The Effect of Germination and Fermentation on the Physicochemical, Nutritional, and Functional Quality Attributes of Samh Seeds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Germination Process
2.3. Fermentation Process
2.4. Surface Color Examination
2.5. Functional Properties Examination
2.5.1. Water and Oil Absorption Capacity
2.5.2. Emulsification Properties
2.5.3. Foaming Properties
2.5.4. Bulk Density, Swelling Power and Solubility
2.6. Acidity, pH, Total Solids, and Proximate Composition Examination
2.7. Microbial Load Examination
2.8. Glycemic Index Examination
2.9. Bioactive Properties Examination
2.9.1. Preparation of Aqueous Methanolic Extract
2.9.2. Estimation of the Bioactive Compounds of Samh Seed Extracts
2.9.3. Antioxidant Activity
2.10. Antinutritional Factors Measurement
2.11. Amino Acids and In Vitro Protein Digestibility Examination
2.12. Free Mineral Content Measurement
2.13. Fatty Acids Determination
2.14. Statistical Analysis
3. Results and Discussion
3.1. The Effect of Fermentation and Germination on the Color and Functional Properties of Samh Seeds
3.2. The Effect of Fermentation and Germination on the Total Solids, pH, Acidity, Microbial Load, Proximate Composition, Fiber, and Glycemic Index of Samh Seeds
3.3. The Effect of Fermentation and Germination on the Bioactive Properties and Antinutritional Factors of Samh Seeds
3.4. The Effect of Germination and Fermentation on the Amino Acids Profile and Protein Digestibility of Samh Seeds
3.5. The Effect of Fermentation and Germination on the Minerals Content of Samh Seeds
3.6. The Effect of Fermentation and Germination on the Fatty Acids of Samh Seeds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Al Maiman, S.A.; Al-qahtani, M.A.; Alfawaz, M.A.; Albader, N.A.; Alsualeem, S.; Osman, M.A.; Mohamed Ahmed, I.A.; Hassan, A.B. Protein profile and functional properties of defatted flour, protein concentrate, and isolate of Al-Samh (Mesembryanthemum forsskalei Hochst) seeds. J. Saudi Soc. Food Nutr. 2021, 14, 12–23. [Google Scholar]
- Batanouny, K.H. Plants in the Deserts of the Middle East; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2001; p. 193. [Google Scholar]
- Abdel-Hamid, A.M.E.; Ibrahim, M.; Alnusairi, G.S.H. Comparison of Egyptian and Saudi Mesembryanthemum forskalii Hochst. ex Boiss. as an unconventional alternative protein of wheat and barley. Indian J. Exper. Biol. 2021, 59, 194–201. [Google Scholar]
- Mustafa, A.I.; Al-Jassir, M.S.; Nawawy, M.A.; Ahmed, S.E. Studies on samh seeds (Mesembryanthemum forsskalei Hochst) growing in Saudi Arabia: 3. Utilization of samh seeds in bakery products. Plant Foods Hum. Nutr. 1995, 48, 279–286. [Google Scholar] [CrossRef]
- Mohamed Ahmed, I.A.; Al Juhaimi, F.Y.; Osman, M.A.; Al Maiman, S.A.; Hassan, A.B.; Alqah, H.A.S.; Babiker, E.E.; Ghafoor, K. Effect of oven roasting treatment on the antioxidant activity, phenolic compounds, fatty acids, minerals, and protein profile of Samh (Mesembryanthemum forsskalei Hochst) seeds. LWT Food Sci. Technol. 2020, 131, 109825. [Google Scholar] [CrossRef]
- Alruqaie, I.M.; Al-Ghamidi, F.A. Sensory and nutritional attributes of samh flour and dates powder supplemented cookies. Qual. Assur. Safety Crop. Foods 2014, 7, 261–270. [Google Scholar] [CrossRef]
- Al-Jassir, M.S.; Mustafa, A.I.; Nawawy, M.A. Studies on samh seeds (Mesembryanthemum forsskalei Hochst) growing in Saudi Arabia: 2: Chemical composition and microflora of samh seeds. Plant Foods Hum. Nutr. 1995, 48, 185–192. [Google Scholar] [CrossRef]
