An Acid-Free Alternative to Pectin Production from the Cell Walls of Olive Oil Waste and Different Fruits Using Choline Chloride
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Chemicals
2.3. Preparation of Cell Wall Material
2.4. Extraction of Pectin from the Cell Wall
2.4.1. Pectin Extraction with Choline Chloride (ChCl)
2.4.2. Pectin Extraction Using Citric Acid (CA) and Ammonium Oxalate/Oxalic Acid (AOOA)
2.5. Chemical Characterization of Pectin Extracts
2.6. Spectroscopic Characterization of Pectin Extracts
2.7. Statistical Analysis
3. Results and Discussion
3.1. Extraction Yields and Chemical Characterization of Pectin Extracted Using Choline Chloride (ChCl)
3.2. Spectroscopy Analysis of the Different Pectin Preparations
3.2.1. FT-IR Analysis
3.2.2. 1H NMR Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Voragen, A.G.J.; Coenen, G.J.; Verhoef, R.P.; Schols, H.A. Pectin, a versatile polysaccharide present in plant cell walls. Struct. Chem. 2009, 20, 263–275. [Google Scholar] [CrossRef]
- Ropartz, D.; Ralet, M.C. Pectin structure. In Pectin: Technological and Physiological Properties; Kontogiorgos, V., Ed.; Springer: Cham, Switzerland, 2020; pp. 17–36. [Google Scholar] [CrossRef]
- McNeil, M.; Darvill, A.G.; Fry, S.C.; Albersheim, P. Structure and function of the primary-cell walls of plants. Annu. Rev. Biochem. 1984, 53, 625–663. [Google Scholar] [CrossRef]
- Maxwell, E.G.; Belshaw, N.J.; Waldron, K.W.; Morris, V.J. Pectin—An emerging new bioactive food polysaccharide. Trends Food Sci. Technol. 2012, 24, 64–73. [Google Scholar] [CrossRef]
- Liu, J.; Willför, S.; Xu, C. A review of bioactive plant polysaccharides: Biological activities, functionalization, and biomedical applications. Bioact. Carbohydr. Diet. Fibre 2015, 5, 31–61. [Google Scholar] [CrossRef]
- Kermani, Z.J.; Shpigelman, A.; Kyomugasho, C.; Van Buggenhout, S.; Ramezani, M.; Van Loey, A.M.; Hendrickx, M.E. The impact of extraction with a chelating agent under acidic conditions on the cell wall polymers of mango peel. Food Chem. 2014, 161, 199–207. [Google Scholar] [CrossRef]
- Belkheiri, A.; Forouhar, A.; Ursu, A.V.; Dubessay, P.; Pierre, G.; Delattre, C.; Djelveh, G.; Abdelkafi, S.; Hamdami, N.; Michaud, P. Extraction, characterization, and applications of pectins from plant by-products. Appl. Sci. 2021, 11, 6596. [Google Scholar] [CrossRef]
- Sila, D.N.; Van Buggenhout, S.; Duvetter, T.; Fraeye, I.; De Roeck, A.; Van Loey, A.; Hendrickx, M. Pectins in processed fruit and vegetables: Part II—Structure-function relationships. Compr. Rev. Food Sci. Food Saf. 2009, 8, 86–104. [Google Scholar] [CrossRef]
- Liew, S.Q.; Ngoh, G.C.; Yusoff, R.; Teoh, W.H. Acid and Deep Eutectic Solvent (DES) extraction of pectin from pomelo (Citrus grandis (L.) Osbeck) peels. Biocatal. Agric. Biotechnol. 2018, 13, 1–11. [Google Scholar] [CrossRef]
