Association between Variation in Body Fat Mass Magnitude and Intake of Nutrients, including Carbohydrates, Fat, and B Vitamins, in a Cohort of Highly Trained Female Athletes
Abstract
:1. Introduction
- (1)
- To assess body composition in a sample of elite female athletes.
- (2)
- To evaluate the overall nutritional status of professional female athletes.
- (3)
- To investigate a possible relationship between nutritional intake and the magnitude of body fat mass in high-performance female athletes.
2. Materials and Methods
2.1. Study Participants
2.2. Body Composition Assessment
2.3. Dietary Intake Assessment
2.4. Statistical Analysis
3. Results
3.1. Sample Characteristics
3.2. Energy, Macronutrient, and Micronutrient Intakes
3.3. Association between Nutrient Intakes and Body Fat Mass
4. Discussion
5. Strengths and Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Term | Definition |
∆ | Delta |
aOR | Adjusted Odds Ratio |
BIA | Bioelectrical Impedance Analysis |
BM | Body Mass |
BF | Body Fat |
CHO | Carbohydrates |
CI | Confidence Interval |
D | Cohen’s D Effect Size |
DRI | Dietary Reference Intake |
EAR | Estimated Average Requirement |
EER | Estimated Energy Requirement |
EI | Energy Intake |
EN-ISO | International Organization for Standardization adopted by the European Union |
FAT | Fat |
H | Height |
FFM | Fat-Free Mass |
R2N | Nagelkerke R2 |
RDA | Recommended Dietary Allowance |
RQ | Research Question |
kHz | Kilohertz |
MET | Metabolic Equivalent |
MFR | Muscle-to-Fat Ratio |
NE | Niacin Equivalent |
p | p-value |
PRO | Protein |
RMR | Resting Metabolic Rate |
SD | Standard Deviation |
SMM | Skeletal Muscle Mass |
SPSS | Statistical Package for the Social Sciences |
TEE | Training Energy Expenditure |
USA | The United States of America |
V | Vitamin |
vs. | Versus |
References
- World Health Organization. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 3 August 2023).
- Singer, P.; Blaser, A.R.; Berger, M.M.; Calder, P.C.; Casaer, M.; Hiesmayr, M.; Mayer, K.; Montejo, J.C.; Pichard, C.; Preiser, J.-C.; et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin. Nutr. 2019, 38, 48–79. [Google Scholar] [CrossRef]
- Hassapidou, M.; Vlassopoulos, A.; Kalliostra, M.; Govers, E.; Mulrooney, H.; Ells, L.; Salas, X.R.; Muscogiuri, G.; Darleska, T.H.; Busetto, L.; et al. European Association for the study of obesity position statement on medical nutrition therapy for the management of overweight and obesity in adults developed in collaboration with the European federation of the associations of dietitians. Obes. Facts 2023, 16, 11–28. [Google Scholar] [CrossRef]
- Thomas, D.T.; Erdman, K.A.; Burke, L.M. American College of Sports Medicine Joint Position Statement. Nutrition and athletic performance. Med. Sci. Sports Exerc. 2016, 48, 543–568. [Google Scholar] [PubMed]
- International Olympic Committee. IOC consensus statement on sports nutrition 2010. Int. J. Sport Nutr. Exerc. Metab. 2010, 29, S3–S4. [Google Scholar]
- De Souza, M.J.; Williams, N.I.; Nattiv, A.; Joy, E.; Misra, M.; Loucks, A.B.; Olmsted, M.P.; Barrack, M.; Mallinson, R.J.; Gibbs, J.C.; et al. Misunderstanding the female athlete triad: Refuting the IOC consensus statement on relative energy deficiency in sport (RED-S). Br. J. Sports Med. 2014, 48, 1461–1465. [Google Scholar] [CrossRef] [PubMed]
- Holtzman, B.; Ackerman, K.E. Recommendations and nutritional considerations for female athletes: Health and performance. Sports Med. 2021, 51, 43–57. [Google Scholar] [CrossRef]