- Czerwińska, D.; Gulińska, E. New sources of protein. In Fundamentals of Human Nutrition; WSiP: Warszawa, Poland, 2012; p. 156. [Google Scholar]
- Hamed, A.I.; Said, R.B.; Kontek, B.; Al-Ayed, A.S.; Kowalczyk, M.; Moldoch, J.; Stochmal, A.; Olas, B. LC–ESI-MS/MS profile of phenolic and glucosinolate compounds in samh flour (Mesembryanthemum forsskalei Hochst. ex Boiss) and the inhibition of oxidative stress by these compounds in human plasma. Food Res. Inter. 2016, 85, 282–290. [Google Scholar] [CrossRef]
- Bilel, H.; Elsherif, M.A.; Moustafa, S.M.N. Seeds oil extract of Mesembryanthemum forsskalii from Aljouf, Saudi Arabia: Chemical composition, DPPH radical scavenging and antifungal activities. Oilseeds Fats Crop. Lipids 2020, 27, 10. [Google Scholar]
- El-Amier, Y.A.; Alghanem, S.M.; Al-hadithy, O.N.; Fahmy, A.A.; El-Zayat, M.M. Phytochemical analysis and biological activities of three wild Mesembryanthemum species growing in heterogeneous habitats. J. Phytol. 2021, 13, 1–8. [Google Scholar] [CrossRef]
- Al-Qahiz, N.M. The impact of samh seeds on blood parameters of experimental animals. Pakistan J. Nutr. 2009, 8, 872–876. [Google Scholar] [CrossRef]
- Al Faris, N.A.; Al-Sawadi, A.D.; Alokail, M.S. Effect of samh seed supplementation (Mesembryanthemum forsskalei Hochst) on liver enzymes and lipid profiles of streptozotocin (STZ)-induced diabetic Wistar rats. Saudi J. Biol. Sci. 2010, 17, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Al Faris, N.A.; Al Othman, Z.A.; Ahmad, D. Effects of Mesembrrybryanthemum forsskalei Hochst seeds in lowering glucose/lipid profile in streptozotocin-induced diabetic rats. J. Food Sci. Technol. 2011, 48, 616–621. [Google Scholar] [CrossRef]
- Abd El-Azeem, E.M.; El-mezafer, H.M. Ameliorative effect of Mesembryanthemum forsskalei grains extract on CCL4-induced oxidative stress and hepatotoxicity in rats. Inter. J. Food Nutr. Public Health 2012, 5, 279–293. [Google Scholar] [CrossRef]
- Alderaywsh, F.; Osman, M.A.; Al-Juhaimi, F.Y.; Gassem, M.A.; Al-Maiman, S.A.; Adiamo, O.Q.; Özcan, M.M.; Mohamed Ahmed, I.A. Effect of traditional processing on the nutritional quality and in vivo biological value of samh (Mesembryanthemum forsskalei Hochst) flour. J. Oleo Sci. 2019, 68, 1033–1040. [Google Scholar] [CrossRef]
- Najib, H.; Al-Dosari, M.N.; Al-Wesali, M.S. Use of samh seeds (Mesembryanthemum forsskalei Hochst) in the laying hen diets. Inter. J. Poult. Sci. 2004, 3, 287–294. [Google Scholar]
- Moeljopawiro, S.; Fields, M.L.; Gordon, D. Bioavailability of zinc in fermented soybeans. J. Food Sci. 1988, 53, 460–463. [Google Scholar] [CrossRef]
- Mahmoud, M.H.; Taha, M.M.; Shahy, E.M. Germination of Glycine max seeds potentiates its antidiabetic effect in streptozotocin induced diabetic rats. Inter. J. Pharmaceut. Clin.Res. 2016, 8, 1429–1437. [Google Scholar]
- Carciochi, R.A.; Galván-D’Alessandro, L.; Vandendriessche, P.; Chollet, S. Effect of germination and fermentation process on the antioxidant compounds of quinoa seeds. Plant Foods Human Nutr. 2016, 71, 361–367. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2007. [Google Scholar]
- Sosulski, F.; Humbert, E.S.; Bui, K.; Jones, J.D. Functional Properties of Rapeseed Flours, Concentrates and Isolate. J. Food Sci. 1976, 41, 1349–1352. [Google Scholar] [CrossRef]
- Elkhalifa, A.E.O.; Bernhardt, R. Influence of grain germination on functional properties of sorghum flour. Food Chem. 2010, 121, 387–392. [Google Scholar] [CrossRef]
