The Effects of Oil Content on the Structural and Textural Properties of Cottonseed Butter/Spread Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Cottonseed Butter Preparation
2.3. Color Measurements
2.4. Textural Parameter Measurement
2.5. Particle Size Distribution Measurement
2.6. Scanning Electron Microscopy (SEM)
2.7. Butter Storage Stability
2.8. Oxidation Stability (Rancidity)
2.9. Statistical Analysis
3. Results and Discussion
3.1. Coloic Profile of Cottonseed Butter Products
3.2. Textural Characteristics
3.3. SEM Analysis of Butter Particle Morphology
3.4. Particle Size Distribution
3.5. Butter Shelf Stability (Oil Separation during Storage)
3.6. Oxidation Stability (Rancidity)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, Z.; Nam, S.; Zhang, H.; Olanya, O.M. Chemical composition and thermogravimetric behaviors of glanded and glandless cottonseed kernels. Molecules 2022, 27, 316. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Zhang, H.; Olk, D.C. Chemical composition of defatted cottonseed and soy meal products. PLoS ONE 2015, 10, e0129933. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Hasan, M.; Choyal, P.; Tomar, M.; Gupta, O.P.; Sasi, M.; Changan, S.; Lorenzo, J.M.; Singh, S.; Sampathrajan, V. Cottonseed feedstock as a source of plant-based protein and bioactive peptides: Evidence based on biofunctionalities and industrial applications. Food Hydrocoll. 2022, 131, 107776. [Google Scholar] [CrossRef]
- NCPA National Cottonseed Products Association-The Products. Available online: https://www.cottonseed.com/products/ (accessed on 16 November 2023).
- He, Z.; Nam, S.; Liu, S.; Zhao, Q. Characterization of the nonpolar and polar extractable components of glanded cottonseed for its valorization. Molecules 2023, 28, 4181. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Zhang, D.; Mattison, C.P. Quantitative comparison of the storage protein distribution in glandless and glanded cottonseeds. Agric. Environ. Lett. 2022, 7, e20076. [Google Scholar] [CrossRef]
- Cao, H.; Sethumadhavan, K. Identification of Bcl2 as a Stably Expressed qPCR Reference Gene for Human Colon Cancer Cells Treated with Cottonseed-Derived Gossypol and Bioactive Extracts and Bacteria-Derived Lipopolysaccharides. Molecules 2022, 27, 7560. [Google Scholar] [CrossRef]
- Song, W.; Kong, X.; Hua, Y.; Li, X.; Zhang, C.; Chen, Y. Antioxidant and antibacterial activity and in vitro digestion stability of cottonseed protein hydrolysates. LWT 2020, 118, 108724. [Google Scholar] [CrossRef]
- Cao, H.; Sethumadhavan, K.; Bland, J.M. Isolation of cottonseed extracts that affect human cancer cell growth. Sci. Rep. 2018, 8, 10458. [Google Scholar] [CrossRef]
- Ma, M.; Ren, Y.; Xie, W.; Zhou, D.; Tang, S.; Kuang, M.; Wang, Y.; Du, S.-K. Physicochemical and functional properties of protein isolate obtained from cottonseed meal. Food Chem. 2018, 240, 856–862. [Google Scholar] [CrossRef] [PubMed]
- Mattison, C.P.; He, Z.; Zhang, D.; Dupre, R.; Lloyd, S.W. Cross-serological reaction of glandless cottonseed proteins to peanut and tree nut allergic IgE. Molecules 2023, 28, 1587. [Google Scholar] [CrossRef]
- Tan, C.F.; Kwan, S.H.; Lee, C.S.; Soh, Y.N.A.; Ho, Y.S.; Bi, X. Cottonseed meal protein isolate as a new source of alternative proteins: A proteomics perspective. Int. J. Mol. Sci. 2022, 23, 10105. [Google Scholar] [CrossRef] [PubMed]
