15 | Male: 1600 Female: 1300 | 5 |
Oyster | 16.46 | 9.87 | 54.85 (17.43–147.35) | 32.90 | |||
Mussel | 1.16 | 0.53 | 3.86 (0.74–8.54) | 1.78 | |||
Manganese | Squid | 0.29 | 0.12 | 0.96 (0.41–2.12) | 0.40 | Male: 2300 Female: 1800 | 11 |
Oyster | 4.88 | 2.26 | 16.25 (6.34–33.94) | 7.52 | |||
Mussel | 1.65 | 1.23 | 5.49 (1.16–20.18) | 4.10 | |||
Molybdenum | Squid | 0.05 | 0.00 | 0.17 | 0.00 | 65 | 2 |
Oyster | 0.52 | 0.07 | 1.72 (1.67–2.89) | 0.22 | |||
Mussel | 0.55 | 0.20 | 1.83 (2.33–4.85) | 0.67 | |||
Nickel | Squid | 0.21 | 0.04 | 0.70 (0.67–1.26) | 0.12 | 100 | 1 |
Oyster | 0.23 | 0.05 | 0.75 (0.67–1.23) | 0.16 | |||
Mussel | 0.51 | 0.65 | 1.69 (0.67–13.23) | 2.18 | |||
Zinc | Squid | 11.32 | 1.60 | 37.70 (24.90–52.73) | 5.33 | Male: 10,100 Female: 8200 | 40 |
Oyster | 202.60 | 88.41 | 675.33 (252.25–1688.13) | 294.70 | |||
Mussel | 24.96 | 20.04 | 83.17 (30.27–322.76) | 67.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lehel, J.; Magyar, M.; Palotás, P.; Abonyi-Tóth, Z.; Bartha, A.; Budai, P. To Eat or Not to Eat?—Food Safety Aspects of Essential Metals in Seafood. Foods 2023, 12, 4082. https://doi.org/10.3390/foods12224082
Lehel J, Magyar M, Palotás P, Abonyi-Tóth Z, Bartha A, Budai P. To Eat or Not to Eat?—Food Safety Aspects of Essential Metals in Seafood. Foods. 2023; 12(22):4082. https://doi.org/10.3390/foods12224082
Chicago/Turabian StyleLehel, József, Márta Magyar, Péter Palotás, Zsolt Abonyi-Tóth, András Bartha, and Péter Budai. 2023. "To Eat or Not to Eat?—Food Safety Aspects of Essential Metals in Seafood" Foods 12, no. 22: 4082. https://doi.org/10.3390/foods12224082
APA StyleLehel, J., Magyar, M., Palotás, P., Abonyi-Tóth, Z., Bartha, A., & Budai, P. (2023). To Eat or Not to Eat?—Food Safety Aspects of Essential Metals in Seafood. Foods, 12(22), 4082. https://doi.org/10.3390/foods12224082