- Figueroa-Gonzalez, J.J.; Lobato-Calleros, C.; Vernon-Carter, E.J.; Aguirre-Mandujano, E.; Alvarez-Ramirez, J.; Martínez-Velasco, A. Modifying the structure, physicochemical properties, and foaming ability of amaranth protein by dual pH-shifting and ultrasound treatments. LWT Food Sci. Technol. 2022, 153, 112561. [Google Scholar] [CrossRef]
- Kaur, M.; Singh, N. Relationships between various functional, thermal and pasting properties of flours from different indian black gram (Phaseolus mungo L.) cultivars. J. Sci. Food Agric. 2007, 87, 974–984. [Google Scholar] [CrossRef]
- Bashir, K.; Swer, T.L.; Prakash, K.S.; Aggarwal, M. Physico-chemical and functional properties of gamma irradiated whole wheat flour and starch. LWT-Food Sci. Technol. 2017, 76, 131–139. [Google Scholar] [CrossRef]
- FDA, Food and Drug Administration. Bacteriological Analytical Manual, 9th ed.; AOAC International: Arlington, VA, USA, 2002. [Google Scholar]
- Aribas, M.; Kahraman, K.; Koksel, H. In VITRO glycemic index, bile acid binding capacity and mineral bioavailability of spaghetti supplemented with resistant starch type 4 and wheat bran. J. Funct. Foods 2020, 65, 103778. [Google Scholar] [CrossRef]
- Yoo, K.M.; Lee, K.W.; Park, J.B.; Lee, H.J.; Hwang, I.K. Variation in major antioxidants and total antioxidant activity of Yuzu (Citrus junos Sieb ex Tanaka) during maturation and between cultivars. J. Agric. Food Chem. 2004, 52, 5907–5913. [Google Scholar] [CrossRef]
- Dewanto, V.; Wu, X.; Adom, K.K.; Liu, R.H. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [CrossRef]
- Wong, S.P.; Leong, L.P.; Koh, J.H.W. Antioxidant activities of aqueous extracts of selected plants. Food Chem. 2006, 99, 775–783. [Google Scholar] [CrossRef]
- Biglari, F.; AlKarkhi, A.F.; Easa, A.M. Antioxidant activity and phenolic content of various date palm (Phoenix dactylifera) fruits from Iran. Food Chem. 2008, 107, 1636–1641. [Google Scholar] [CrossRef]
- Reddy, N.R.; Sathe, S.K.; Salunkhe, D.K. Phytates in legumes and cereals. In Advances in Food Research; Academic Press: Cambridge, MA, USA, 1982; Volume 28, pp. 1–92. [Google Scholar]
- Makkar, H.P.S.; Blümmel, M.; Borowy, N.K.; Becker, K. Gravimetric determination of tannins and their correlations with chemical and protein precipitation methods. J. Sci. Food Agric. 1993, 61, 161–165. [Google Scholar] [CrossRef]
- Mohapatra, D.; Patel, A.S.; Kar, A.; Deshpande, S.S.; Tripathi, M.K. Effect of different processing conditions on proximate composition, antioxidants, anti-nutrients and amino acid profile of grain sorghum. Food Chem. 2019, 271, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Monjula, S.; John, E. Biochemical changes and in vitro protein digestibility of the endosperm of germinating of Dolichoslablab. J. Sci. Food Agric. 1991, 55, 529–538. [Google Scholar]
- Milani, R.F.; Morgano, M.A.; Cadore, S.A. Simple and Reliable Method to Determine 16 Trace Elements by ICP OES in Ready to Drink Beverages. Food Anal. Methods 2018, 11, 1763–1772. [Google Scholar] [CrossRef]
- AOCS, Official Method Ce 1h-05. Determination of Cis-, Trans-, Saturated, Monounsaturated and Polyunsaturated Fatty Acids in Vegetable or Non-Ruminant Animal Oils and Fats by Capillary GLC. In Official Methods and Recommended Practices of the American Oil Chemists’ Society, 5th ed.; American Oil Chemists’ Society: Boulder Urbana, IL, USA, 2005.
- Tian, B.; Xie, B.; Shi, J.; Wu, J.; Cai, Y.; Xu, T.; Xue, S.; Deng, Q. Physicochemical changes of oat seeds during germination. Food Chem. 2010, 119, 1195–1200. [Google Scholar] [CrossRef]
