The Identification and Cytotoxic Evaluation of Nutmeg (Myristica fragrans Houtt.) and Its Substituents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collections
2.2. Preparation of Nutmeg Extracts and Volatile Oils
2.3. Pharmacognostic Identification of Nutmeg Samples
2.3.1. Macroscopic Analysis
2.3.2. Thin-Layer Chromatography (TLC) Analysis
2.4. Alternative Chemical Identification of Nutmeg
2.4.1. High-Performance Liquid Chromatography (HPLC) Analysis
2.4.2. Gas Chromatography–Mass Spectrometry (GC-MS) Analysis
2.4.3. Liquid Chromatography–Tandem Mass Spectrometry (LC-MS) Analysis
2.5. DNA Barcoding Analysis of Nutmeg Samples
2.5.1. Genomic DNA Extraction
2.5.2. Polymerase Chain Reaction Amplification and Sequencing
2.5.3. Bioinformatics Analysis
2.6. Cytotoxic Assessment of Nutmeg (M. fragrans) and Its Substituent (M. argentea)
2.6.1. Preparation of Methanolic Extracts and Volatile Oils from Nutmeg (M. fragrans) and Its Substituent (M. argentea)
2.6.2. Cell Culture
2.6.3. Determination of Cell Viability Using the Sulforhodamine B (SRB) Assay Protocol
2.7. Nitric Oxide (NO) Assay
2.8. Statistical Analysis
3. Results
3.1. Pharmacognostic Authentication of Nutmeg Samples
3.1.1. Macroscopic Examination
3.1.2. Thin-Layer Chromatography Analysis
3.2. Alternative Chemical Identification of Nutmeg Samples
3.2.1. High-Performance Liquid Chromatography Analysis
3.2.2. Gas Chromatography–Mass Spectrometry Analysis
3.2.3. Liquid Chromatography–Tandem Mass Spectrometry (LC-MS) Analysis
3.3. DNA Barcoding Analysis of Nutmeg Samples
3.4. Cytotoxicity Tests of the Arils and Seeds of Nutmeg and Its Substituents
3.5. Results from the Nitric Oxide (NO) Production Inhibition Test
4. Discussion
4.1. Integrative Approaches Offer Precision in Discriminating M. fragrans from Its Substituent
4.2. Comparing Cytotoxicity Tests on M. fragrans and Its Substituent (M. argentea)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sasikumar, B. Nutmeg-Origin, diversity, distribution and history. J. Spices Aromat. Crops 2021, 30, 131–141. [Google Scholar] [CrossRef]
- Wu, Z.; Raven, P.H.; Hong, D. Flora of China, Volume 7: Menispermaceae through Capparaceae; Science Press: Beijing, China, 2008. [Google Scholar]
- Opie, P.; Parnell, J.A.N.; Larsen, K.; Santisuk, T. Flora of Thailand. Volume 7, Part 4, Buddlejaceae, Hydrangeaceae, Loranthaceae, Myristicaceae, Myrtaceae, Sasifragaceae, Viscaceae; The Forest Herbarium, Royal Forest Department: Bangkok, Thailand, 2002.