- Nattiv, A.; Loucks, A.B.; Manore, M.M.; Sanborn, C.F.; Sundgot-Borgen, J.; Warren, M.P. American College of Sports Medicine position stand: The female athlete triad. Med. Sci. Sports Exerc. 2007, 39, 1867–1882. [Google Scholar]
- Ackerman, K.E.; Holtzman, B.; Cooper, K.M.; Flynn, E.F.; Bruinvels, G.; Tenforde, A.S.; Popp, K.L.; Simpkin, A.J.; Parziale, A.L. Low energy availability surrogates correlate with health and performance consequences of relative energy deficiency in sport. Br. J. Sports Med. 2019, 53, 628–633. [Google Scholar] [CrossRef] [PubMed]
- De Souza, M.J.; Nattiv, A.; Joy, E.; Misra, M.; Williams, N.I.; Mallinson, R.J.; Gibbs, J.C.; Marion Olmsted, M.; Goolsby, M.; Matheson, G. 2014 female athlete triad coalition consensus statement on treatment and return to play of the female athlete triad: 1st international conference held in San Francisco, California, May 2012 and 2nd international conference held in Indianapolis, Indiana, May 2013. Br. J. Sports Med. 2014, 48, 289. [Google Scholar]
- Al-Khelaifi, F.; Diboun, I.; Donati, F.; Botrè, F.; Alsayrafi, M.; Georgakopoulos, C.; Suhre, K.; Yousri, N.A.; Elrayess, M.A. A pilot study comparing the metabolic profiles of elite-level athletes from different sporting disciplines. Sports Med. Open 2018, 4, 2. [Google Scholar] [CrossRef]
- Karastergiou, K.; Smith, S.R.; Greenberg, A.S.; Fried, S.K. Sex differences in human adipose tissues—The biology of pear shape. Biol. Sex. Differ. 2012, 3, 13. [Google Scholar] [CrossRef]
- Sansone, P.; Makivic, B.; Csapo, R.; Hume, P.; Martínez-Rodríguez, A.; Bauer, P. Body fat of basketball players: A systematic review and meta-analysis. Sports Med. Open 2022, 8, 26. [Google Scholar] [CrossRef] [PubMed]
- Scanlan, A.T.; Dascombe, B.J.; Kidcaff, A.P.; Peucker, J.L.; Dalbo, V.J. Gender-specific activity demands experienced during semiprofessional basketball game play. Int. J. Sports Physiol. Perform. 2015, 10, 618–625. [Google Scholar] [CrossRef] [PubMed]
- Ziv, G.; Lidor, R. Physical attributes, physiological characteristics, on-court performances and nutritional strategies of female and male basketball players. Sports Med. 2009, 39, 547–568. [Google Scholar] [CrossRef] [PubMed]
- Ackland, T.R.; Lohman, T.G.; Sundgot-Borgen, J.; Maughan, R.J.; Meyer, N.L.; Stewart, A.D.; Müller, W. Current status of body composition assessment in sport: Review and position statement on behalf of the ad hoc research working group on body composition health and performance, under the auspices of the IOC Medical Commission. Sports Med. 2012, 42, 227–249. [Google Scholar] [CrossRef] [PubMed]
- Kershaw, E.E.; Flier, J.S. Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab. 2004, 89, 2548–2556. [Google Scholar] [CrossRef]
- Guh, D.P.; Zhang, W.; Bansback, N.; Amarsi, Z.; Birmingham, C.L.; Anis, A.H. The incidence of comorbidities related to obesity and overweight: A systematic review and meta-analysis. BMC Public Health 2009, 9, 88. [Google Scholar] [CrossRef]
- Harvey, I.; Boudreau, A.; Stephens, J.M. Adipose tissue in health and disease. Open Biol. 2020, 10, 200291. [Google Scholar] [CrossRef]
- Sundgot-Borgen, J.; Meyer, N.L.; Lohman, T.G.; Ackland, T.R.; Maughan, R.J.; Stewart, A.D.; Müller, W. How to minimize the health risks to athletes who compete in weight-sensitive sports review and position statement on behalf of the Ad Hoc Research Working Group on Body Composition, Health and Performance, under the auspices of the IOC Medical Commission. Br. J. Sports Med. 2013, 47, 1012–1022. [Google Scholar] [CrossRef]
- Gabbett, T.J. Science of rugby league football: A review. J. Sports Sci. 2005, 23, 961–976. [Google Scholar] [CrossRef]