- Chen, M.; Falourd, X.; Lahaye, M. Sequential natural deep eutectic solvent pretreatments of apple pomace: A novel way to promote water extraction of pectin and to tailor its main structural domains. Carbohydr. Polym. 2021, 226, 118113. [Google Scholar] [CrossRef]
- Sandarani, M.D.J.C. A review: Different extraction techniques of pectin. J. Pharmacog. Nat. Prod. 2017, 3, 143. [Google Scholar] [CrossRef]
- Yang, J.-S.; Mu, T.-H.; Ma, M.-M. Extraction, structure, and emulsifying properties of pectin from potato pulp. Food Chem. 2018, 244, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Nadar, C.G.; Arora, A.; Shastri, Y. Sustainability challenges and opportunities in pectin extraction from fruit waste. ACS Eng. Au. 2022, 2, 61–74. [Google Scholar] [CrossRef]
- Chen, M.; Lahaye, M. Natural deep eutectic solvents pretreatment as an aid for pectin extraction from apple pomace. Food Hydrocoll. 2021, 115, 106601. [Google Scholar] [CrossRef]
- Shafie, M.H.; Gan, C.Y. Could choline chloride-citric acid monohydrate molar ratio in deep eutectic solvent affect structural, functional and antioxidant properties of pectin? Int. J. Biol. Macromol. 2020, 149, 835–843. [Google Scholar] [CrossRef] [PubMed]
- Hayyan, M.; Hashim, M.A.; Hayyan, A.; Al-Saadi, M.A.; Al Nashef, I.M.; Mirghani, M.E.; Saheed, O.K. Are deep eutectic solvents benign or toxic? Chemosphere 2012, 90, 2193–2195. [Google Scholar] [CrossRef]
- Rodriguez, N.R.; van den Bruinhorst, A.; Kollau, L.J.B.M.; Kroon, M.C.; Binnemans, K. Degradation of deep-eutectic solvents based on choline chloride and carboxylic acids. ACS Sustain. Chem. Eng. 2019, 7, 11521–11528. [Google Scholar] [CrossRef]
- Chen, Z.; Reznicek, W.D.; Wan, C. Aqueous choline chloride: A novel solvent for switchgrass fractionation and subsequent hemicellulose conversion into furfural. ACS Sustain. Chem. Eng. 2018, 6, 6910–6919. [Google Scholar] [CrossRef]
- Nasir, A.; Chen, H.Z.; Wang, L. Novel single-step pretreatment of steam explosion and choline chloride to de-lignify corn stover for enhancing enzymatic edibility. Proc. Biochem. 2020, 94, 273–281. [Google Scholar] [CrossRef]
- Bermúdez-Oria, A.; Fernández-Prior, A.; Castejón, M.L.; Rodríguez-Gutiérrez, G.; Fernández-Bolaños, J. Extraction of polyphenols associated with pectin from olive waste (alperujo) with choline chloride. Food Chem. 2023, 419, 136073. [Google Scholar] [CrossRef]
- Grassino, A.N.; Halambek, J.; Djaković, S.; Brnčić, S.R.; Dent, M.; Grabarić, Z. Utilization of tomato peel waste from canning factory as a potential source for pectin production and application as tin corrosion inhibitor. Food Hydrocoll. 2016, 52, 265–274. [Google Scholar] [CrossRef]
- Renard, C.M.G.C. Variability in cell wall preparations: Quantification and comparison of common methods. Carbohydr. Polym. 2015, 60, 515–522. [Google Scholar] [CrossRef]
