Potential Use of PLA-Based Films Loaded with Antioxidant Agents from Spent Coffee Grounds for Preservation of Refrigerated Foods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Spent Coffee Grounds Preparation
2.2. PLA-Based Film Preparation by Solvent Casting
2.3. Extracts Preparation
2.4. Extracts Characterization and Comparison
2.5. Lipid Peroxidation Inhibition of HPTE Extract
2.6. PLA-Based Film Loaded with SCG Extracts
2.7. Packaging Characterization
2.7.1. Morphology and Thickness
2.7.2. Release Tests
2.7.3. Gas Permeability and Diffusivity Measurements
2.7.4. Migration Tests
2.7.5. Lipid Peroxidation Inhibition Ability
2.7.6. Statistical Analysis
3. Results and Discussion
3.1. Optimization of Solvent Casting Technique for PLA Film Production
3.2. Extract Characterization and Comparison
3.3. Lipid Peroxidation Inhibition of HPTE Extract
3.4. Characterization of Packaging Enriched with SCG Extracts
3.4.1. Release Tests
3.4.2. Morphology and Thickness
3.4.3. Gas Permeability and Diffusivity Measurements
3.4.4. Migration Tests
3.4.5. Lipid Peroxidation Inhibition Ability
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Boeira, C.P.; Alves, J.d.S.; Flores, D.C.B.; de Moura, M.R.; Melo, P.T.S.; da Rosa, C.S. Antioxidant and Antimicrobial Effect of an Innovative Active Film Containing Corn Stigma Residue Extract for Refrigerated Meat Conservation. J. Food Process. Preserv. 2021, 45, e15721. [Google Scholar] [CrossRef]
- Kontominas, M.G.; Badeka, A.V.; Kosma, I.S.; Nathanailides, C.I. Recent Developments in Seafood Packaging Technologies. Foods 2021, 10, 940. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, R.; Patil, S.; Dhakane-Lad, J.; Nadanathangam, V.; Mahapatra, A. Effect of Green Tea Extract, Ginger Essential Oil and Nanofibrillated Cellulose Reinforcements in Starch Films on the Keeping Quality of Strawberries. J. Food Process. Preserv. 2022, 46, e16109. [Google Scholar] [CrossRef]
- Ghoshal, G. Recent Trends in Active, Smart, and Intelligent Packaging for Food Products. In Handbook of Food Bioengineering, 1st ed.; Grumezescu, A.M., Holban, A.M., Eds.; Elsevier Inc.: London, UK, 2018; Volume 9, pp. 343–374. [Google Scholar] [CrossRef]
- Imran, M.; Revol-Junelles, A.M.; Martyn, A.; Tehrany, E.A.; Jacquot, M.; Linder, M.; Desobry, S. Active Food Packaging Evolution: Transformation from Micro- to Nanotechnology. Crit. Rev. Food Sci. Nutr. 2010, 50, 799–821. [Google Scholar] [CrossRef] [PubMed]
- Ozdemir, M.; Floros, J.D. Active Food Packaging Technologies. Crit. Rev. Food Sci. Nutr. 2004, 44, 185–193. [Google Scholar] [CrossRef]
- Coles, R.; McDowell, D.; Kirwan, M.J. Food Packaging Technology, 1st ed.; Blackwell Publishing: Victoria, Australia, 2003. [Google Scholar]
- de Abreu, D.A.P.; Cruz, J.M.; Losada, P.P. Active and Intelligent Packaging for the Food Industry. Food Rev. Int. 2012, 28, 146–187. [Google Scholar] [CrossRef]
- Robertson, G.L. Food Packaging: Principles and Practice, 3rd ed.; Taylor & Francis Group: Boca Raton, FL, USA, 2013. [Google Scholar]
- Dobrucka, R.; Cierpiszewski, R. Active and Intelligent Packaging Food—Research and Development—A Review. Pol. J. Food Nutr. Sci. 2014, 64, 7–15. [Google Scholar] [CrossRef]
- Huang, T.; Qian, Y.; Wei, J.; Zhou, C. Polymeric Antimicrobial Food Packaging and Its Applications. Polymers 2019, 11, 560. [Google Scholar] [CrossRef]