- Martinsen, M.; Sundgot-Borgen, J. Higher prevalence of eating disorders among adolescent elite athletes than controls. Med. Sci. Sports Exerc. 2013, 45, 1188–1197. [Google Scholar] [CrossRef]
- Masson, G.; Lamarche, B. Many non-elite multisport endurance athletes do not meet sports nutrition recommendations for carbohydrates. Appl. Physiol. Nutr. Metab. 2016, 41, 728–734. [Google Scholar] [CrossRef]
- Bell, M.; Ghatora, R.; Retsidou, M.I.; Chatzigianni, E.; Klentrou, P. Energy expenditure, dietary energy intake, and nutritional supplements in adolescent volleyball athletes versus nonathletic controls. Nutrients 2023, 15, 1788. [Google Scholar] [CrossRef]
- Pilis, K.; Stec, K.; Pilis, A.; Mroczek, A.; Michalski, C.; Pilis, W. Body composition and nutrition of female athletes. Rocz. Panstw. Zakl. Hig. 2019, 70, 243–251. [Google Scholar] [CrossRef]
- Zapolska, J.; Witczak, K.; Manczuk, A.; Ostrowska, L. Assessment of nutrition, supplementation and body composition parameters on the example of professional volleyball players. Rocz. Panstw. Zakl. Hig. 2014, 65, 235–242. [Google Scholar]
- Coutinho, L.A.; Porto, C.P.; Pierucci, A.P. Critical evaluation of food intake and energy balance in young modern pentathlon athletes: A cross-sectional study. J. Int. Soc. Sports Nutr. 2016, 13, 15. [Google Scholar] [CrossRef] [PubMed]
- Nunes, C.L.; Matias, C.N.; Santos, D.A.; Morgado, J.P.; Monteiro, C.P.; Sousa, M.; Minderico, C.S.; Rocha, P.M.; St-Onge, M.-P.; Sardinha, L.B.; et al. Characterization and comparison of nutritional intake between preparatory and competitive phase of highly trained athletes. Medicina 2018, 54, 41. [Google Scholar] [CrossRef]
- Jenner, S.L.; Trakman, G.; Coutts, A.; Kempton, T.; Ryan, S.; Forsyth, A.; Belski, R. Dietary intake of professional Australian football athletes surrounding body composition assessment. J. Int. Soc. Sports Nutr. 2018, 15, 43. [Google Scholar] [CrossRef] [PubMed]
- Grams, L.; Garrido, G.; Villacieros, J.; Ferro, A. Marginal micronutrient intake in high-performance male wheelchair basketball players: A dietary evaluation and the effects of nutritional advice. PLoS ONE 2016, 11, e0157931. [Google Scholar] [CrossRef] [PubMed]
- Bettonviel, A.E.O.; Brinkmans, N.Y.J.; Russcher, K.; Wardenaar, F.C.; Witard, O.C. Nutritional status and daytime pattern of protein intake on match, post-match, rest and training days in senior professional and youth elite soccer players. Int. J. Sport Nutr. Exerc. Metab. 2016, 26, 285–293. [Google Scholar] [CrossRef]
- Tooley, E.; Bitcon, M.; Briggs, M.A.; West, D.J.; Russell, M. Estimates of energy intake and expenditure in professional rugby league players. Int. J. Sports Sci. Coach. 2015, 10, 551–560. [Google Scholar] [CrossRef]
- Raizel, R.; da Mata Godois, A.; Coqueiro, A.Y.; Voltarelli, F.A.; Fett, C.A.; Tirapegui, J.; de Paula Ravagnani, F.C.; de Faria Coelho-Ravagnani, C. Pre-season dietary intake of professional soccer players. Nutr. Health 2017, 23, 215–222. [Google Scholar] [CrossRef]
- Jagim, A.R.; Zabriskie, H.; Currier, B.; Harty, P.S.; Stecker, R.; Kerksick, C.M. Nutrient status and perceptions of energy and macronutrient intake in a group of collegiate female lacrosse athletes. J. Int. Soc. Sports Nutr. 2019, 16, 43. [Google Scholar] [CrossRef] [PubMed]
- Sukur, A.; Lubis, J.; Fitrianto, E.J.; Hartono, F.V.; Jauhari, M.; Nurulfa, R. Nutritional status and adequacy of disabled athletes from Indonesia. Int. J. Phys. Educ. Sports Health 2022, 22, 2939–2946. [Google Scholar]
- Gershuni, V.M.; Yan, S.L.; Medici, V. Nutritional ketosis for weight management and reversal of metabolic syndrome. Curr. Nutr. Rep. 2018, 7, 97–106. [Google Scholar] [CrossRef]