- Barceloux, D.G. Nutmeg (Myristica fragrans Houtt.). Dis. A Mon. 2009, 6, 373–379. [Google Scholar] [CrossRef]
- Warsito, M.F. A Review on Chemical Composition, Bioactivity, and Toxicity of Myristica fragrans Houtt. Essential Oil. Indones. J. Pharm./Maj. Farm. Indones. 2021, 32, 304–313. [Google Scholar] [CrossRef]
- Malik, T.; Sharma, R.; Panesar, P.S.; Gehlot, R.; Tokusoglu, O.; Dhull, S.B.; Vural, H.; Singh, A. Nutmeg nutraceutical constituents: In vitro and in vivo pharmacological potential. J. Food Process. Preserv. 2022, 46, e15848. [Google Scholar] [CrossRef]
- Abourashed, E.A.; El-Alfy, A.T. Chemical diversity and pharmacological significance of the secondary metabolites of nutmeg (Myristica fragrans Houtt.). Phytochem. Rev. 2016, 15, 1035–1056. [Google Scholar] [CrossRef]
- Elfia, H.Y.; Susilo, S. An update on the pharmacology, phytochemistry, and toxicity of Myristica fragrans Houtt. as a source of treatment: A scoping review. J. Appl. Pharm. Sci. 2023, 13, 92–106. [Google Scholar] [CrossRef]
- Al-Rawi, S.S.; Ibrahim, A.H.; Ab Rahman, N.N.N.; Nama, M.M.B.; Majid, A.M.A.; Ab Kadir, M.O. The effect of supercritical fluid extraction parameters on the nutmeg oil extraction and its cytotoxic and antiangiogenic properties. Procedia Food Sci. 2011, 1, 1946–1952. [Google Scholar] [CrossRef]
- Orabi, M.; Abdulsattar, J.O.; Nasi, Z.O. Phytochemical Profile, Antimicrobial, Antioxidant Activity and Cyclooxygenase 2 Inhibitory Properties of Nutmeg (Myristica Fragrans) Seeds Extract. Egypt. J. Chem. 2022, 65, 317–326. [Google Scholar]
- Naeem, N.; Rehman, R.; Mushtaq, A.; Ghania, J.B. Nutmeg: A review on uses and biological properties. Int. J. Chem. Biochem. Sci. 2016, 9, 107–110. [Google Scholar]
- Luo, L.; Liang, H.; Liu, L. Myristicin regulates proliferation and apoptosis in oxidized low-density lipoprotein-stimulated human vascular smooth muscle cells and human umbilical vein endothelial cells by regulating the PI3K/Akt/NF-κB signalling pathway. Pharm. Biol. 2022, 60, 56–64. [Google Scholar] [CrossRef]
- Sokmen, A.; Gulluce, M.; Akpulat, H.A.; Daferera, D.; Tepe, B.; Polissiou, M.; Sokmen, M.; Sahin, F. The in vitro antimicrobial and antioxidant activities of the essential oils and methanol extracts of endemic Thymus spathulifolius. Food Control 2004, 15, 627–634. [Google Scholar] [CrossRef]
- Ehrenpreis, J.E.; DesLauriers, C.; Lank, P.; Armstrong, P.K.; Leikin, J.B. Nutmeg poisonings: A retrospective review of 10 years experience from the Illinois Poison Center, 2001–2011. J. Med. Toxicol. 2014, 10, 148–151. [Google Scholar] [CrossRef]
- Kiani, S.; van Ruth, S.M.; van Raamsdonk, L.W.; Minaei, S. Hyperspectral imaging as a novel system for the authentication of spices: A nutmeg case study. LWT 2019, 104, 61–69. [Google Scholar] [CrossRef]
- Wahidin, D.; Purnhagen, K. Improving the level of food safety and market access in developing countries. Heliyon 2018, 4, e00683. [Google Scholar] [CrossRef] [PubMed]
- van Ruth, S.M.; Silvis, I.C.; Alewijn, M.; Liu, N.; Jansen, M.; Luning, P.A. No more nutmegging with nutmeg: Analytical fingerprints for distinction of quality from low-grade nutmeg products. Food Control 2019, 98, 439–448. [Google Scholar] [CrossRef]
- Negi, A.; Pare, A.; Meenatchi, R. Emerging techniques for adulterant authentication in spices and spice products. Food Control 2021, 127, 108113. [Google Scholar] [CrossRef]
- Malgaonkar, M.; Shirolkar, A.; Murthy, S.N.; Mangal, A.K.; Pawar, S.D. DNA Based Molecular Markers: A Tool for Differentiation of Ayurvedic Raw Drugs and their Adulterants. Pharmacogn. Rev. 2020, 14, 72–81. [Google Scholar] [CrossRef]
- Swetha, V.; Parvathy, V.; Sheeja, T.; Sasikumar, B. Authentication of Myristica fragrans Houtt. using DNA barcoding. Food Control 2017, 73, 1010–1015. [Google Scholar] [CrossRef]
- Duriyaprapan, S.; Khuankhamnuan, C.; Tanpanich, S. The plant resources of south-east Asia (PROSEA). In Proceedings of the III WOCMAP Congress on Medicinal and Aromatic Plants-Volume 1: Bioprospecting and Ethnopharmacology 675, Chiang Mai, Thailand, 3–7 February 2003; pp. 15–21. [Google Scholar]
- Zhang, M.; Shi, Y.; Sun, W.; Wu, L.; Xiong, C.; Zhu, Z.; Zhao, H.; Zhang, B.; Wang, C.; Liu, X. An efficient DNA barcoding based method for the authentication and adulteration detection of the powdered natural spices. Food Control 2019, 106, 106745. [Google Scholar] [CrossRef]
- Bureau of Drug and Narcotic; Department of Medical Sciences; Ministry of Public Health, Thailand. Thai Herbal Pharmacopoeia 2022; Keawjawjom Printing & Publishing Suan Sunandha Rajabhat University: Bangkok, Thailand, 2022.