- Atkins, F.M.; Wilson, M.; Bock, S.A. Cottonseed hypersensitivity: New concerns over an old problem. J. Allergy Clin. Immunol. 1988, 82, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Sihag, M.K.; Patel, A.; Kumar, V. Cottonseed (Gossypium hirsutum). In Oilseeds: Health Attributes and Food Applications; Springer: Berlin/Heidelberg, Germany, 2021; pp. 73–92. [Google Scholar]
- Kadam, D.M.; Kasara, A.; Parab, S.S.; Mahawar, M.K.; Kumar, M.; Arude, V. Optimization of process parameters for degossypolisation of de-oiled cottonseed cake by response surface methodology (RSM). Food Humanit. 2023, 1, 210–218. [Google Scholar] [CrossRef]
- Dabbour, M.; Hamoda, A.; Mintah, B.K.; Wahia, H.; Betchem, G.; Xu, H.; He, R.; Ma, H. Ultrasonic-aided extraction and degossypolization of cottonseed meal protein: Optimization and charascterization of functional traits and molecular structure. Ind. Crops Prod. 2023, 204, 117261. [Google Scholar] [CrossRef]
- Kumar, M.; Potkule, J.; Patil, S.; Saxena, S.; Patil, P.G.; Mageshwaran, V.; Punia, S.; Varghese, E.; Mahapatra, A.; Ashtaputre, N.; et al. Extraction of ultra-low gossypol protein from cottonseed: Characterization based on antioxidant activity, structural morphology and functional group analysis. LWT 2021, 140, 110692. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, D.; Liu, L.; Chang, Z.; Peng, N. Effective gossypol removal from cottonseed meal through optimized solid-state fermentation by Bacillus coagulans. Microb. Cell Factories 2022, 21, 252. [Google Scholar] [CrossRef]
- Zhang, J.; Wedegaertner, T. Genetics and breeding for glandless upland cotton with improved yield potential and disease resistance: A review. Front. Plant Sci. 2021, 12, 753426. [Google Scholar] [CrossRef]
- Zhang, J.; Wedegaertner, T.; Idowu, O.J.; Flynn, R.; Hughs, S.E.; Jones, D.C. Registration of ‘NuMex COT 15 GLS’glandless cotton. J. Plant Registr. 2016, 10, 223–227. [Google Scholar] [CrossRef]
- Gao, W.; Zhu, X.; Ding, L.; Xu, B.; Gao, Y.; Cheng, Y.; Dai, F.; Liu, B.; Si, Z.; Fang, L. Development of the engineered “glanded plant and glandless seed” cotton. Food Chem. Mol. Sci. 2022, 5, 100130. [Google Scholar] [CrossRef]
- Kumar, M. Paruthi Paal, a nutrient-rich healthy drink from cottonseed: An Indian delicacy. J Ethn. Foods 2019, 6, 32. [Google Scholar] [CrossRef]
- Thirukkumar, S.; Hemalatha, G.; Vellaikumar, S.; Murugan, M.; Amutha, S. Influence of enzymes and extraction conditions on high yield of cottonseed milk. J. Environ. Biol. 2021, 42, 1195–1200. [Google Scholar] [CrossRef]
- Subramani, T.; Ganapathyswamy, H.; Sampathrajan, V.; Sundararajan, A. Optimization of extraction parameters to improve cottonseed milk yield and reduce gossypol levels using response surface methodology (RSM). J. Food Process. Preserv. 2022, 46, e15945. [Google Scholar] [CrossRef]
- Reyes-Jáquez, D.; Casillas, F.; Flores, N.; Cooke, P.; Licon, E.D.; Soto, A.S.; González, I.A.; Carreón, F.O.C.; Roldán, H.M. Effect of glandless cottonseed meal content on the microstructure of extruded corn-based snacks. Adv. Food Sci. 2014, 36, 125–130. [Google Scholar]
- Reyes-Jáquez, D.; Casillas, F.; Flores, N.; Andrade-González, I.; Solís-Soto, A.; Medrano-Roldán, H.; Carrete, F.; Delgado, E. The effect of glandless cottonseed meal content and process parameters on the functional properties of snacks during extrusion cooking. Food Nutrit. Sci. 2012, 3, 1716–1725. [Google Scholar] [CrossRef]