- Volek, J.S.; Sharman, M.J.; Love, D.M.; Avery, N.G.; Gomez, A.L.; Scheett, T.P.; Kraemer, W.J. Body composition and hormonal responses to a carbohydrate-restricted diet. Metab. Clin. Exp. 2002, 51, 864–870. [Google Scholar] [CrossRef]
- Valsdottir, T.D.; Øvrebø, B.; Falck, T.M.; Litleskare, S.; Johansen, E.I.; Henriksen, C.; Jensen, J. Low-carbohydrate high-fat diet and exercise: Effect of a 10-week intervention on body composition and CVD risk factors in overweight and obese women—A randomized controlled trial. Nutrients 2021, 13, 110. [Google Scholar] [CrossRef]
- Depeint, F.; Bruce, W.R.; Shangari, N.; Mehta, R.; O’Brien, P.J. Mitochondrial function and toxicity: Role of the B vitamin family on mitochondrial energy metabolism. Chem. Biol. Interact. 2006, 163, 94–112. [Google Scholar] [CrossRef]
- Suwannasom, N.; Kao, I.; Pruß, A.; Georgieva, R.; Bäumler, H. Riboflavin: The health benefits of a forgotten natural vitamin. Int. J. Mol. Sci. 2020, 21, 950. [Google Scholar] [CrossRef]
- Mascolo, E.; Vernì, F. Vitamin B6 and diabetes: Relationship and molecular mechanisms. Int. J. Mol. Sci. 2020, 21, 3669. [Google Scholar] [CrossRef]
- Boachie, J.; Adaikalakoteswari, A.; Samavat, J.; Saravanan, P. Low vitamin B12 and lipid metabolism: Evidence from pre-clinical and clinical studies. Nutrients 2020, 12, 1925. [Google Scholar] [CrossRef]
- Li, Z.; Gueant-Rodriguez, R.-M.; Quilliot, D.; Sirveaux, M.-A.; Meyre, D.; Gueant, J.-L.; Brunaud, L. Folate and vitamin B12 status is associated with insulin resistance and metabolic syndrome in morbid obesity. Clin. Nutr. 2018, 37, 1700–1706. [Google Scholar] [CrossRef] [PubMed]
- Mlodzik-Czyzewska, M.A.; Malinowska, A.M.; Chmurzynska, A. Low folate intake and serum levels are associated with higher body mass index and abdominal fat accumulation: A case control study. Nutr. J. 2020, 19, 53. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, G.R.; Shah, I.; Gariballa, S.; Yasin, J.; Barker, J.; Salman Ashraf, S. Significantly elevated levels of plasma nicotinamide, pyridoxal, and pyridoxamine phosphate levels in obese Emirati population: A cross-sectional study. Molecules 2020, 25, 3932. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Zhu, Z.; Huang, Z.; He, R.; Zhang, Y.; Li, Y.; Tan, W.; Rong, S. Association between Vitamin B and obesity in middle-aged and older Chinese adults. Nutrients 2023, 15, 483. [Google Scholar] [CrossRef] [PubMed]
- Wiebe, N.; Field, C.J.; Tonelli, M. A systematic review of the vitamin B12, folate and homocysteine triad across body mass index. Obes. Rev. 2018, 19, 1608–1618. [Google Scholar] [CrossRef] [PubMed]
- Pourhoseingholi, M.A.; Vahedi, M.; Rahimzadeh, M. Sample size calculation in medical studies. Gastroenterol. Hepatol. Bed Bench 2013, 6, 14–27. [Google Scholar]
- Dimitrijevic, M.; Paunovic, V.; Zivkovic, V.; Bolevich, S.; Jakovljevic, V. Body fat evaluation in male athletes from combat sports by comparing anthropometric, bioimpedance, and dual-energy X-ray absorptiometry measurements. Biomed. Res. Int. 2022, 2022, 3456958. [Google Scholar] [CrossRef]
- Øvretveit, K. Anthropometric and physiological characteristics of Brazilian Jiu-Jitsu athletes. J. Strength Cond. Res. 2018, 32, 997–1004. [Google Scholar] [CrossRef]
- Duren, D.L.; Sherwood, R.J.; Czerwinski, S.A.; Lee, M.; Choh, A.C.; Siervogel, R.M.; Chumlea, W.C. Body composition methods: Comparisons and interpretation. J. Diabetes Sci. Technol. 2008, 2, 1139–1146. [Google Scholar] [CrossRef]