- Andrade, M.A.; Barbosa, C.H.; Cerqueira, M.A.; Azevedo, A.G.; Barros, C.; Machado, A.V.; Coelho, A.; Furtado, R.; Correia, C.B.; Saraiva, M.; et al. PLA Films Loaded with Green Tea and Rosemary Polyphenolic Extracts as an Active Packaging for Almond and Beef. Food Packag. Shelf Life 2023, 36, 101041. [Google Scholar] [CrossRef]
- Radhalakshmi, V.; Raman, M.; Joy, M.R. Development of Active Packaging Film Based on Poly (Lactic Acid) Incorporated with Piper betel Leaf Ethanolic Extract and Its Application in the Shelf-Life Extension of Tuna Meat. Int. J. Biol. Macromol. 2023, 246, 125751. [Google Scholar] [CrossRef] [PubMed]
- Tkaczewska, J.; Jamróz, E.; Kasprzak, M.; Zając, M.; Pająk, P.; Grzebieniarz, W.; Nowak, N.; Juszczak, L. Edible Coatings Based on a Furcellaran and Gelatin Extract with Herb Addition as an Active Packaging for Carp Fillets. Food Bioprocess Technol. 2023, 16, 1009–1021. [Google Scholar] [CrossRef]
- Sadadekar, A.S.; Shruthy, R.; Preetha, R.; Kumar, N.; Pande, K.R.; Nagamaniammai, G. Enhanced Antimicrobial and Antioxidant Properties of Nano Chitosan and Pectin Based Biodegradable Active Packaging Films Incorporated with Fennel (Foeniculum vulgare) Essential Oil and Potato (Solanum tuberosum) Peel Extracts. J. Food Sci. Technol. 2023, 60, 938–946. [Google Scholar] [CrossRef] [PubMed]
- Andrade, M.A.; Barbosa, C.H.; Mariño-cortegoso, S.; Barbosa-pereira, L.; Send, R.; Buonocore, G.G.; Stanzione, M.; Coelho, A.; Correia, C.B.; Saraiva, M.; et al. LDPE and PLA Active Food Packaging Incorporated with Lemon By-Products Extract: Preparation, Characterization and Effectiveness to Delay Lipid Oxidation in Almonds and Beef Meat. Foods 2023, 12, 2450. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.P.; Li, Y.; Meng, X.; Zhou, T.; Zhou, Y.; Zheng, J.; Zhang, J.J.; Li, H. Bin Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment and Resources. Int. J. Mol. Sci. 2017, 18, 96. [Google Scholar] [CrossRef] [PubMed]
- Vilela, C.; Kurek, M.; Hayouka, Z.; Röcker, B.; Yildirim, S.; Antunes, M.D.C.; Nilsen-Nygaard, J.; Pettersen, M.K.; Freire, C.S.R. A Concise Guide to Active Agents for Active Food Packaging. Trends Food Sci. Technol. 2018, 80, 212–222. [Google Scholar] [CrossRef]
- Ortenzi, M.A.; Gazzotti, S.; Marcos, B.; Antenucci, S.; Camazzola, S.; Piergiovanni, L.; Farina, H.; Di Silvestro, G.; Verotta, L. Synthesis of Polylactic Acid Initiated through Biobased Antioxidants: Towards Intrinsically Active Food Packaging. Polymers 2020, 12, 1183. [Google Scholar] [CrossRef] [PubMed]
- Panusa, A.; Zuorro, A.; Lavecchia, R.; Marrosu, G.; Petrucci, R. Recovery of Natural Antioxidants from Spent Coffee Grounds. J. Agric. Food Chem. 2013, 61, 4162–4168. [Google Scholar] [CrossRef]
- Pujol, D.; Liu, C.; Gominho, J.; Olivella, M.À.; Fiol, N.; Villaescusa, I.; Pereira, H. The Chemical Composition of Exhausted Coffee Waste. Ind. Crops Prod. 2013, 50, 423–429. [Google Scholar] [CrossRef]
- Dattatraya Saratale, G.; Bhosale, R.; Shobana, S.; Banu, J.R.; Pugazhendhi, A.; Mahmoud, E.; Sirohi, R.; Kant Bhatia, S.; Atabani, A.E.; Mulone, V.; et al. A Review on Valorization of Spent Coffee Grounds (SCG) towards Biopolymers and Biocatalysts Production. Bioresour. Technol. 2020, 314, 123800. [Google Scholar] [CrossRef]