- Sharma, R.; Sharma, S. Anti-nutrient & bioactive profile, in vitro nutrient digestibility, techno-functionality, molecular and structural interactions of foxtail millet (Setaria italica L.) as influenced by biological processing techniques. Food Chem. 2022, 368, 130815. [Google Scholar]
- Azeez, S.O.; Chinma, C.E.; Bassey, S.O.; Eze, U.R.; Makinde, A.F.; Sakariyah, A.A.; Okubanjo, S.S.; Danbaba, N.; Adebo, O.A. Impact of germination alone or in combination with solid-state fermentation on the physicochemical, antioxidant, in vitro digestibility, functional and thermal properties of brown finger millet flours. LWT Food Sci. Technol. 2022, 154, 112734. [Google Scholar] [CrossRef]
- Adebiyi, J.A.; Obadina, A.O.; Mulaba-Bafubiandi, A.F.; Adebo, O.A.; Kayitesi, E. Effect of fermentation and malting on the microstructure and selected physicochemical properties of pearl millet (Pennisetum glaucum) flour and biscuit. J. Cereal Sci. 2016, 70, 132–139. [Google Scholar] [CrossRef]
- Sofi, S.A.; Rafiq, S.; Singh, J.; Mir, S.A.; Sharma, S.; Bakshi, P.; McClements, D.J.; Khaneghah, A.M.; Dar, B.N. Impact of germination on structural, physicochemical, techno-functional, and digestion properties of desi chickpea (Cicer arietinum L.) flour. Food Chem. 2023, 405, 135011. [Google Scholar] [CrossRef]
- Chinma, C.E.; Azeez, S.O.; Sulayman, H.T.; Alhassan, K.; Alozie, S.N.; Gbadamosi, H.D.; Danbaba, N.; Oboh, H.A.; Anuonye, J.C.; Adebo, O.A. Evaluation of fermented African yam bean flour composition and influence of substitution levels on properties of wheat bread. J. Food Sci. 2020, 85, 4281–4289. [Google Scholar] [CrossRef]
- Chinma, C.E.; Abu, J.O.; Asikwe, B.N.; Sunday, T.; Adebo, O.A. Effect of germination on the physicochemical, nutritional, functional, thermal properties and in vitro digestibility of Bambara groundnut flours. LWT 2020, 140, 110749. [Google Scholar] [CrossRef]
- Elkhalifa, A.O.E.; Bernhardt, R. Some physicochemical properties of flour from germinated sorghum grain. J. Food Sci. Technol. 2013, 50, 186–190. [Google Scholar] [CrossRef]
- Ijarotimi, O.S.; Adeoti, O.A.; Ariyo, O. Comparative study on nutrient composition, phytochemical, and functional characteristics of raw, germinated, and fermented Moringa oleifera seed flour. Food Sci. Nutr. 2013, 1, 452–463. [Google Scholar] [CrossRef]
- Anaemene, D.; Fadupin, G. Anti-nutrient reduction and nutrient retention capacity of fermentation, germination and combined germination-fermentation in legume processing. Appl. Food Res. 2022, 2, 100059. [Google Scholar] [CrossRef]
- Hiran, P.; Kerdchoechuen, O.; Laohakunjit, N. Combined effects of fermentation and germination on nutritional compositions, functional properties and volatiles of maize seeds. J. Cereal Sci. 2016, 71, 207–216. [Google Scholar] [CrossRef]
- Sofi, S.A.; Singh, J.; Muzaffar, K.; Mir, S.A.; Dar, B.N. Effect of germination time on physicochemical, functional, pasting, rheology and electrophoretic characteristics of chickpea flour. J. Food Meas. Character. 2020, 14, 2380–2392. [Google Scholar] [CrossRef]
- Atkinson, F.S.; Brand-Miller, J.C.; Foster-Powell, K.; Buyken, A.E.; Goletzke, J. International tables of glycemic index and glycemic load values 2021: A systematic review. Am. J. Clin. Nutr. 2021, 114, 1625–1632. [Google Scholar] [CrossRef]
- Simsek, S.; El, S.N. In vitro starch digestibility, estimated glycemic index and antioxidant potential of taro (Colocasia esculenta L. Schott) corm. Food Chem. 2015, 168, 257–261. [Google Scholar] [CrossRef]