- Skernevičius, J.; Milašius, K.; Raslanas, A.; Dadelienė, R. Sporto treniruotė (Fitness Training). In Athlete Skills and Training Them, 1st ed.; Čepulėnas, A., Saplinskas, J., Paulauskas, R., Eds.; Lithuanian University of Educational Sciences Press: Vilnius, Lithuania, 2011; pp. 165–217. [Google Scholar]
- Pomerleau, J.; McKee, M.; Robertson, A.; Vaasc, S.; Kadziauskiene, K.; Abaravicius, A.; Bartkeviciute, R.; Pudule, I.; Grinberga, D. Physical inactivity in the Baltic countries. Prev. Med. 2000, 31, 665–672. [Google Scholar] [CrossRef] [PubMed]
- Conway, J.M.; Ingwersen, L.A.; Vinyard, B.T.; Moshfegh, A.J. Effectiveness of the US Department of Agriculture 5-Step Multiple-Pass Method in Assessing Food Intake in Obese and Nonobese Women. Am. J. Clin. Nutr. 2003, 77, 1171–1178. [Google Scholar] [CrossRef] [PubMed]
- Deakin, V.; Kerr, D.; Boushey, C. Measuring nutritional status of athletes: Clinical and research perspectives. In Clinical Sports Nutrition, 5th ed.; Burke, L.M., Deakin, V., Eds.; McGraw-Hill: North Ryde, Australia, 2015; pp. 27–53. [Google Scholar]
- Jeoung, B.; Kim, J. Analysis and evaluation of nutritional intake and nutrition quotient of Korean athletes with disabilities in the Tokyo Paralympic games. Nutrients 2021, 13, 3631. [Google Scholar] [CrossRef] [PubMed]
- Barzda, A.; Bartkevičiūtė, R.; Viseckienė, V.; Abaravičius, A.J.; Stukas, R. Maisto Produktų ir Patiekalų Porcijų Nuotraukų Atlasas (Atlas of Foodstuffs and Dishes); Republican Nutrition Center Vilnius; Vilnius University Faculty of Medicine: Vilnius, Lithuania, 2007; pp. 7–42. Available online: http://www.smlpc.lt/media/file/Skyriu_info/Metodine_medziaga/Maisto%20prod%20atlasas%202007.pdf (accessed on 18 April 2020).
- Erhardt, J. Nutrition Baseline Software. University of Indonesia. Available online: http://www.nutrisurvey.de/ (accessed on 5 April 2018).
- Sučilienė, S.; Abaravičius, A. Food Product Composition; Ministry of Health of the Republic of Lithuania: Vilnius, Lithuania, 2002; pp. 10–315. [Google Scholar]
- Institute of Medicine (US) Subcommittee on Interpretation and Uses of Dietary Reference Intakes; Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. Dietary Reference Intakes: Applications in Dietary Planning; National Academies Press: Washington, DC, USA, 2003.
- Harris, J.; Benedict, F. A Biometric Study of Basal Metabolism in Man; Lippincott: Philadelphia, PA, USA, 1919. [Google Scholar]
- Ainsworth, B.E.; Haskell, W.L.; Herrmann, S.D.; Meckes, N.; Basset, D.R.; Todor-Locke, C.; Greer, J.L.; Vezina, J.; Whitt-Glover, M.C.; Leon, A.S. Compendium of physical activities: A second update of codes and MET values. Med. Sci. Sports Exerc. 2011, 43, 1575–1581. [Google Scholar] [CrossRef] [PubMed]
- Kerksick, C.M.; Wilborn, C.D.; Roberts, M.D.; Smith-Ryan, A.; Kleiner, S.M.; Jäger, R.; Collins, R.; Cooke, M.; Davis, J.N.; Galvan, E.; et al. ISSN exercise & sports nutrition review update: Research & recommendations. J. Int. Soc. Sports Nutr. 2018, 15, 8. [Google Scholar]
- Maughan, R.J.; Burke, L.M.; Dvorak, J.; Larson-Meyer, D.E.; Peeling, P.; Phillips, S.M.; Rawson, E.S.; Walsh, N.P.; Garthe, I.; Geyer, H.; et al. IOC consensus statement: Dietary supplements and the high-performance athlete. Int. J. Sport. Nutr. Exerc. Metab. 2018, 28, 104–125. [Google Scholar] [CrossRef]
- Ministry of Health of the Republic of Lithuania. 2016 June 23 Order No. V-836 of Minister of Health of the Republic of Lithuania. Recommended Daily Intake for Energy and Nutrients. Available online: https://www.e-tar.lt/portal/lt/legalAct/4bd890f0428011e6a8ae9e1795984391 (accessed on 14 June 2018).