- He, Z.; Liu, S.; Nam, S.; Klasson, K.T.; Cheng, H.N. Molecular level characterization of the effect of roasting on the extractable components of glandless cottonseed by Fourier transform ion cyclotron resonance mass spectrometry. Food Chem. 2023, 403, 134404. [Google Scholar] [CrossRef]
- He, Z.; Cheng, H.N.; He, J. Initial formulation of novel peanut butter-like products from glandless cottonseed. Foods 2023, 12, 378. [Google Scholar] [CrossRef]
- He, Z.; Nam, S.; Klasson, K.T. Oxidative stability of cottonseed butter products under accelerated storage conditions. Molecules 2023, 28, 1599. [Google Scholar] [CrossRef]
- Gorrepati, K.; Balasubramanian, S.; Chandra, P. Plant based butters. J. Food Sci. Technol. 2015, 52, 3965–3976. [Google Scholar] [CrossRef]
- Dimić, E.B.; Vujasinović, V.B.; Radočaj, O.F.; Borić, B.D. Sensory evaluation of commercial fat spread based on oil seeds and walnut. Acta Period. Technol. 2013, 44, 21–30. [Google Scholar] [CrossRef]
- Shakerardekani, A.; Karim, R.; Ghazali, H.M.; Chin, N.L. Development of pistachio (Pistacia vera L.) spread. J. Food Sci. 2013, 78, S484–S489. [Google Scholar] [CrossRef]
- Tuhumury, H.C.D.; Souripet, A.; Pattiwael, K.J. Production of Canarium (Canarium indicum L.) Butter with Different Sugar Concentrations. J. Appl. Agric. Sci. Technol. 2023, 7, 130–141. [Google Scholar] [CrossRef]
- Sahin, E.; Erem, E.; Güzey, M.; Kesen, M.S.; Icyer, N.C.; Ozmen, D.; Toker, O.S.; Cakmak, H. High potential food wastes: Evaluation of melon seeds as spreadable butter. J. Food Process. Preserv. 2022, 46, e16841. [Google Scholar] [CrossRef]
- Ghosal, S.; Bhattacharyya, D.K.; Bhowal, J. Production, characterization, and storage stability of nutritionally enriched flaxseed-based spread. J. Food Process. Preserv. 2022, 46, e16574. [Google Scholar] [CrossRef]
- Andreou, V.; Chanioti, S.; Stergiou, P.; Katsaros, G. Valorization of the Olive Oil Production Residue: Healthy Ingredient for Developing High Value-Added Spread. Sustainability 2021, 13, 13984. [Google Scholar] [CrossRef]
- USDA. USDA Commercial Item Description: Nut Butters and Nut Spreads; A-A-20328C; USDA: Washington DC, USA, 2019. [Google Scholar]
- Ningtyas, D.W. Chapter 8—Plant-based butter like spreads. In Engineering Plant-Based Food Systems; Prakash, S., Bhandari, B.R., Gaiani, C., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 151–166. [Google Scholar]
- Wagener, E.A.; Kerr, W.L. Effects of oil content on the sensory, textural, and physical properties of pecan butter (Carya illinoinensis). J. Texture Stud. 2018, 49, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Radoĉaj, O.F.; Dimić, E.B.; Vujasinović, V.B. Optimization of the texture of fat-based spread containing hull-less pumpkin (Cucurbita pepo L.) seed press-cake. Acta Period. Technol. 2011, 42, 131–143. [Google Scholar] [CrossRef]
- Nikolić, I.; Dokić, L.; Rakić, D.; Tomović, V.; Maravić, N.; Vidosavljević, S.; Šereš, Z.; Šoronja-Simović, D. The role of two types of continuous phases based on cellulose during textural, color, and sensory characterization of novel food spread with pumpkin seed flour. J. Food Process. Preserv. 2018, 42, e13684. [Google Scholar] [CrossRef]
- Muresan, V.; Danthine, S.; Racolta, E.; Muste, S.; Blecker, C. The influence of particle size distribution on sunflower tahini rheology and structure. J. Food Process Eng. 2014, 37, 411–426. [Google Scholar] [CrossRef]
- Çiftçi, D.; Kahyaoglu, T.; Kapucu, S.; Kaya, S. Colloidal stability and rheological properties of sesame paste. J. Food Eng. 2008, 87, 428–435. [Google Scholar] [CrossRef]