- Drees, A.; Bockmayr, B.; Bockmayr, M.; Fischer, M. Rapid Determination of Nutmeg Shell Content in Ground Nutmeg Using FT-NIR Spectroscopy and Machine Learning. Foods 2023, 12, 2939. [Google Scholar] [CrossRef]
- El-Alfy, A.T.; Wilson, L.; ElSohly, M.A.; Abourashed, E.A. Towards a better understanding of the psychopharmacology of nutmeg: Activities in the mouse tetrad assay. J. Ethnopharmacol. 2009, 126, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Babushok, V.I.; Linstrom, P.J.; Reed, J.; Zenkevich, I.; Brown, R.L.; Mallard, W.G.; Stein, S.E. Development of a database of gas chromatographic retention properties of organic compounds. J. Chromatogr. A 2007, 1157, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Phosri, S.; Kiattisin, K.; Intharuksa, A.; Janon, R.; Na Nongkhai, T.; Theansungnoen, T. Anti-Aging, Anti-Acne, and Cytotoxic Activities of Houttuynia cordata Extracts and Phytochemicals Analysis by LC-MS/MS. Cosmetics 2022, 9, 136. [Google Scholar] [CrossRef]
- Smith, C.A.; O’Maille, G.; Want, E.J.; Qin, C.; Trauger, S.A.; Brandon, T.R.; Custodio, D.E.; Abagyan, R.; Siuzdak, G. METLIN: A metabolite mass spectral database. Ther. Drug Monit. 2005, 27, 747–751. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT; Nucleic Acids Symposium Series; Oxford University Press: Oxford, UK, 1999; pp. 95–98. [Google Scholar]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Donkor, E.S.; Dayie, N.; Adiku, T.K. Bioinformatics with basic local alignment search tool (BLAST) and fast alignment (FASTA). J. Bioinform. Seq. Anal. 2014, 6, 1–6. [Google Scholar]
- Sheidai, M.; Tabaripour, R.; Talebi, S.M.; Noormohammadi, Z.; Koohdar, F. Adulteration in medicinally important plant species of Ziziphora in Iran market: DNA barcoding approach. Ind. Crops Prod. 2019, 130, 627–633. [Google Scholar] [CrossRef]
- BATM, S.C. Bioactivities of Ethanolic Extracts of Three Parts (Wood, Nutmeg and Mace) from Myristica fragrans Houtt. J. Med. Assoc. Thai. 2016, 99, S124–S130. [Google Scholar]
- Prakash, E.; Gupta, D.K. Cytotoxic activity of ethanolic extract of Myristica fragrans (Houtt) against seven human cancer cell lines. J. Food Nutr. Sci. 2013, 1, 1–3. [Google Scholar] [CrossRef]
- Raclariu, A.C.; Heinrich, M.; Ichim, M.C.; de Boer, H. Benefits and limitations of DNA barcoding and metabarcoding in herbal product authentication. Phytochem. Anal. 2018, 29, 123–128. [Google Scholar] [CrossRef]
- Sahoo, N.; Manchikanti, P.; Dey, S. Herbal drugs: Standards and regulation. Fitoterapia 2010, 81, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Intharuksa, A.; Denduangboripant, J.; Chansakaow, S.; Thongkhao, K.; Sukrong, S. HPLC and DNA barcoding profiles for identification of the selected twelve Mucuna species and its application for detecting prohibited aphrodisiac Mucuna products. Heliyon 2023, 9, e14130. [Google Scholar] [CrossRef] [PubMed]