- Pinelo, M.; Tress, A.G.; Pedersen, M.; Amous, A.; Meyer, A.S. Effect of Cellulases, Solvent Type and Particle Size Distribution on the Extraction of Clorogenic Acid and Other Phenols from Spent Coffee Grounds. Am. J. Food Technol. 2007, 2, 641–651. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Ballesteros, L.F.; Martins, S.; Teixeira, J.A. Extraction of Antioxidant Phenolic Compounds from Spent Coffee Grounds. Sep. Purif. Technol. 2011, 83, 173–179. [Google Scholar] [CrossRef]
- da Silva, M.F.; Pettinato, M.; Casazza, A.A.; Maciel, M.I.S.; Perego, P. Design and Evaluation of Non-Conventional Extraction for Bioactive Compounds Recovery from Spent Coffee (Coffea arabica L.) Grounds. Chem. Eng. Res. Des. 2022, 177, 418–430. [Google Scholar] [CrossRef]
- Pettinato, M.; Aliakbarian, B.; Casazza, A.A.; Perego, P. Encapsulation of Antioxidants from Spent Coffee Ground Extracts by Spray Drying. Chem. Eng. Trans. 2017, 57, 1219–1224. [Google Scholar] [CrossRef]
- Ganesh Saratale, R.; Cho, S.K.; Dattatraya Saratale, G.; Kadam, A.A.; Ghodake, G.S.; Kumar, M.; Naresh Bharagava, R.; Kumar, G.; Su Kim, D.; Mulla, S.I.; et al. A Comprehensive Overview and Recent Advances on Polyhydroxyalkanoates (PHA) Production Using Various Organic Waste Streams. Bioresour. Technol. 2021, 325, 124685. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Farmahini-farahani, M.; Hearn, P.O.; Xiao, H.; Ocampo, H. An Overview of Bio-Based Polymers for Packaging Materials. J. Bioresour. Bioprod. 2016, 1, 106–113. [Google Scholar] [CrossRef]
- Tawakkal, I.S.M.A.; Cran, M.J.; Miltz, J.; Bigger, S.W. A Review of Poly(Lactic Acid)-Based Materials for Antimicrobial Packaging. J. Food Sci. 2014, 79, R1477–R1490. [Google Scholar] [CrossRef]
- Casalini, T.; Rossi, F.; Castrovinci, A.; Perale, G. A Perspective on Polylactic Acid-Based Polymers Use for Nanoparticles Synthesis and Applications. Front. Bioeng. Biotechnol. 2019, 7, 259. [Google Scholar] [CrossRef]
- Jamshidian, M.; Tehrany, E.A.; Imran, M.; Jacquot, M.; Desobry, S. Poly-Lactic Acid: Production, Applications, Nanocomposites, and Release Studies. Compr. Rev. Food Sci. Food Saf. 2010, 9, 552–571. [Google Scholar] [CrossRef]
- Fabra, M.J.; Busolo, M.A.; Lopez-Rubio, A.; Lagaron, J.M. Nanostructured Biolayers in Food Packaging. Trends Food Sci. Technol. 2013, 31, 79–87. [Google Scholar] [CrossRef]
- Farah, S.; Anderson, D.G.; Langer, R. Physical and Mechanical Properties of PLA, and Their Functions in Widespread Applications—A Comprehensive Review. Adv. Drug Deliv. Rev. 2016, 107, 367–392. [Google Scholar] [CrossRef]
- Cacciotti, I.; Mori, S.; Cherubini, V.; Nanni, F. Eco-Sustainable Systems Based on Poly(Lactic Acid), Diatomite and Coffee Grounds Extract for Food Packaging. Int. J. Biol. Macromol. 2018, 112, 567–575. [Google Scholar] [CrossRef]
- Mendes, J.F.; Martins, J.T.; Manrich, A.; Sena Neto, A.R.; Pinheiro, A.C.M.; Mattoso, L.H.C.; Martins, M.A. Development and Physical-Chemical Properties of Pectin Film Reinforced with Spent Coffee Grounds by Continuous Casting. Carbohydr. Polym. 2019, 210, 92–99. [Google Scholar] [CrossRef]
- Chang, Y.C.; Chen, Y.; Ning, J.; Hao, C.; Rock, M.; Amer, M.; Feng, S.; Falahati, M.; Wang, L.J.; Chen, R.K.; et al. No Such Thing as Trash: A 3D-Printable Polymer Composite Composed of Oil-Extracted Spent Coffee Grounds and Polylactic Acid with Enhanced Impact Toughness. ACS Sustain. Chem. Eng. 2019, 7, 15304–15310. [Google Scholar] [CrossRef]