- Institute of Medicine (US) Food and Nutrition Board. What Are Dietary Reference Intakes? In Dietary Reference Intakes: A Risk Assessment Model for Establishing Upper Intake Levels for Nutrients; National Academies Press (US): Washington, DC, USA, 1998. Available online: https://www.ncbi.nlm.nih.gov/books/NBK45182/ (accessed on 23 September 2022).
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge Academic: New York, NY, USA, 1988. [Google Scholar]
- Marquet, L.-A.; Brisswalter, J.; Louis, J.; Tiollier, E.; Burke, L.M.; Hawley, J.A.; Hausswirth, C. Enhanced endurance performance by periodization of carbohydrate intake: “Sleep Low” strategy. Med. Sci. Sports Exerc. 2016, 48, 663–672. [Google Scholar] [CrossRef]
- Cochran, A.J.; Myslik, F.; MacInnis, M.J.; Percival, M.E.; Bishop, D.; Tarnopolsky, M.A.; Gibala, M.J. Manipulating carbohydrate availability between twice-daily sessions of high-intensity interval training over 2 weeks improves time-trial performance. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 463–470. [Google Scholar] [CrossRef]
- Impey, S.G.; Hearris, M.A.; Hammond, K.M.; Bartlett, J.D.; Louis, J.; Close, G.L.; Morton, J.P. Fuel for the work required: A theoretical framework for carbohydrate periodization and the glycogen threshold hypothesis. Sports Med. 2018, 48, 1031–1048. [Google Scholar] [CrossRef]
- Jeukendrup, A.E. Periodized nutrition for athletes. Sports Med. 2017, 47, 51–63. [Google Scholar] [CrossRef]
- Mata, F.; Valenzuela, P.L.; Gimenez, J.; Tur, C.; Ferreria, D.; Domínguez, R.; Sanchez-Oliver, A.J.; Martínez Sanz, J.M. Carbohydrate availability and physical performance: Physiological overview and practical recommendations. Nutrients 2019, 11, 1084. [Google Scholar] [CrossRef] [PubMed]
- Noakes, T.D. Physiological models to understand exercise fatigue and the adaptations that predict or enhance athletic performance. Scand. J. Med. Sci. Sport. 2000, 10, 123–145. [Google Scholar] [CrossRef]
- Baranauskas, M.; Tubelis, L.; Stukas, R.; Švedas, E.; Samsonienė, L.; Karanauskienė, D. Some aspects of nutrition and moderate body weight reduction in Lithuanian Olympic Sport Centre female basketball players. Balt. J. Sport Health Sci. 2011, 2, 3–9. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, J.; Sui, X.; Drenowatz, C.; Wang, Q. Association between different types of exercise and intake of nutrients including carbohydrate, fat, protein, and B vitamins in young adults. Nutrients 2023, 15, 806. [Google Scholar] [CrossRef] [PubMed]
- Stukas, R.; Pečiukonienė, M.; Kemerytė-Riaubienė, E.; Baškienė, V. Some aspects of fat metabolism in an athlete’s body. Sport Sci. 2009, 2, 44–49. [Google Scholar]
- Fung, T.T.; Rimm, E.B.; Spiegelman, D.; Rifai, N.; Tofler, G.H.; Willett, W.C.; Hu, F.B. Association between dietary patterns and plasma biomarkers of obesity and cardiovascular disease risk. Am. J. Clin. Nutr. 2001, 73, 61–67. [Google Scholar] [CrossRef]
- Rousseau, A.S.; Robin, S.; Roussel, A.M.; Ducros, V.; Margaritis, I. Plasma homocysteine is related to foliate intake but not training status. Nutr. Metab. Cardiovasc. Dis. 2005, 15, 125–133. [Google Scholar] [CrossRef]