- Rozalli, N.M.; Chin, N.; Yusof, Y. Grinding characteristics of Asian originated peanuts (Arachishypogaea L.) and specific energy consumption during ultra-high speed grinding for natural peanut butter production. J. Food Eng. 2015, 152, 1–7. [Google Scholar] [CrossRef]
- Hou, L.; Li, C.; Wang, X. The colloidal and oxidative stability of the sesame pastes during storage. J. Oleo Sci. 2020, 69, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Norazatul Hanim, M.; Chin, N.; Yusof, Y. Effects of grinding time on rheological, textural and physical properties of natural peanut butter stored at different temperatures. J. Texture Stud. 2016, 47, 131–141. [Google Scholar] [CrossRef]
- Shahidi-Noghabi, M.; Naji-Tabasi, S.; Sarraf, M. Effect of emulsifier on rheological, textural and microstructure properties of walnut butter. J. Food Measur. Character. 2019, 13, 785–792. [Google Scholar] [CrossRef]
- Pattee, H.E.; Giesbrecht, F.G.; Young, C.T. Comparison of peanut butter color determination by CIELAB L*, a*, b* and Hunter color-difference methods and the relationship of roasted peanut color to roasted peanut flavor response. J. Agric. Food Chem. 1991, 39, 519–523. [Google Scholar] [CrossRef]
- Xie, Y.; Jiang, N.; Su, H.; Tan, F.; Cheng, X.; Wang, J.; Hu, H. Effect of functional lipids on the quality of walnut butter prepared from defatted walnut meal by ball mill grinding. Authorea 2023. [Google Scholar] [CrossRef]
- Ahmed, E.; Ali, T. Textural quality of peanut butter as influenced by peanut seed and oil contents. Peanut Sci. 1986, 13, 18–20. [Google Scholar] [CrossRef]
- Tanti, R.; Barbut, S.; Marangoni, A.G. Oil stabilization of natural peanut butter using food grade polymers. Food Hydrocoll. 2016, 61, 399–408. [Google Scholar] [CrossRef]
- He, Z.; Cheng, H.N.; Olanya, O.M.; Uknalis, J.; Zhang, X.; Koplitz, B.D.; He, J. Surface characterization of cottonseed meal products by SEM, SEM-EDS, XRD and XPS analysis. J. Mater. Sci. Res. 2018, 7, 28–40. [Google Scholar] [CrossRef]
- Delgado, E.; Valles-Rosales, D.; Pámanes-Carrasco, G.; Cooke, P.; Flores, N. Structural, rheological and calorimetric properties of an extruded shrimp feed using glandless cottonseed meal as a protein source. J. Aquac. Res. Develop. 2021, 12, 637. [Google Scholar]
- Aryana, K.J.; Resurreccion, A.V.A.; Chinnan, M.S.; Beuchat, L.R. Microstructure of peanut butter stabilized with palm oil. J. Food Process. Preserv. 2000, 24, 229–241. [Google Scholar] [CrossRef]
- Mureşan, V.; Danthine, S.; Bolboacă, S.D.; Racolţa, E.; Muste, S.; Socaciu, C.; Blecker, C. Roasted sunflower Kernel paste (Tahini) stability: Storage conditions and particle size influence. J. Am. Oil Chem. Soc. 2015, 92, 669–683. [Google Scholar] [CrossRef]
- Saatchi, A.; Kiani, H.; Labbafi, M. Stabilization activity of a new protein–carbohydrate complex in sesame paste: Rheology, microstructure, and particle size analysis. J. Sci. Food Agric. 2022, 102, 5523–5530. [Google Scholar] [CrossRef]
- Hassan, M.A.; El-Sayed Hassan Shaltout, O.E.; Mohamed, A. Improving the thermoxidative stability of soybean oil using some herbal extracts. J. Adv. Agric. Res. 2022, 27, 412–424. [Google Scholar] [CrossRef]
- Jovanović, P.; Pajin, B.; Lončarić, A.; Jozinović, A.; Petrović, J.; Fišteš, A.; Zarić, D.; Tumbas Šaponjac, V.; Ačkar, Đ.; Lončarević, I. Whey as a carrier material for blueberry bioactive components: Incorporation in white chocolate. Sustainability 2022, 14, 14172. [Google Scholar] [CrossRef]