- Dai, Y.; van Spronsen, J.; Witkamp, G.J.; Verpoorte, R.; Choi, Y.H. Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta 2013, 766, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Blumenkrantz, N.; Asboe-Han, G. New method for quantitative determination of uronic acids. Anal. Biochem. 1973, 54, 484–489. [Google Scholar] [CrossRef] [PubMed]
- Lama-Muñoz, A.; Rodríguez-Gutiérrez, G.; Rubio-Senent, F.; Fernández-Bolaños, J. Production, characterization and isolation of neutral and pectic oligosaccharides with low molecular weights from olive by-products thermally treated. Food Hydrocoll. 2012, 28, 92–104. [Google Scholar] [CrossRef]
- Englyst, H.N.; Cummings, J.H. Simplified method for the measurement of total non-starch polysaccharides by gas-liquid chromatography of constituent sugars as alditol acetates. Analyst 1984, 109, 937–942. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Bradford, M.M. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Waldron, K.W.; Selvendran, R.R. Composition of the cell walls of different asparagus (Asparagus officinalis) tissues. Phys. Plant. 1990, 80, 568–575. [Google Scholar] [CrossRef]
- Galanakis, C.A.; Tornberg, E.; Gekas, V. A study of the recovery of the dietary fibres from olive mill wastewater and the gelling ability of the soluble fibre fraction. LWT Food Sci. Technol. 2010, 43, 1009–1017. [Google Scholar] [CrossRef]
- Singhal, S.; Rachayya, N.; Hulle, S. Citrus pectins: Structural properties, extraction methods, modifications and applications in food systems—A review. App. Food Res. 2022, 2, 100215. [Google Scholar] [CrossRef]
- Pereira, P.H.F.; Oliveira, T.I.S.; Rosa, M.F.; Cavalcante, F.L.; Moates, G.K.; Wellner, N.; Waldron, K.W.; Azeredo, H.M.C. Pectin extraction from pomegranate peels with citric acid. Int. J. Biol. Macromol. 2016, 88, 373–379. [Google Scholar] [CrossRef]
- Coimbra, M.A.; Cardoso, S.M.; Lopes-da-Silva, J.A. Olive pomace, a source for valuable arabinan-rich pectic polysaccharides. Chem. Mat. Sci. 2010, 294, 129–141. [Google Scholar] [CrossRef]
- Vierhuis, E.; Korver, M.; Schols, H.A.; Voragen, A.G.J. Structural characteristics of pectic polysaccharides from olive fruit (Olea europaea cv moraiolo) in relation to processing for oil extraction. Carbohydr. Polym. 2003, 51, 135–148. [Google Scholar] [CrossRef]
- Houben, K.; Jolie, R.P.; Fraeye, I.; Van Loey, A.M.; Hendrickx, M.E. Comparative study of the cell wall composition of broccoli, carrot, and tomato: Structural characterization of the extractable pectins and hemicelluloses. Carbohydr. Res. 2011, 346, 1105–1111. [Google Scholar] [CrossRef] [PubMed]
- Koh, J.; Xu, Z.; Wicker, L. Blueberry pectin extraction methods influence physico-chemical properties. J. Food Sci. 2018, 83, 2954–2962. [Google Scholar] [CrossRef]