- Shekarforoush, S.; Nazer, A.; Firouzi, R.; Rostami, M. Effects of storage temperatures and essential oils of oregano and nutmeg on the growth and survival of Escherichia coli O157: H7 in barbecued chicken used in Iran. Food Control 2007, 18, 1428–1433. [Google Scholar] [CrossRef]
- Cetó, X.; Sánchez, C.; Serrano, N.; Díaz-Cruz, J.M.; Núñez, O. Authentication of paprika using HPLC-UV fingerprints. Lwt 2020, 124, 109153. [Google Scholar] [CrossRef]
- Sabatino, L.; Scordino, M.; Gargano, M.; Belligno, A.; Traulo, P.; Gagliano, G. HPLC/PDA/ESI-MS evaluation of saffron (Crocus sativus L.) adulteration. Nat. Prod. Commun. 2011, 6, 1934578X1100601220. [Google Scholar] [CrossRef]
- He, Z.-D.; Qiao, C.-F.; Han, Q.-B.; Cheng, C.-L.; Xu, H.-X.; Jiang, R.-W.; But, P.P.-H.; Shaw, P.-C. Authentication and quantitative analysis on the chemical profile of cassia bark (cortex cinnamomi) by high-pressure liquid chromatography. J. Agric. Food Chem. 2005, 53, 2424–2428. [Google Scholar] [CrossRef]
- Matsushita, T.; Zhao, J.J.; Igura, N.; Shimoda, M. Authentication of commercial spices based on the similarities between gas chromatographic fingerprints. J. Sci. Food Agric. 2018, 98, 2989–3000. [Google Scholar] [CrossRef]
- Oyen, L.; Nguyen, X. Essential-oil Plants. In PROSEA Handbook Volume 19; Plant Resources of South-East Asia Project; Prosea Foundation: Bogor, Indonesia, 1999. [Google Scholar]
- Wielogorska, E.; Chevallier, O.; Black, C.; Galvin-King, P.; Delêtre, M.; Kelleher, C.T.; Haughey, S.A.; Elliott, C.T. Development of a comprehensive analytical platform for the detection and quantitation of food fraud using a biomarker approach. The oregano adulteration case study. Food Chem. 2018, 239, 32–39. [Google Scholar] [CrossRef]
- Guijarro-Díez, M.; Nozal, L.; Marina, M.L.; Crego, A.L. Metabolomic fingerprinting of saffron by LC/MS: Novel authenticity markers. Anal. Bioanal. Chem. 2015, 407, 7197–7213. [Google Scholar] [CrossRef]
- Vandekerckhove, M.; Van Droogenbroeck, B.; De Loose, M.; Taverniers, I.; Daeseleire, E.; Gevaert, P.; Lapeere, H.; Van Poucke, C. Development of an LC-MS/MS method for the detection of traces of peanut allergens in chili pepper. Anal. Bioanal. Chem. 2017, 409, 5201–5207. [Google Scholar] [CrossRef]
- Mishra, P.; Kumar, A.; Nagireddy, A.; Mani, D.N.; Shukla, A.K.; Tiwari, R.; Sundaresan, V. DNA barcoding: An efficient tool to overcome authentication challenges in the herbal market. Plant Biotechnol. J. 2016, 14, 8–21. [Google Scholar] [CrossRef]
- Tallei, T.E.; Kolondam, B.J. DNA barcoding of Sangihe Nutmeg (Myristica fragrans) using matK gene. HAYATI J. Biosci. 2015, 22, 41–47. [Google Scholar] [CrossRef]
- Sheth, B.P.; Thaker, V.S. Identification of a herbal powder by deoxyribonucleic acid barcoding and structural analyses. Pharmacogn. Mag. 2015, 11, S570. [Google Scholar]
- Vassou, S.L.; Kusuma, G.; Parani, M. DNA barcoding for species identification from dried and powdered plant parts: A case study with authentication of the raw drug market samples of Sida cordifolia. Gene 2015, 559, 86–93. [Google Scholar] [CrossRef]