- Gong, S.; Yu, Y.; Li, W.; Wu, J.; Wang, Z. Effects of amylolytic Lactobacillus fermentation on the nutritional quality and digestibility of purple potato flour. J. Food Comp. Anal. 2022, 107, 104363. [Google Scholar] [CrossRef]
- Gan, R.-Y.; Lui, W.-Y.; Wu, K.; Chan, C.-L.; Dai, S.-H.; Sui, Z.-Q.; Corke, H. Bioactive compounds and bioactivities of germinated edible seeds and sprouts: An updated review. Trends Food Sci. Technol. 2017, 59, 1–14. [Google Scholar] [CrossRef]
- Gabriele, M.; Pucci, L. Fermentation and germination as a way to improve cereals antioxidant and antiinflammatory properties. In Current Advances for Development of Functional Foods Modulating Inflammation and Oxidative Stress; Hernández-Ledesma, B., Martínez-Villaluenga, C., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2022; pp. 477–497. [Google Scholar]
- Bhinder, S.; Kumari, S.; Singh, B.; Kaur, A.; Singh, N. Impact of germination on phenolic composition, antioxidant properties, antinutritional factors, mineral content and Maillard reaction products of malted quinoa flour. Food Chem. 2021, 346, 128915. [Google Scholar] [CrossRef]
- Wongsiri, S.; Ohshima, T.; Duangmal, K. Chemical composition, amino acid profile and antioxidant activities of germinated mung beans (Vigna radiata). J. Food Process. Preser. 2015, 39, 1956–1964. [Google Scholar] [CrossRef]
- Maetens, E.; Hettiarachchy, N.; Dewettinck, K.; Horax, R.; Moens, K.; Moseley, D.O. Physicochemical and nutritional properties of a healthy snack chip developed from germinated soybeans. LWT Food Sci. Technol. 2017, 84, 505–510. [Google Scholar] [CrossRef]
- Chinma, C.E.; Abu, J.O.; Adedeji, O.E.; Aburime, L.C.; Joseph, D.G.; Agunloye, G.F.; Adebo, J.A.; Oyeyinka, S.A.; Njobeh, P.B.; Adebo, O.A. Nutritional composition, bioactivity, starch characteristics, thermal and microstructural properties of germinated pigeon pea flour. Food Biosci. 2022, 49, 101900. [Google Scholar] [CrossRef]
- He, Y.; Song, S.; Li, C.; Zhang, X.; Liu, H. Effect of germination on the main chemical compounds and 5-methyltetrahydrofolate metabolism of different quinoa varieties. Food Res. Inter. 2022, 159, 111601. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Liu, H.-N.; Ma, A.-M.; Zhou, J.-Z.; Xia, X.-D. Synergetic effects of Lactobacillus plantarum and Rhizopus oryzae on physicochemical, nutritional and antioxidant properties of whole-grain oats (Avena sativa L.) during solid-state fermentation. LWT Food Sci. Technol. 2022, 154, 112687. [Google Scholar] [CrossRef]
- Correia, I.; Nunes, A.; Duarte, I.F.; Barros, A.; Delgadillo, I. Sorghum fermentation followed by spectroscopic techniques. Food Chem. 2005, 90, 853–859. [Google Scholar] [CrossRef]
- Garrido-Galand, S.; Asensio-Grau, A.; Calvo-Lerma, J.; Heredia, A.; Andres, A. The potential of fermentation on nutritional and technological improvement of cereal and legume flours: A review. Food Res. Inter. 2021, 145, 110398. [Google Scholar] [CrossRef]
- Lorusso, A.; Verni, M.; Montemurro, M.; Coda, R.; Gobbetti, M.; Rizzello, C.G. Use of fermented quinoa flour for pasta making and evaluation of the technological and nutritional features. LWT Food Sci. Technol. 2017, 78, 215–221. [Google Scholar] [CrossRef]
- Wu, X.; Tan, M.; Zhu, Y.; Duan, H.; Ramaswamy, H.S.; Bai, W.; Wang, C. The influence of high pressure processing and germination on anti-nutrients contents, in vitro amino acid release and mineral digestibility of soybeans. J. Food Comp. Anal. 2023, 115, 104953. [Google Scholar] [CrossRef]