- de Bomfim, A.S.C.; de Oliveira, D.M.; Voorwald, H.J.C.; Benini, K.C.C.; Dumont, M.J.; Rodrigue, D. Valorization of Spent Coffee Grounds as Precursors for Biopolymers and Composite Production. Polymers 2022, 14, 437. [Google Scholar] [CrossRef]
- Drago, E.; Pettinato, M.; Campardelli, R.; Firpo, G.; Lertora, E.; Perego, P. Zein and Spent Coffee Grounds Extract as a Green Combination for Sustainable Food Active Packaging Production: An Investigation on the Effects of the Production Processes. Appl. Sci. 2022, 12, 11311. [Google Scholar] [CrossRef]
- Gama, N.; Ferreira, A.; Etvuguin, D.V. New Poly(Lactic Acid) Composites Produced from Coffee Beverage Wastes. J. Appl. Polym. Sci. 2021, 139, 51434. [Google Scholar] [CrossRef]
- Pettinato, M.; Trucillo, P.; Campardelli, R.; Perego, P.; Reverchon, E. Bioactives Extraction from Spent Coffee Grounds and Liposome Encapsulation by a Combination of Green Technologies. Chem. Eng. Process.—Process Intensif. 2020, 151, 107911. [Google Scholar] [CrossRef]
- Shalmashi, A.; Golmohammad, F. Solubility of Caffeine in Water, Ethyl Acetate, Ethanol, Carbon Tetrachloride, Methanol, Chloroform, Dichloromethane, and Acetone between 298 and 323 K. Lat. Am. Appl. Res. 2010, 40, 283–285. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved Abts Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Aliakbarian, B.; Casazza, A.A.; Perego, P. Valorization of Olive Oil Solid Waste Using High Pressure-High Temperature Reactor. Food Chem. 2011, 128, 704–710. [Google Scholar] [CrossRef]
- Commission Regulation (EEC) No 2568/91 of 11 July 1991 on the Characteristics of Olive Oil and Olive-Residue Oil and on the Relevant Methods of Analysis. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A31991R2568 (accessed on 1 October 2023).
- Belay, A.; Ture, K.; Redi, M.; Asfaw, A. Measurement of Caffeine in Coffee Beans with UV/Vis Spectrometer. Food Chem. 2008, 108, 310–315. [Google Scholar] [CrossRef]
- Commission Regulation (EC) No 10/2011 of 14 January 2011 on Plastic Materials and Articles Intended to Come into Contact with Food. Available online: https://eur-lex.europa.eu/eli/reg/2011/10/oj (accessed on 1 October 2023).
- European Commission Regulation (EU) 2016/1416 of 24 August 2016 Amending and Correcting Regulation (EU) No 10/2011 on Plastic Materials and Articles Intended to Come into Contact with Food. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32016R1416 (accessed on 1 October 2023).
- Firpo, G.; Setina, J.; Angeli, E.; Repetto, L.; Valbusa, U. High-Vacuum Setup for Permeability and Diffusivity Measurements by Membrane Techniques. Vacuum 2021, 191, 110368. [Google Scholar] [CrossRef]
- D1434-82; ASTM Standard Test Method for Determining Gas Permeability Characteristics of Plastic Film and Sheeting. ASTM International Designation: West Conshohocken, PA, USA, 2015.
- Crank, J. The Mathematics of Diffusion, 2nd ed.; Oxford University Press: New York, NY, USA, 1975. [Google Scholar]
- Carey, F.A. Organic Chemistry, 4th ed.; McGraw-Hill Higher Education: New York, NY, USA, 2000. [Google Scholar]
- Brezová, V.; Šlebodová, A.; Staško, A. Coffee as a Source of Antioxidants: An EPR Study. Food Chem. 2009, 114, 859–868. [Google Scholar] [CrossRef]
- Robert, P.; Gorena, T.; Romero, N.; Sepulveda, E.; Chavez, J.; Saenz, C. Encapsulation of Polyphenols and Anthocyanins from Pomegranate (Punica granatum) by Spray Drying. Int. J. Food Sci. Technol. 2010, 45, 1386–1394. [Google Scholar] [CrossRef]