- De Bree, A.; Verschuren, W.M.; Blom, H.J.; Kromhout, D. Association between B vitamin intake and plasma homocysteine concentration in the general Dutch population aged 20-65 y. Am. J. Clin. Nutr. 2001, 73, 1027–1033. [Google Scholar] [CrossRef]
- Han, L.; Liu, Y.; Wang, C.; Tang, L.; Feng, X.; Astell-Burt, T.; Wen, Q.; Duan, D.; Lu, N.; Xu, G.; et al. Determinants of hyperhomocysteinemia in healthy and hypertensive subjects: A population-based study and systematic review. Clin. Nutr. 2017, 36, 1215–1230. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Palfrey, H.A.; Pathak, R.; Kadowitz, P.J.; Gettys, T.W.; Murthy, S.N. The metabolism and significance of homocysteine in nutrition and health. Nutr. Metab. 2017, 14, 78. [Google Scholar] [CrossRef]
- Rudreshkumar, K.J.; Majumdar, V.; Nagaraja, D.; Christopher, R. Relevance of plasma levels of free homocysteine and methionine as risk predictors for ischemic stroke in the young. Clin. Nutr. 2018, 37, 1715–1721. [Google Scholar] [CrossRef] [PubMed]
- Sechi, G.; Sechi, E.; Fois, C.; Kumar, N. Advances in clinical determinants and neurological manifestations of B vitamin deficiency in adults. Nutr. Rev. 2016, 74, 281–300. [Google Scholar] [CrossRef]
- Tardy, A.L.; Pouteau, E.; Marquez, D.; Yilmaz, C.; Scholey, A. Vitamins and minerals for energy, fatigue and cognition: A narrative review of the biochemical and clinical evidence. Nutrients 2020, 12, 228. [Google Scholar] [CrossRef]
- Mahabir, S.; Ettinger, S.; Johnson, L.; Baer, D.J.; Clevidence, B.A.; Hartman, T.J.; Taylor, P.R. Measures of adiposity and body fat distribution in relation to serum folate levels in postmenopausal women in a feeding study. Eur. J. Clin. Nutr. 2008, 62, 644–650. [Google Scholar] [CrossRef] [PubMed]
- Gunanti, I.R.; Marks, G.C.; Al-Mamun, A.; Long, K.Z. Low serum vitamin B-12 and folate concentrations and low thiamin and riboflavin intakes are inversely associated with greater adiposity in Mexican American children. J. Nutr. 2014, 144, 2027–2033. [Google Scholar] [CrossRef]
- Lee, M.-R.; Jung, S.M. Serum folate related to five measurements of obesity and high-sensitivity C-reactive protein in Korean adults. Nutrients 2022, 14, 3461. [Google Scholar] [CrossRef]
- Woolf, K.; Hahn, N.L.; Christensen, M.M.; Carlson-Phillips, A.; Hansen, C.M. Nutrition assessment of B-vitamins in highly active and sedentary women. Nutrients 2017, 9, 329. [Google Scholar] [CrossRef] [PubMed]
- Woolf, K.; Manore, M.M. B-vitamins and exercise: Does exercise alter requirements? Int. J. Sport Nutr. Exerc. Metab. 2006, 16, 453–484. [Google Scholar] [CrossRef]
- Piquereau, J.; Boitard, S.E.; Ventura-Clapier, R.; Mericskay, M. Metabolic therapy of heart failure: Is there a future for B vitamins? Int. J. Mol. Sci. 2021, 23, 30. [Google Scholar] [CrossRef]
- Wang, Z.; Pini, M.; Yao, T.; Zhou, Z.; Sun, C.; Fantuzzi, G.; Song, Z. Homocysteine suppresses lipolysis in adipocytes by activating the AMPK pathway. Am. J. Physiol. Endocrinol. Metab. 2011, 301, E703–E712. [Google Scholar] [CrossRef]