- Lee, J.H.; Hwang, C.E.; Son, K.S.; Cho, K.M. Comparisons of nutritional constituents in soybeans during solid state fermentation times and screening for their glucosidase enzymes and antioxidant properties. Food Chem. 2019, 272, 362–371. [Google Scholar] [CrossRef]
- Jan, R.; Saxena, D.C.; Singh, S. Comparative study of raw and germinated Chenopodium (Chenopodium album) flour on the basis of thermal, rheological, minerals, fatty acid profile and phytocomponents. Food Chem. 2018, 269, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Nemzer, B.; Al-Taher, F. Analysis of Fatty Acid Composition in Sprouted Grains. Foods 2023, 12, 1853. [Google Scholar] [CrossRef] [PubMed]
Color | Functional Properties | |||||
---|---|---|---|---|---|---|
Sample | b* | a* | L* | WAC (mL/100 g) | OAC (mL/100 g) | Emulsion Activity (%) |
Raw | 9.82 ± 0.02 c | 8.36 ± 0.05 b | 30.90 ± 0.00 c | 29.01 ± 0.21 c | 24.45 ± 0.15 c | 38.31 ± 0.21 b |
Fermented | 13.34 ± 0.02 a | 8.26 ± 0.03 c | 33.70 ± 0.01 a | 32.18 ± 0.36 a | 26.83 ± 0.24 a | 43.09 ± 0.32 a |
Germinated | 13.03 ± 0.23 b | 8.61 ± 0.04 a | 32.97 ± 0.29 b | 30.93 ± 0.74 b | 25.23 ± 0.87 b | 36.23 ± 0.26 c |
% Change F | 35.8 | −1.2 | 9.1 | 10.9 | 9.7 | 12.5 |
% Change G | 32.69 | 2.99 | 6.70 | 6.62 | 3.19 | −5.43 |
Functional properties | ||||||
Emulsion stability (%) | Foaming capacity (%) | Foaming stability (%) | Bulk density (g/cm3) | Swelling power (g/g) | Water solubility (%) | |
Raw | 37.12 ± 0.28 a | 15.93 ± 0.25 c | 38.31 ± 0.98 b | 0.795 ± 0.52 b | 2.33 ± 0.17 c | 3.35 ± 0.11 a |
Fermented | 34.06 ± 0.36 c | 24.06 ± 0.78 a | 43.09 ± 0.12 a | 0.813 ± 0.38 a | 2.64 ± 0.19 a | 2.70 ± 0.42 b |
Germinated | 35.09 ± 0.13 b | 17.46 ± 0.95 b | 36.23 ± 0.41 c | 0.798 ± 0.18 b | 2.49 ± 0.12 b | 1.98 ± 0.21 c |
% Change F | −8.2 | 51.0 | 12.5 | 2.3 | 13.3 | −19.4 |
% Change G | −5.47 | 9.60 | −5.43 | 0.38 | 6.87 | −40.90 |
Sample | Total Solids (%) | Acidity (g Lactic Acid/100 g) | pH | TVC (Log CFU/g) | Yeast and Mold (Log CFU/g) | Ash (%) |
---|---|---|---|---|---|---|
Raw | 91.47 ± 0.25 b | 0.30 ± 0.05 b | 6.12 ± 0.01 a | 6.08 ± 0.03 c | 2.27 ± 0.02 c | 3.53 ± 0.29 a |
Fermented | 94.41 ± 0.26 a | 2.27 ± 0.10 a | 4.43 ± 0.03 c | 7.60 ± 0.04 a | 3.91 ± 0.11 a | 3.33 ± 0.01 ab |
Germinated | 88.73 ± 0.21 c | 0.45 ± 0.09 b | 6.08 ± 0.02 b | 6.40 ± 0.02 b | 3.61 ± 0.12 b | 3.11 ± 0.04 b |
% Change F | 3.2 | 656.7 | −27.6 | 25.0 | 72.2 | −5.7 |
% Change G | −3.00 | 50.00 | −0.65 | 5.26 | 59.03 | −11.90 |
Mositure (%) | Fat (%) | Protein (%) | Carbohydrate (%) | Fiber (%) | Estimated glycemic index (eGI) | |
Raw | 8.52 ± 0.26 b | 5.47 ± 0.31 b | 19.29 ± 0.27 b | 63.19 ± 0.16 a | 4.36 ± 0.07 a | 41.43 ± 0.44 a |
Fermented | 7.58 ± 0.01 c | 6.51 ± 0.11 a | 20.41 ± 0.49 a | 62.16 ± 0.04 b | 2.45 ± 0.05 c | 39.61 ± 0.29 c |
Germinated | 11.26 ± 0.21 a | 4.88 ± 0.08 c | 19.67 ± 0.48 ab | 61.07 ± 0.12 c | 3.38 ± 0.08 b | 40.07 ± 0.05 b |
% Change F | −11.0 | 19.0 | 5.8 | −1.6 | −43.8 | −4.4 |
% Change G | 32.16 | −10.79 | 1.97 | −3.35 | −22.48 | −3.28 |
Properties | Raw | Fermented | Germinated | % Change F | % Change G |
---|---|---|---|---|---|
Bioactive properties | |||||
TPC (mg GAE/g DM) | 1.21 ± 0.04 c | 2.43 ± 0.06 a | 1.72 ± 0.07 b | 100.8 | 42.15 |
TFC (mg Catechin/g DM) | 1.60 ± 0.33 c | 2.56 ± 0.34 b | 3.69 ± 0.17 a | 60.0 | 130.63 |
FRAP (mg Trolox/g DM) | 0.77 ± 0.01 c | 0.90 ± 0.02 a | 0.85 ± 0.01 b | 16.9 | 10.39 |
ABTS (mg Trolox/g DM) | 0.66 ± 0.05 b | 0.81 ± 0.03 a | 0.75 ± 0.09 ab | 22.7 | 13.64 |
DPPH inhibition (%) | 0.65 ± 27.61 c | 78.39 ± 0.57 a | 74.03 ± 0.32 b | 20.1 | 13.42 |
Phenolic compounds (mg/100 g) | |||||