- Periasamy, G.; Karim, A.; Gibrelibanos, M.; Gebremedhin, G. Nutmeg (Myristica fragrans Houtt.) oils. In Essential Oils in Food Preservation, Flavor and Safety; Elsevier: Amsterdam, The Netherlands, 2016; pp. 607–616. [Google Scholar]
- Leela, N. Nutmeg and mace. In Chemistry of Spices; CABI: Wallingford, UK, 2008; pp. 165–189. [Google Scholar]
- Pressi, G.; Rigillo, G.; Governa, P.; Borgonetti, V.; Baini, G.; Rizzi, R.; Guarnerio, C.; Bertaiola, O.; Frigo, M.; Merlin, M. A Novel Perilla frutescens (L.) Britton Cell-Derived Phytocomplex Regulates Keratinocytes Inflammatory Cascade and Barrier Function and Preserves Vaginal Mucosal Integrity In Vivo. Pharmaceutics 2023, 15, 240. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Liu, J.; He, H.; Zhou, L.; Gong, C.; Wang, X.; Yang, L.; Yuan, J.; Huang, H.; He, L. SiO2 nanoparticles induce cytotoxicity and protein expression alteration in HaCaT cells. Part. Fibre Toxicol. 2010, 7, 1. [Google Scholar] [CrossRef] [PubMed]
- Rosdianto, A.M.; Lesmana, R.; Setiawan, I.; Pratiwi, Y.S.; Fadhilah, N.; Channel, I.C.; Tarawan, V.M. Nutmeg extract potentially alters the characteristics profile of adipose tissue 3T3-L1 cell lines. J. Ilmu Faal Olahraga Indones. 2023, 5, 1–11. [Google Scholar]
- Piras, A.; Rosa, A.; Marongiu, B.; Atzeri, A.; Dessì, M.A.; Falconieri, D.; Porcedda, S. Extraction and separation of volatile and fixed oils from seeds of Myristica fragrans by supercritical CO2: Chemical composition and cytotoxic activity on Caco-2 cancer cells. J. Food Sci. 2012, 77, C448–C453. [Google Scholar] [CrossRef]
- Seneme, E.F.; Dos Santos, D.C.; Silva, E.M.R.; Franco, Y.E.M.; Longato, G.B. Pharmacological and therapeutic potential of myristicin: A literature review. Molecules 2021, 26, 5914. [Google Scholar] [CrossRef]
- Chien, K.-J.; Yang, M.-L.; Tsai, P.-K.; Su, C.-H.; Chen, C.-H.; Horng, C.-T.; Yeh, C.-H.; Chen, W.-Y.; Lin, M.-L.; Chen, C.-J. Safrole induced cytotoxicity, DNA damage, and apoptosis in macrophages via reactive oxygen species generation and Akt phosphorylation. Environ. Toxicol. Pharmacol. 2018, 64, 94–100. [Google Scholar] [CrossRef]
- Stanford, A.M.; Harden, R.; Parks, C.R. Phylogeny and biogeography of Juglans (Juglandaceae) based on matK and ITS sequence data. Am. J. Bot. 2000, 87, 872–882. [Google Scholar] [CrossRef] [PubMed]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc. A Guide Methods Appl. 1990, 18, 315–322. [Google Scholar]
- Hamilton, M.B. Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation. Mol. Ecol. 1999, 8, 521–522. [Google Scholar] [PubMed]
- Fay, M.F.; Bayer, C.; Alverson, W.S.; de Bruijn, A.Y.; Chase, M.W. Plastid rbcL sequence data indicate a close affinity between Diegodendron and Bixa. Taxon 1998, 47, 43–50. [Google Scholar] [CrossRef]