- Chiang, E.-P.; Smith, D.E.; Selhub, J.; Dallal, G.; Wang, Y.-C.; Roubenoff, R. Inflammation causes tissue-specific depletion of vitamin B6. Arthritis Res. Ther. 2005, 7, R1254–R1262. [Google Scholar] [CrossRef] [PubMed]
- Food and Nutrition Board IOM. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. In The National Academies Collection: Reports Funded by National Institutes of Health; National Academies Press: Washington, DC, USA, 1998. [Google Scholar]
Height and Body Components | Power and Strength Sports (n = 26) | Endurance Sports (n = 63) |
---|---|---|
H, m | 1.7 ± 0.1 | 1.7 ± 0.2 |
BM, kg | 67.4 ± 14.3 * | 59.7 ± 7.5 |
FFM, kg | 50.1 ± 7.9 * | 46.3 ± 4.7 |
FFM% | 75.2 ± 4.9 * | 77.6 ± 3.7 |
SMM, kg | 46.2 ± 7.2 * | 42.8 ± 4.3 |
SMM, % | 69.4 ± 4.8 * | 72.1 ± 3.6 |
BF, kg | 17.6 ± 7.1 ** | 13.4 ± 3.5 |
BF, % | 24.9 ± 4.8 * | 22.1 ± 3.6 |
MFR | 2.9 ± 0.8 | 3.4 ± 0.8 * |
Energy and Macro- and Micronutrients | Power and Strength Sports (n = 26) | Endurance Sports (n = 63) | RDAs | ∆ (95% CI) |
---|---|---|---|---|
EI, kcal/day | 2457 ± 628 | 2480 ± 948 | 2501 ± 188 | 95 (−1607; 217) |
CHO, g/kg/day | 4.7 ± 1.7 | 5.2 ± 2.6 | 7–10 | −1.9 (−2.4; −1.5) |
PRO, g/kg/day | 1.4 ± 0.4 | 1.5 ± 0.6 | 1.2–2.0 | −0.1 (−0.2; 0.0) |
FAT% | 36.1 ± 7.4 | 36.8 ± 7.8 | 25–35 | 1.6 (0.1; 3.2) |
VB1, mg/day | 1.3 ± 0.5 | 1.7 ± 0.9 | 1.1 | 0.5 (0.3; 0.6) |
VB2, mg/day | 2.2 ± 0.9 | 2.2 ± 1.2 | 1.3 | 0.9 (0.7; 1.2) |
VB3, mg NE/day | 20 ± 4.6 | 21.5 ± 9.6 | 8 | 13 (11.2; 14.8) |
VB6, mg/day | 2.6 ± 0.5 | 2.6 ± 1.1 | 1.3 | 1.3 (1.1; 1.5) |
VB9, mcg/day | 219.7± 71.5 | 215.1 ± 92.4 | 200 | 16.4 (−1.8; 34.6) |
VB12, mcg/day | 5.9 ± 3.3 | 3.9 ± 2.3 | 3 | 1.5 (0.7; 2.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baranauskas, M.; Kupčiūnaitė, I.; Lieponienė, J.; Stukas, R. Association between Variation in Body Fat Mass Magnitude and Intake of Nutrients, including Carbohydrates, Fat, and B Vitamins, in a Cohort of Highly Trained Female Athletes. Foods 2023, 12, 4152. https://doi.org/10.3390/foods12224152
Baranauskas M, Kupčiūnaitė I, Lieponienė J, Stukas R. Association between Variation in Body Fat Mass Magnitude and Intake of Nutrients, including Carbohydrates, Fat, and B Vitamins, in a Cohort of Highly Trained Female Athletes. Foods. 2023; 12(22):4152. https://doi.org/10.3390/foods12224152
Chicago/Turabian StyleBaranauskas, Marius, Ingrida Kupčiūnaitė, Jurgita Lieponienė, and Rimantas Stukas. 2023. "Association between Variation in Body Fat Mass Magnitude and Intake of Nutrients, including Carbohydrates, Fat, and B Vitamins, in a Cohort of Highly Trained Female Athletes" Foods 12, no. 22: 4152. https://doi.org/10.3390/foods12224152
APA StyleBaranauskas, M., Kupčiūnaitė, I., Lieponienė, J., & Stukas, R. (2023). Association between Variation in Body Fat Mass Magnitude and Intake of Nutrients, including Carbohydrates, Fat, and B Vitamins, in a Cohort of Highly Trained Female Athletes. Foods, 12(22), 4152. https://doi.org/10.3390/foods12224152