- Naz, S.; Sheikh, H.; Siddiqi, R.; Sayeed, S.A. Oxidative Stability of Olive, Corn and Soybean Oil under Different Conditions. Food Chem. 2004, 88, 253–259. [Google Scholar] [CrossRef]
- Hwang, H.S.; Winkler-Moser, J.K.; Kim, Y.; Liu, S.X. Antioxidant Activity of Spent Coffee Ground Extracts Toward Soybean Oil and Fish Oil. Eur. J. Lipid Sci. Technol. 2019, 121, 1800372. [Google Scholar] [CrossRef]
- Bisharat, L.; Berardi, A.; Perinelli, D.R.; Bonacucina, G.; Casettari, L.; Cespi, M.; AlKhatib, H.S.; Palmieri, G.F. Aggregation of Zein in Aqueous Ethanol Dispersions: Effect on Cast Film Properties. Int. J. Biol. Macromol. 2018, 106, 360–368. [Google Scholar] [CrossRef]
- Komatsuka, T.; Nagai, K. Temperature Dependence on Gas Permeability and Permselectivity of Poly(Lactic Acid) Blend Membranes. Polym. J. 2009, 41, 455–458. [Google Scholar] [CrossRef]
- Merkel, T.C.; Bondar, V.I.; Nagai, K.; Freeman, B.D.; Pinnau, I. Gas Sorption, Diffusion, and Permeation in Poly(Dimethylsiloxane). J. Polym. Sci. Part B Polym. Phys. 2000, 38, 415–434. [Google Scholar] [CrossRef]
Extract from HPTE | Extract from LLE | Extract from SLE | |
---|---|---|---|
Extract total solids (mg solids/g SCG) | 276 ± 12.6 a | 48.3 ± 6.7 b | 103.3 ± 11.7 c |
Antiradical power (μg TE/g SCG) | 0.57 ± 0.06 a | 0.17 ± 0.008 b | 0.01 ± 0.001 c |
Total polyphenols (mg CAE/g SCG) | 36.4 ± 1 | n.d.* | n.d.* |
Caffeine (mgcaffeine/g SCG) | 10.3 ± 0.18 a | 7.8 ± 0.55 b | 1.4 ± 0.007 c |
Chlorogenic acid (mg chlorogenic acid/g SCG) | 2.4 ± 0.06 | n.d.* | n.d.* |
Time (h) | Theoretical Loading HPTE Extract | Theoretical Loading LLE Extract | ||||
---|---|---|---|---|---|---|
512 μg caffeine/g PLA | 676 μg caffeine/g PLA | 840 μg caffeine/g PLA | 512 μg caffeine/g PLA | 676 μg caffeine/g PLA | 840 μg caffeine/g PLA | |
1 | 75 ± 10 ab | 60 ± 9 a | 37 ± 3 a | 26 ± 6 ab | 28 ± 3 ab | 26 ± 2 a |
2 | 72 ± 13 ab | 58 ± 2 a | 53 ± 1 ab | 34 ± 5 b | 27 ±1 ab | 34 ± 3 b |
6 | 81 ± 7 b | 45 ± 9 a | 61 ± 14 b | 19 ± 0.4 a | 21 ± 3 a | 22 ± 5 a |
24 | 65 ± 13 ab | 55 ± 10 a | 26 ± 11c | 48 ± 5 c | 40 ± 9 b | 28 ± 2 ab |
30 | 51 ± 11 a | 46 ± 3 a | 42 ± 3 abc | 22 ± 3 a | 33 ± 10 ab | 28 ± 1 ab |
48 | 56 ± 3 ab | 57 ± 4 a | 53 ± 2 ab | 29 ± 4 ab | 37 ± 3 ab | 28 ± 3 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pettinato, M.; Bolla, M.; Campardelli, R.; Firpo, G.; Perego, P. Potential Use of PLA-Based Films Loaded with Antioxidant Agents from Spent Coffee Grounds for Preservation of Refrigerated Foods. Foods 2023, 12, 4167. https://doi.org/10.3390/foods12224167
Pettinato M, Bolla M, Campardelli R, Firpo G, Perego P. Potential Use of PLA-Based Films Loaded with Antioxidant Agents from Spent Coffee Grounds for Preservation of Refrigerated Foods. Foods. 2023; 12(22):4167. https://doi.org/10.3390/foods12224167
Chicago/Turabian StylePettinato, Margherita, Maria Bolla, Roberta Campardelli, Giuseppe Firpo, and Patrizia Perego. 2023. "Potential Use of PLA-Based Films Loaded with Antioxidant Agents from Spent Coffee Grounds for Preservation of Refrigerated Foods" Foods 12, no. 22: 4167. https://doi.org/10.3390/foods12224167
APA StylePettinato, M., Bolla, M., Campardelli, R., Firpo, G., & Perego, P. (2023). Potential Use of PLA-Based Films Loaded with Antioxidant Agents from Spent Coffee Grounds for Preservation of Refrigerated Foods. Foods, 12(22), 4167. https://doi.org/10.3390/foods12224167