- Kuzmina, M.L.; Johnson, K.L.; Barron, H.R.; Hebert, P.D. Identification of the vascular plants of Churchill, Manitoba, using a DNA barcode library. BMC Ecol. 2012, 12, 1–11. [Google Scholar] [CrossRef]
- Taberlet, P.; Gielly, L.; Pautou, G.; Bouvet, J. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol. Biol. 1991, 17, 1105–1109. [Google Scholar] [CrossRef] [PubMed]
Specimen Code | Sample Typologies | Localities | Dimensions (cm) | |||
---|---|---|---|---|---|---|
Regions | Districts, Provinces | Length | Width | Thickness | ||
Leaves | ||||||
AL1 | Fresh leaves | East | Makham, Chanthaburi | - | - | - |
AL2 | Fresh leaves | South | Lang Suan, Chumpon | - | - | - |
AL3 | Fresh leaves | South | Hat Yai, Songkhla | - | - | - |
Arils | ||||||
Authentic samples | ||||||
AA1 | Dried arils | East | Makham, Chanthaburi | 2.60 ± 0.53 | 0.90 ± 0.51 | 0.05 ± 0.01 |
AA2 | Dried arils | South | Lang Suan, Chumpon | 3.23 ± 0.60 | 0.75 ± 0.40 | 0.06 ± 0.01 |
AA3 | Dried arils | South | Hat Yai, Songkhla | 3.10 ± 0.53 | 1.23 ± 0.76 | 0.04 ± 0.01 |
Commercial samples | ||||||
PA1 | Dried arils | South | Ron Phibun, Nakhon Si Thammarat | 2.73 ± 0.75 | 0.70 ± 0.44 | 0.04 ± 0.01 |
PA2 | Dried arils | South | Mueang, Nakhon Si Thammarat | 2.77 ± 0.68 | 1.37 ± 0.68 | 0.04 ± 0.01 |
PA3 | Dried arils | South | Mueang, Phang Nga | 2.43 ± 0.20 | 0.88 ± 0.49 | 0.05 ± 0.01 |
PA4 | Dried arils | Central | Samphanthawong, Bangkok | 3.95 ± 1.18 | 1.28 ± 0.19 | 0.06 ± 0.00 |
PA5 | Aril Powder | North | Mueang, Chiang Mai | - | - | - |
PA6 | Dried arils | South | Mueang, Chumphon | 2.63 ± 0.51 | 0.98 ± 0.49 | 0.05 ± 0.01 |
PA7 | Dried arils | North | Mueang, Chiang Mai | 3.45 ± 0.88 | 1.03 ± 0.38 | 0.06 ± 0.01 |
PA8 | Dried arils | North | Mueang, Chiang Mai | 3.68 ± 0.36 | 0.93 ± 0.23 | 0.06 ± 0.01 |
PA9 | Dried arils | North | Mueang, Chiang Mai | 4.80 ± 0.18 | 1.00 ± 0.46 | 0.06 ± 0.01 |
PA10 | Dried arils | North | Mueang, Chiang Mai | 3.13 ± 0.55 | 0.87 ± 0.55 | 0.05 ± 0.00 |
Seeds | ||||||
Authentic samples | ||||||
AS1 | Dried seeds | East | Makham, Chanthaburi | 1.78 ± 0.48 | 1.40 ± 0.10 | - |
AS2 | Dried seeds | South | Lang Suan, Chumpon | 2.00 ± 0.30 | 1.45 ± 0.05 | - |
AS3 | Dried seeds | South | Hat Yai, Songkhla | 2.25 ± 0.22 | 1.57 ± 0.06 | - |
Commercial samples | ||||||
PS1 | Dried seeds | South | Mueang, Nakhon Si Thammarat | 1.90 ± 0.37 | 1.57 ± 0.06 | - |
PS2 | Dried seeds | South | Ron Phibun, Nakhon Si Thammarat | 2.05 ± 0.57 | 1.60 ± 0.10 | - |
PS3 | Dried seeds | Central | Samphanthawong, Bangkok | 3.78 ± 0.19 | 1.78 ± 0.14 | - |
PS4 | Dried seeds | South | Mueang, Chumphon | 2.03 ± 0.25 | 1.47 ± 0.03 | - |
PS5 | Dried seeds | Central | Samphanthawong, Bangkok | 3.07 ± 0.25 | 1.60 ± 0.10 | - |
PS6 | Seed Powders | North | Mueang, Chiang Mai | - | - | - |
PS7 | Seed Powders | North | Mueang, Chiang Mai | - | - | - |
PS8 | Seed Powders | North | Mueang, Chiang Mai | - | - | - |
PS9 | Dried seeds | North | Mueang, Chiang Mai | 2.38 ± 0.28 | 1.65 ± 0.05 | - |