- Fraeye, I.; De Roeck, A.; Duvetter, T.; Verlent, I.; Hendrickx, M.; Van Loey, A. Influence of pectin properties and processing conditions on thermal pectin degradation. Food Chem. 2007, 105, 555–563. [Google Scholar] [CrossRef]
- Kravtchenko, T.P.; Voragen, A.G.J.; Pilnik, W. Analytical comparison of three industrial pectin preparations. Carbohydr. Polym. 1992, 18, 17–25. [Google Scholar] [CrossRef]
- Jiménez, A.; Rodríguez, R.; Fernández-Caro, I.; Guillén, R.; Fernández-Bolaños, J.; Heredia, A. Olive fruit cell wall: Degradation of pectic polysaccharides during ripening. J. Agric. Food Chem. 2001, 49, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Wandee, Y.; Uttapap, D.; Mischnick, P. Yield and structural composition of pomelo peel pectins extracted under acidic and alkaline conditions. Food Hydrocoll. 2019, 87, 237–244. [Google Scholar] [CrossRef]
- Shafie, M.H.; Yusof, R.; Gan, C.Y. Deep eutectic solvents (DES) mediated extraction of pectin from Averrhoa bilimbi: Optimization and characterization studies. Carbohydr. Polym. 2019, 216, 303–311. [Google Scholar] [CrossRef]
- Canteri, M.H.G.; Renard, C.M.G.C.; Le Bourvellec, C.; Bureau, S. ATR-FTIR spectroscopy to determine cell wall composition: Application on a large diversity of fruits and vegetables. Carbohydr. Polym. 2019, 212, 186–196. [Google Scholar] [CrossRef] [PubMed]
- Grasdalen, H.; Bakdy, O.E.; Larsen, B. Determination of the degree of esterification and the distribution of methylated and free carboxyl groups in pectins by 1H-n.m.r. spectroscopy. Carbohydr. Res. 1988, 184, 183–191. [Google Scholar] [CrossRef]
- Tamaki, Y.; Konishi, T.; Fukuta, M.; Tako, M. Isolation and structural characterisation of pectin from endocarp of Citrus depressa. Food Chem. 2008, 107, 352–361. [Google Scholar] [CrossRef]
- Renard, C.M.G.C.; Jarvis, M.C. Acetylation and methylation of homogalacturonans 1: Optimization of the reaction and characterization of the products. Carbohydr. Polym. 1999, 39, 201–207. [Google Scholar] [CrossRef]
- Tjan, S.B.; Voragen, A.G.J.; Pilnik, W. Analysis of some partly and fully esterified oligogalactopyranuronic acids by p.m.r. spectrometry at 220 MHz. Carbohydr. Res. 1974, 34, 15–32. [Google Scholar] [CrossRef]
- Vignon, M.R.; Garcia-Jaldon, C. Structural features of the pectic polysaccharides isolated from retted hemp bast fibres. Carbohydr. Res. 1996, 296, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Ma, X.; Jiang, P.; Hu, L.; Zhi, Z.; Chen, J.; Ding, T.; Ye, X.; Liu, D. Characterization of pectin from grapefruit peel: A comparison of ultrasound-assisted and conventional heating extractions. Food Hydrocoll. 2016, 61, 730–739. [Google Scholar] [CrossRef]
- Anet, F.A.L.; Park, J. Proton chemical shift assignments in citrate and trimethyl citrate in chiral media. J. Am. Chem. Soc. 1992, 114, 411–416. [Google Scholar] [CrossRef]