Gallic acid | 79.6 ± 0.11 c | 85.02 ± 0.42 b | 96.36 ± 1.75 a | 6.81 | 21.06 |
Protocatechuic acid | 32.21 ± 1.15 b | 44.48 ± 0.55 a | 43.64 ± 1.25 a | 38.09 | 35.49 |
Caffeic acid | 3.37 ± 0.10 c | 4.72 ± 0.07 a | 3.97 ± 0.09 b | 40.06 | 17.80 |
Syringic acid | 5.16 ± 0.30 c | 8.28 ± 0.06 a | 6.93 ± 0.09 b | 60.47 | 34.30 |
p-Coumaric acid | 0.44 ± 0.02 c | 0.78 ± 0.05 a | 0.62 ± 0.03 b | 77.27 | 40.91 |
trans-Ferulic acid | 2.33 ± 0.12 c | 5.26 ± 0.05 a | 4.54 ± 0.23 b | 125.75 | 94.85 |
trans-Cinnamic acid | 0.43 ± 0.06 c | 0.69 ± 0.02 b | 1.02 ± 0.06 a | 39.53 | 137.21 |
Catechol | 56.34 ± 1.21 c | 70.34 ± 1.06 b | 77.34 ± 0.78 a | 24.85 | 37.27 |
Catechin | 49.15 ± 2.13 c | 63.67 ± 1.17 b | 84.93 ± 1.03 a | 29.54 | 72.80 |
Rutin trihydrate | 0.30 ± 0.05 c | 1.19 ± 0.09 b | 1.04 ± 0.32 b | 296.67 | 246.67 |
Apigenin 7 glucoside | 0.45 ± 0.01 c | 1.00 ± 0.08 b | 1.87 ± 0.06 a | 122.22 | 315.56 |
Quercetin | 1.51 ± 0.10 c | 4.52 ± 0.13 b | 5.40 ± 0.07 a | 199.34 | 257.62 |
Resveratrol | 0.32 ± 0.02 b | 0.58 ± 0.08 a | 0.65 ± 0.05 a | 81.25 | 103.13 |
Kaempferol | 4.13 ± 0.05 c | 6.51 ± 0.03 b | 7.56 ± 0.01 a | 57.63 | 83.05 |
Isorhamnetin | 2.13 ± 0.66 c | 4.51 ± 0.21 b | 5.56 ± 0.04 a | 111.74 | 161.03 |
Antinutritional factors (ANFs) | |||||
Tannins (mg TAE/g DM) | 0.83 ± 0.08 a | 0.45 ± 0.06 b | 0.26 ± 0.08 c | −45.8 | −68.67 |
Phytic acid (mg/g DM) | 0.88 ± 0.07 a | 0.35 ± 0.06 b | 0.22 ± 0.08 b | −60.2 | −75.00 |
Amino Acid (g/100 g DM) | Raw | Fermented | Germinated | % Change F | % Change G |
---|---|---|---|---|---|
Essential amino acids | |||||
Histidine | 2.73 ± 0.15 b | 2.66 ± 0.15 c | 3.44 ± 0.21 a | −2.56 | 26.01 |
Threonine | 15.84 ± 0.21 b | 17.22 ± 0.21 a | 15.21 ± 0.15 c | 8.71 | −3.98 |
Valine | 8.53 ± 0.15 c | 8.82 ± 0.13 b | 9.86 ± 0.19 a | 3.40 | 15.59 |
Methionine | 2.54 ± 0.06 c | 2.97 ± 0.32 b | 4.73 ± 0.09 a | 16.93 | 86.22 |
Phenylalanine | 3.77 ± 0.20 c | 4.36 ± 0.14 b | 5.44 ± 0.14 a | 15.65 | 44.30 |
Isoleucine | 1.25 ±0.15 b | 1.76 ± 0.15 a | 1.78 ± 0.15 a | 40.80 | 42.40 |
Leucine | 2.35 ± 0.11 c | 2.51 ± 0.12 b | 4.06 ± 0.11 a | 6.81 | 72.77 |
Lysine | 1.15 ± 0.15 b | 1.12 ± 0.11 b | 1.48 ± 0.16 a | −2.61 | 28.70 |
Total essential amino acids (TEAA) | 38.16 ±1.10 c | 41.24 ± 1.37 b | 46.00 ± 1.19 a | 8.07 | 20.55 |
Nonessential amino acids | |||||
Aspartic acid | 4.03 ± 0.20 b | 3.63 ± 0.25 c | 4.42 ± 0.15 a | −9.93 | 9.68 |
Glutamic acid | 8.14 ± 0.15 c | 8.46 ± 0.15 b | 10.64 ± 0.23 a | 3.93 | 30.71 |
Serine | 2.12 ± 0.15 b | 1.37 ± 0.20 c | 2.82 ± 0.16 a | −35.38 | 33.02 |
Glycine | 2.17 ± 0.13 b | 1.37 ± 0.17 c | 2.81 ± 0.11 a | −36.87 | 29.49 |
Arginine | 5.18 ± 0.35 c | 6.06 ± 0.05 b | 10.24 ± 0.32 a | 16.99 | 97.68 |
Alanine | 1.73 ± 0.20 b | 1.22 ± 0.13 c | 2.03 ± 0.17 a | −29.48 | 17.34 |
Tyrosine | 2.32 ± 0.22 b | 1.73 ± 0.21 c | 3.03 ± 0.25 a | −25.43 | 30.60 |
Proline | 24.13 ± 0.20 b | 28.31 ± 0.10 c | 35.74 ± 0.21 a | 17.32 | 48.11 |
Total non-essential amino acids (TNEAA) | 49.80 ± 1.10 c | 52.15 ± 1.06 b | 71.73 ± 1.89 a | 4.72 | 44.04 |
Total amino acids (TAA) | 87.96 ± 1.34 c | 93.39 ± 2.20 b | 117.73 ± 1.67 a | 6.17 | 33.84 |
EAA/TAA (%) | 43.38 | 44.16 | 39.07 | 1.80 | −9.94 |
Predicted protein efficiency ratio (P-PER) | 0.36 | 0.49 | 1.06 | 36.11 | 194.44 |
In vitro protein digestibility IVPD (%) | 45.63 ± 0.72 c | 57.28 ± 0.67 a | 51.04 ± 0.62 b | 25.53 | 11.86 |
Minerals (mg/kg DM) | Raw | Fermented | Germinated | % Change F | % Change G |
---|---|---|---|---|---|
Macro-minerals | |||||
Ca | 13.6 ± 1.2 b | 15.7 ± 0.8 a | 12.8 ± 0.4 c | 15.44 | −5.88 |