PS10 | Dried seeds | North | Mueang, Chiang Mai | 3.03 ± 0.25 | 1.57 ± 0.15 | - |
PS11 | Dried seeds | North | Mueang, Chiang Mai | 2.20 ± 0.10 | 1.23 ± 0.06 | - |
PS12 | Dried seeds | North | Mueang, Chiang Mai | 2.92 ± 0.14 | 1.65 ± 0.05 | - |
No. | RT a | Name of the Compound | MW b | MF c | %AUC d | |||
---|---|---|---|---|---|---|---|---|
AA1 | AS1 | PA4 | PS3 | |||||
1 | 6.7 | α-pinene | 136 | C10H16 | 15.68 | 11.74 | 3.04 | 3.41 |
2 | 7.9 | β-phellandrene | 136 | C10H16 | 33.94 | 30.98 | 18.99 | 27.00 |
3 | 9.7 | (5R)-1-methyl-5-(1-methyl ethenyl)cyclohexene | 136 | C10H16 | 7.43 | 5.89 | 20.29 | 18.71 |
4 | 10.8 | terpinene | 136 | C10H16 | 3.64 | 2.91 | 2.81 | 2.72 |
5 | 15.7 | terpinen-4-ol | 154 | C10H18O | 6.48 | 4.22 | 4.34 | 6.93 |
6 | 20.4 | safrole | 162 | C10H10O2 | 0.32 | 6.17 | 33.35 | 19.61 |
7 | 30.1 | myristicin | 192 | C11H12O3 | 5.23 | 3.39 | 0.04 | 1.48 |
RT (min) | m/z | MS/MS Fragments | Formula | Tentative Compounds | Peak Intensity (%) | |||
---|---|---|---|---|---|---|---|---|
Arils | Seeds | |||||||
Globose Shape | Oval Shape | Globose Shape | Oval Shape | |||||
1.718 | 179.056 | 59.0143, 71.0138 | C6H12O6 | β-D-Glucose | - | 11.49 | - | - |
1.790 | 387.1143 | 179.0551, 341.1089 | C18H20N4O4S | N-((5-(Dimethylamino)-1-naphthyl)sulphonyl)-L-histidine | - | 35.68 | - | - |
1.794 | 341.1092 | 89.0238, 179.0565, 341.1084 | C12H22O11 | Sucrose | - | 10.37 | - | - |
16.783 | 740.4916 | 61.9889, 220.0473, 740.4914 | C40H72NO9P | Phosphatidylserine | - | - | - | 4.52 |
16.789 | 723.5014 | 250.0523, 677.4946 | C41H73O8P | Phosphatidic acid | - | - | - | 3.57 |
19.242 | 571.2881 | 152.9956, 255.2328, 571.2876 | C25H49O12P | Phosphatidylinositols | - | 8.60 | - | - |
19.695 | 293.1755 | 71.0139, 236.1049 | C17H26O4 | Myrsinone | 36.92 | 5.52 | 4.63 | 2.88 |
20.185 | 597.3036 | 112.9851, 281.2470, 597.3029 | C27H51O12P | 1-Oleoylglycerophosphoinositol | - | 6.40 | - | - |
20.463 | 471.1635 | 112.9855, 247.1326, 357.1705 | C25H28O9 | C1’-C9-Glycosylated UWM6 | - | - | 5.44 | - |
20.470 | 379.1522 | 269.1146, 379.1517 | C23H24O5 | 8-Desoxygartanin | - | - | 1.27 | - |
20.521 | 357.1701 | 109.0293, 247.1332, 357.1696 | C21H26O5 | Malabaricone C | 8.06 | - | 37.85 | 49.53 |
20.870 | 222.0765 | 190.0507, 222.0767 | C11H13NO4 | Methyl o-methoxyhippuric acid | 6.02 | 5.61 | - | - |
20.947 | 325.1449 | 254.0588, 310.1208 | C20H22O4 | Dehydrodieugenol | - | - | 3.41 | 3.55 |
21.054 | 455.1679 | 68.9959, 112.9855, 341.1750 | C23H27F3O6 | 9, 11, or 15-keto Fluprostenol | - | - | 3.65 | 6.08 |
21.058 | 404.1713 | 61.9887, 109.0291, 341.1751 | C21H27NO7 | Clivorine | - | - | 1.45 | - |
21.075 | 341.1754 | 109.0296, 231.1393, 341.1761 | C21H26O4 | Neotriptophenolide | - | - | 37.88 | 27.53 |
21.224 | 239.0671 | 151.0769, 239.0675 | C10H12N2O5 | (±)-2-(1-Methylpropyl)-4,6-dinitrophenol | 31.46 | 8.73 | - | - |
21.241 | 295.2281 | 123.1166, 171.1017, 277.2188 | C18H32O3 | Dimorphecolic acid | 7.46 | - | - | - |