- Zeisel, S.H.; da Costa, K.A. Choline: An essential nutrient for public health. Nutr. Rev. 2009, 67, 615–623. [Google Scholar] [CrossRef]
(a) | |||||||||
---|---|---|---|---|---|---|---|---|---|
ALP-1 | ALP-2 | ALP-3 | |||||||
CA | AOOA | ChCl | CA | AOOA | ChCl | CA | AOOA | ChCl | |
Yield | 1.22 ± 0.01 a | 3.92 ± 0.07 b | 2.20 ± 0.08 c | 0.95 ± 0.001 a | 5.24 ± 0.21 c | 2.88 ± 0.39 b | 0.65 ± 0.01 a | 5.42 ± 0.18 c | 2.28 ± 0.09 b |
Uronic Acid | 30.6 ± 6.41 a | 40.8 ± 5.71 b | 45.9 ± 6.32 b | 39.3 ± 6.01 a | 47.7 ± 5.18 b | 53.5 ± 3.34 c | 34.6 ± 1.48 a | 47.5 ± 1.47 b | 49.5 ± 9.08 b |
Phenols | 2.21 ± 0.16 a | 1.76 ± 0.26 a | 2.64 ± 0.22 a | 2.84 ± 0.66 b | 2.03 ± 0.13 b | 1.659 ± 0.15 a | 4.89 ± 1.16 b | 3.54 ± 0.16 a | 6.46 ± 0.95 b |
Neutral Sugar | 37.13 ± 0.91 b | 31.84 ± 1.39 a | 29.89 ± 5.06 a | 28.69 ± 1.5 b | 26.66 ± 1.63 b | 17.13 ± 0.65 a | 30.4 ± 1.70 c | 26.32 ± 0.70 b | 23.56 ± 0.53 a |
Protein | 0.31 ± 0.005 a | 1.21 ± 0.022 b | 1.56 ± 0.013b | 1.33 ± 0.03 c | 0.75 ± 0.015 b | 0.31 ± 0.00 a | 1.01 ± 0.01 a | 3.59 ± 0.03 b | 0.79 ± 0.025 a |
Ash | 7.01 ± 0.02 b | 5.47 ± 0.08 a | 4.3 ± 0.03 a | 5.58 ± 0.07 b | 3.56 ± 0.02 a | 5.05 ± 0.02 b | - | - | - |
Total | 77.2 | 81.1 | 83.8 | 77.7 | 80.7 | 77.6 | 70.9 | 80.9 | 80.3 |
Total Carbohydrates | 67.7 | 72.6 | 75.3 | 68.0 | 74.4 | 70.6 | 65.0 | 73.8 | 73.1 |
Rhamnose (Rha) | 1.68 | 1.71 | 1.85 | 1.98 | 1.86 | 1.40 | 3.11 | 2.78 | 2.58 |
Fucose (Fuc) | N.D | N.D | 0.03 | 0.03 | N.D | N.D | N.D | N.D | N.D |
Arabinose (Ara) | 29.9 | 28.0 | 18.5 | 18.1 | 22.5 | 13.8 | 23.6 | 22.7 | 21.3 |
Xylose (Xyl) | 2.53 | 1.74 | 5.86 | 2.52 | 1.56 | 1.16 | 2.12 | 1.91 | 1.91 |
Mannose (Man) | 1.73 | 1.20 | 1.47 | 1.98 | 1.02 | 0.94 | 1.58 | 1.29 | 1.08 |
Galactose (Gal) | 16.4 | 9.78 | 9.95 | 13.3 | 7.46 | 5.89 | 13.9 | 13.6 | 7.85 |
Glucose (Glc) | 2.59 | 1.37 | 2.03 | 4.20 | 1.50 | 1.41 | 2.54 | 2.42 | 1.29 |
Galacturonic acid (GalA) | 45.1 | 56.2 | 60.3 | 57.8 | 64.1 | 75.7 | 53.2 | 64.3 | 67.7 |
DM * | 71.2 | 42.4 | 40.9 | 85 | 67.2 | 50.85 | 59.8 | 43.75 | 33.7 |
HG (GalA-Rha) | 43.4 | 54.4 | 58.4 | 55.8 | 62.3 | 74.3 | 50.1 | 61.6 | 65.2 |
RG I (GalA-HG + Rha) | 3.36 | 3.42 | 3.7 | 3.96 | 3.72 | 2.8 | 6.22 | 5.56 | 5.16 |
Linearity (GalA/Rha + Fuc + Ara + Xyl + Gal) | 0.89 | 1.36 | 1.66 | 1.61 | 1.92 | 3.40 | 1.25 | 1.57 | 2.01 |
Branching (Rha + Gal/GalA) | 1.03 | 0.67 | 0.47 | 0.54 | 0.47 | 0.26 | 0.70 | 0.56 | 0.43 |
(b) | |||||||||
Apple | Orange | Strawberry | |||||||
CA | AOOA | ChCl | CA | AOOA | ChCl | CA | ChCl | ||
Yield | 11.4 ± 0.4 c | 6.63 ± 0.05 b | 5.36 ± 0.1 a | 8.81 ± 0.12 c | 5.35 ± 0.01 b | 2.82 ± 0.21 a | 16.0 ± 0.95 b | 9.1 5 ± 0.39 a | |
Uronic Acid | 42.5 ± 5.5 a | 52.0 ± 6.0b | 70.6 ± 7.7 c | 64.5 ± 5.6 b | 65.2 ± 8.3 b | 61.7 ± 5.4 a | 63.3 ± 3.04 a | 68.6 ± 2.1 b | |
Phenols | N.D | N.D | N.D | N.D | N.D | N.D | 9.16 ± 0.029 b | 6.26 ± 0.039 a | |