Mg | 55.06 ± 1.1 b | 61.96 ± 2.4 a | 45.20 ± 2.1 c | 12.53 | −17.91 |
K | 47.1 ± 1.2 c | 56.1 ± 3.3 b | 63.8 ± 0.9 a | 19.11 | 35.46 |
Na | 12.7 ± 0.8 a | 13.3 ± 0.3 a | 10.0 ± 0.6 b | 4.72 | −21.26 |
P | 71.03 ± 0.4 b | 77.58 ± 0.9 a | 71.88 ± 0.7 b | 9.22 | 1.20 |
Micro-minerals | |||||
B | 0.22 ± 0.05 a | 0.12 ± 0.02 b | 0.05 ± 0.04 c | −45.45 | −77.27 |
Cr | 0.09 ± 0.01 c | 0.24 ± 0.03 a | 0.15 ± 0.03 b | 166.67 | 66.67 |
Cu | 0.15 ± 0.03 a | 0.12 ± 0.1 b | 0.07 ± 0.01 c | −20.00 | −53.33 |
Fe | 2.75 ± 0.1 b | 3.48 ± 0.1 a | 2.32 ± 0.1 c | 26.55 | −15.64 |
Mn | 2.64 ± 0.1 a | 2.63 ± 0.2 a | 2.08 ± 0.1 b | −0.38 | −21.21 |
Zn | 0.37 ± 0.2 c | 0.47 ± 0.01 a | 0.42 ± 0.02 b | 27.03 | 13.51 |
Fatty Acids (% of Oil) | Raw | Fermented | Germinated | % Change F | % Change G |
---|---|---|---|---|---|
Saturated fatty acids (SFA) | |||||
Myristic (C14:0) | 0.25 ± 0.01 a | 0.23 ± 0.01 a | ND | −8.00 | −100.00 |
Palmitic (C16:0) | 13.40 ± 0.05 b | 14.14 ± 0.30 a | 12.95 ± 0.03 c | 5.52 | −3.36 |
Stearic (C18:0) | 2.63 ± 0.02 b | 2.65 ± 0.06 b | 2.94 ± 0.04 a | 0.76 | 11.79 |
Arachidic (C20:0) | 0.72 ± 0.04 a | 0.70 ± 0.04 a | 0.65 ± 0.03 a | −2.78 | −9.72 |
Behenic (C22:0) | 0.33 ± 0.03 a | 0.34 ± 0.04 a | ND | 3.03 | −100.00 |
ΣSFA | 17.33 ± 0.19 b | 18.16 ± 0.33 a | 16.54 ± 0.45 c | 4.79 | −4.56 |
Unsaturated fatty acids (USFA) | |||||
Oleic (C18:1 cis- ω 9) | 26.99 ± 0.17 b | 26.52 ± 0.18 c | 28.81 ± 0.03 a | −1.74 | 6.74 |
Linolelaidic (C18:2 trans, trans- ω 6) | 0.25 ± 0.03 a | 0.29 ± 0.02 a | ND | 16.00 | −100.00 |
Linoleic acid (C18:2 cis, cis- ω 6) | 54.24 ± 0.27 a | 54.06 ± 0.06 a | 53.47 ± 0.12 b | −0.33 | −1.42 |
Linolenic (C18:3- ω 3) | 1.19 ± 0.01 a | 1.08 ± 0.01 b | 1.18 ± 0.04 a | −9.24 | −0.84 |
ΣUSFA | 82.67 ± 0.12 b | 81.95 ± 0.33 c | 83.46 ± 0.24 a | −0.87 | 0.96 |
ΣPUFA | 55.68 | 55.43 | 54.65 | −0.45 | −1.85 |
USFA/SFA | 4.77 | 4.51 | 5.05 | −5.45 | 5.87 |
PUFA/SFA | 3.21 | 3.05 | 3.30 | −4.98 | 2.80 |
ω 3 | 1.19 | 1.08 | 1.18 | −9.24 | −0.84 |
ω 6 | 54.49 | 54.35 | 53.47 | −0.26 | −1.87 |
ω 9 | 26.99 | 26.52 | 28.81 | −1.74 | 6.74 |
ω 6/ω 3 | 45.79 | 50.32 | 45.31 | 8.89 | −1.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammed, B.M.; Mohamed Ahmed, I.A.; Alshammari, G.M.; Qasem, A.A.; Yagoub, A.E.A.; Ahmed, M.A.; Abdo, A.A.A.; Yahya, M.A. The Effect of Germination and Fermentation on the Physicochemical, Nutritional, and Functional Quality Attributes of Samh Seeds. Foods 2023, 12, 4133. https://doi.org/10.3390/foods12224133
Mohammed BM, Mohamed Ahmed IA, Alshammari GM, Qasem AA, Yagoub AEA, Ahmed MA, Abdo AAA, Yahya MA. The Effect of Germination and Fermentation on the Physicochemical, Nutritional, and Functional Quality Attributes of Samh Seeds. Foods. 2023; 12(22):4133. https://doi.org/10.3390/foods12224133
Chicago/Turabian StyleMohammed, Belal M., Isam A. Mohamed Ahmed, Ghedeir M. Alshammari, Akram A. Qasem, Abu ElGasim A. Yagoub, Mohammed Asif Ahmed, Abdullah A. A. Abdo, and Mohammed Abdo Yahya. 2023. "The Effect of Germination and Fermentation on the Physicochemical, Nutritional, and Functional Quality Attributes of Samh Seeds" Foods 12, no. 22: 4133. https://doi.org/10.3390/foods12224133
APA StyleMohammed, B. M., Mohamed Ahmed, I. A., Alshammari, G. M., Qasem, A. A., Yagoub, A. E. A., Ahmed, M. A., Abdo, A. A. A., & Yahya, M. A. (2023). The Effect of Germination and Fermentation on the Physicochemical, Nutritional, and Functional Quality Attributes of Samh Seeds. Foods, 12(22), 4133. https://doi.org/10.3390/foods12224133