- Rektorisova, M.; Tomaniova, M.; Hajslova, J. Nut and seed butters: Lipid component quality and its changes during storage. Eur. Food Res. Technol. 2022, 248, 2531–2538. [Google Scholar] [CrossRef]
- Aryana, K.; Resurreccion, A.; Chinnan, M.; Beuchat, L. Functionality of palm oil as a stabilizer in peanut butter. J. Food Sci. 2003, 68, 1301–1307. [Google Scholar] [CrossRef]
- Nadeem, M.; Imran, M.; Iqbal, Z.; Abbas, N.; Mahmud, A. Enhancement of the oxidative stability of butter oil by blending with mango (Mangifera indica L.) kernel oil in ambient and accelerated oxidation. J. Food Process. Preserv. 2017, 41, e12957. [Google Scholar] [CrossRef]
Butter Name | Cottonseed Kernel (%) | External Cottonseed Oil (%) | Table Salt (%) | Cane Sugar (%) |
---|---|---|---|---|
B36 1 | 85.8 | 6.0 | 0.7 | 7.5 |
B43 | 75.1 | 16.7 | 0.7 | 7.5 |
B47 | 68.9 | 22.9 | 0.7 | 7.5 |
B50 | 64.3 | 27.5 | 0.7 | 7.5 |
B53 | 59.7 | 32.1 | 0.7 | 7.5 |
B57 | 53.5 | 38.3 | 0.7 | 7.5 |
L* | a* | b* | |
---|---|---|---|
B36 | 54.37 ± 0.02 d 1 | 5.96 ± 0.01 c | 25.88 ± 0.01 e |
B43 | 57.09 ± 0.01 b | 5.19 ± 0.00 e | 26.17 ± 0.00 d |
R47 | 55.22 ± 0.11 c | 5.44 ± 0.01 d | 24.86 ± 0.12 f |
B50 | 57.27 ± 0.01 a | 4.53 ± 0.00 f | 28.49 ± 0.02 c |
B54 | 51.21 ± 0.00 e | 6.76 ± 0.01 a | 30.50 ± 0.01 a |
B57 | 50.87 ± 0.01 f | 6.21 ± 0.01 b | 29.91 ± 0.02 b |
Firmness (N) | Spreadability (mJ) | Adhesiveness (mJ) | |
---|---|---|---|
B36 | 67.33 ± 18.16 | 80.32 ± 19.35 | 1.59 ± 0.05 |
B43 | 1.62 ± 0.63 | 2.58 ± 1.07 | 1.68 ± 0.06 |
B47 | 0.20 ± 0.03 | 0.34 ± 0.06 | 0.38 ± 0.06 |
B50 | 0.08 ± 0.01 | 0.13 ± 0.03 | 0.16 ± 0.04 |
B53 | 0.05 ± 0.01 | 0.09 ± 0.02 | 0.06 ± 0.03 |
B57 | 0.03 ± 0.01 | 0.07 ± 0.01 | 0.04 ± 0.01 |
Peak 1 | Peak 2 | Peak 3 | |||||||
---|---|---|---|---|---|---|---|---|---|
Range (μm) | Peak (μm) | Volume (%) | Range (μm) | Peak (μm) | Volume (%) | Range (μm) | Peak (μm) | Volume (%) | |
B36 | <1.00 | 0.45 | 8.68 ab 1 | 1.0–44.9 | 8.82 | 63.70 b | >44.9 | 229.1 | 27.62 b |
B43 | <1.00 | 0.39 | 13.64 a | 1.0–34.3 | 5.12 | 65.11 ab | >34.3 | 88.58 | 21.35 b |
B47 | <0.88 | 0.39 | 6.83 bc | 0.88–26.1 | 4.47 | 65.92 ab | >26.1 | 88.58 | 27.25 b |
B50 | <0.88 | 0.39 | 5.92 bc | 0.88–26.1 | 4.47 | 63.76 ab | >26.1 | 88.58 | 30.32 ab |
B53 | <0.88 | 0.39 | 3.84 bc | 0.88–29.1 | 4.47 | 68.29 a | >26.1 | 101.5 | 27.87 ab |
B57 | <0.88 | 0.39 | 2.47 c | 0.88–29.1 | 4.47 | 60.54 b | >26.1 | 101.5 | 36.99 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Z.; Rogers, S.I.; Nam, S.; Klasson, K.T. The Effects of Oil Content on the Structural and Textural Properties of Cottonseed Butter/Spread Products. Foods 2023, 12, 4158. https://doi.org/10.3390/foods12224158
He Z, Rogers SI, Nam S, Klasson KT. The Effects of Oil Content on the Structural and Textural Properties of Cottonseed Butter/Spread Products. Foods. 2023; 12(22):4158. https://doi.org/10.3390/foods12224158
Chicago/Turabian StyleHe, Zhongqi, Stephen I. Rogers, Sunghyun Nam, and K. Thomas Klasson. 2023. "The Effects of Oil Content on the Structural and Textural Properties of Cottonseed Butter/Spread Products" Foods 12, no. 22: 4158. https://doi.org/10.3390/foods12224158
APA StyleHe, Z., Rogers, S. I., Nam, S., & Klasson, K. T. (2023). The Effects of Oil Content on the Structural and Textural Properties of Cottonseed Butter/Spread Products. Foods, 12(22), 4158. https://doi.org/10.3390/foods12224158