Neutral Sugar | 14.2 ± 1.16 b | 11.1 ± 0.50 a | 16.4 ± 0.42 c | 19.9 ± 0.98 b | 16.4 ± 0.90 a | 23.2 ± 0.18 c | 7.56 ± 0.21 a | 6.84 ± 1.58 a | |
Protein | 1.04 ± 0.15 a | 1.23 ± 0.10 a | 1.74 ± 0.03 b | 0.94 ± 0.04 a | 2.24 ± 0.23 b | 2.20 ± 0.43 b | 3.66 ± 0.44 b | 0.69 ± 0.21 a | |
Ash | 1.47 ± 0.02 b | 1.02 ± 0.01 a | 3.21 ± 0.14 c | 7.68 ± 0.28 b | 1.05 ± 0.02 a | 7.1 ± 0.32 b | 0.55 ± 0.02 a | 1.32 ± 0.01 b | |
Total | 59.2 | 65.4 | 89.1 | 93.0 | 84.9 | 94.2 | 84.2 | 83.6 | |
Total Carbohydrates | 56.7 | 63.1 | 84.1 | 84.3 | 81.6 | 84.9 | 86.5 | 75.3 | |
Rhamnose (Rha) | 0.90 | 0.78 | 0.74 | 0.73 | 0.73 | 0.83 | 0.73 | 0.61 | |
Fucose (Fuc) | 0.45 | 0.43 | 0.49 | 0.35 | 0.25 | 0.43 | 0.22 | 0.28 | |
Arabinose (Ara) | 15.30 | 10.4 | 12.3 | 14.1 | 11.7 | 14.7 | 3.1 | 2.2 | |
Xylose (Xyl) | 2.32 | 1.51 | 1.45 | 0.91 | 0.53 | 0.93 | 1.03 | 1.58 | |
Mannose (Man) | 0.40 | 0.50 | 0.31 | 0.78 | 0.48 | 1.63 | 0.44 | 1.66 | |
Galactose (Gal) | 4.96 | 3.46 | 3.48 | 6.1 | 6.01 | 7.59 | 4.4 | 1.93 | |
Glucose (Glc) | 0.72 | 0.59 | 0.74 | 0.60 | 0.43 | 1.19 | 0.76 | 0.79 | |
Galacturonic acid (GalA) | 74.9 | 82.4 | 80.5 | 76.4 | 79.9 | 72.7 | 89.3 | 90.9 | |
DM * | 87.1 | 72.2 | 68.5 | 52.4 | 39.9 | 73.3 | 59.7 | ||
HG (GalA-Rha) | 74.0 | 81.6 | 79.8 | 75.7 | 79.1 | 71.9 | 88.6 | 90.3 | |
RG I (GalA-HG + Rha) | 1.8 | 1.56 | 1.48 | 1.46 | 1.46 | 1.66 | 1.46 | 1.22 | |
Linearity (GalA/Rha + Fuc + Ara + Xyl + Gal) | 3.13 | 4.98 | 4.36 | 3.44 | 4.15 | 2.97 | 9.42 | 13.70 | |
Branching (Rha + Gal/GalA) | 0.27 | 0.17 | 0.20 | 0.26 | 0.22 | 0.31 | 0.08 | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bermúdez-Oria, A.; Castejón, M.L.; Fernández-Prior, Á.; Rodríguez-Gutiérrez, G.; Fernández-Bolaños, J. An Acid-Free Alternative to Pectin Production from the Cell Walls of Olive Oil Waste and Different Fruits Using Choline Chloride. Foods 2023, 12, 4166. https://doi.org/10.3390/foods12224166
Bermúdez-Oria A, Castejón ML, Fernández-Prior Á, Rodríguez-Gutiérrez G, Fernández-Bolaños J. An Acid-Free Alternative to Pectin Production from the Cell Walls of Olive Oil Waste and Different Fruits Using Choline Chloride. Foods. 2023; 12(22):4166. https://doi.org/10.3390/foods12224166
Chicago/Turabian StyleBermúdez-Oria, Alejandra, María Luisa Castejón, África Fernández-Prior, Guillermo Rodríguez-Gutiérrez, and Juan Fernández-Bolaños. 2023. "An Acid-Free Alternative to Pectin Production from the Cell Walls of Olive Oil Waste and Different Fruits Using Choline Chloride" Foods 12, no. 22: 4166. https://doi.org/10.3390/foods12224166
APA StyleBermúdez-Oria, A., Castejón, M. L., Fernández-Prior, Á., Rodríguez-Gutiérrez, G., & Fernández-Bolaños, J. (2023). An Acid-Free Alternative to Pectin Production from the Cell Walls of Olive Oil Waste and Different Fruits Using Choline Chloride. Foods, 12(22), 4166. https://doi.org/10.3390/foods12224166