21.785 | 713.3358 | 395.1865, 519.2407, 713.3349 | C35H54O15 | Cheirotoxol | - | - | 3.38 | - |
27.741 | 154.9738 | 110.9843, 154.9742 | C2H5O6P | Phosphoglycolic acid | 10.08 | 7.60 | 1.04 | 2.34 |
DNA Barcode Regions | BLAST Results | ||||
---|---|---|---|---|---|
Matched Species | Accession Number | %Query Cover | %Identity | Max Score | |
Authentic M. fragrans | |||||
ITS | N/A | N/A | N/A | N/A | N/A |
matK | M. fragrans | KT445278 | 100 | 100.00 | 1498 |
M. teysmannii | NC_079584 | 100 | 100.00 | 1498 | |
M. argentea | OP866724 | 100 | 100.00 | 1498 | |
rbcL | M. fragrans | MH069804 | 100 | 100.00 | 968 |
M. malabarica | KY945260 | 100 | 100.00 | 968 | |
M. inners | MG817056 | 100 | 100.00 | 968 | |
trnH-psbA | M. fragrans | NC_060715 | 100 | 99.44 | 652 |
M. fragrans | LC461928 | 100 | 98.89 | 640 | |
M. yunnanensis | NC_060716 | 100 | 97.49 | 612 | |
M. teysmannii | NC_079584 | 100 | 97.21 | 606 | |
trnL-F | M. fragrans | NC_060715 | 100 | 100.00 | 1332 |
M. teysmannii | NC_079584 | 100 | 100.00 | 1332 | |
M. argentea | OP866724 | 100 | 99.86 | 1327 | |
Globose nutmeg | |||||
trnH-psbA | M. fragrans | KX675160 | 90 | 100.00 | 601 |
M. fragrans | OK052841 | 96 | 99.71 | 641 | |
M. fragrans | MF802872 | 91 | 99.70 | 601 | |
Oval-shaped nutmeg | |||||
trnH-psbA | M. argentea | OP866724 | 100 | 100.00 | 713 |
M. teysmannii | NC_079584 | 100 | 98.97 | 691 | |
M. yunnanensis | NC_060716 | 100 | 98.46 | 680 |
Extract | Sample Code | RAW 264.7 | HaCaT | ||
---|---|---|---|---|---|
IC20 | IC50 | IC20 | IC50 | ||
Methanolic extract | AA1 | 14.8 ± 4.6 | 59.2 ± 18.3 | 13.4 ± 0.7 | 53.5 ± 2.7 |
AS1 | 44.6 ± 20.5 | 178.2 ± 82.1 | 20.3 ± 0.9 | 81.1 ± 3.8 | |
PA4 | 40.7 ± 4.8 | 162.8 ± 19.1 | 12.9 ± 0.5 | 51.4 ± 2.1 | |
PS3 | 31.0 ± 5.7 | 124.1 ± 22.9 | 6.6 ± 0.2 | 26.3 ± 0.7 | |
Volatile oil | AA1 | >100 | >100 | >100 | >100 |
AS1 | >100 | >100 | >100 | >100 | |
PA4 | >100 | >100 | >100 | >100 | |
PS3 | >100 | >100 | >100 | >100 | |
Myristicin standard | >200 | >200 | >100 | >100 |
Extract | Sample Code | 3T3-L1 | Caco-2 | HEK 293 | RAW 264.7 | ||||
---|---|---|---|---|---|---|---|---|---|
IC20 | IC50 | IC20 | IC50 | IC20 | IC50 | IC20 | IC50 | ||
Methanolic extract | AA1 | 25.3 ± 11.2 | 101.3 ± 44.7 | 10.3 ± 1.8 | 41.2 ± 7.2 | 20.1 ± 8.6 | 80.4 ± 34.5 | 8.2 ± 1.9 | 32.7 ± 7.5 |
AS1 | 30.0 ± 11.8 | 120.1 ± 47.2 | 10.9 ± 4.3 | 43.4 ± 17.4 | 23.4 ± 4.0 | 93.7 ± 16.0 | 9.7 ± 0.9 | 38.9 ± 3.6 | |
PA4 | 56.0 ± 15.9 | 223.9 ± 63.8 | 26.7 ± 3.9 | 106.6 ± 15.6 | 42.7 ± 5.8 | 170.9 ± 23.1 | 30.1 ± 8.9 | 120.3 ± 35.5 | |
PS3 | 54.1 ± 21.3 | 216.4 ± 85.2 | 17.4 ± 3.2 | 69.7 ± 12.8 | 26.0 ± 1.3 | 103.8 ± 5.2 | 16.6 ± 5.0 | 66.4 ± 19.9 | |
Volatile oil | AA1 | 67.9 ± 18.7 | 271.5 ± 74.8 | 32.0 ± 1.1 | 128.2 ± 4.5 | 48.1 ± 5.8 | 192.4 ± 23.2 | 33.7 ± 10.8 | 134.8 ± 43.0 |
AS1 | 76.8 ± 10.7 | 307.0 ± 42.7 | 41.0 ± 9.0 | 163.8 ± 36.1 | 58.5 ± 20.4 | 234.0 ± 81.6 | 38.4 ± 5.2 | 153.5 ± 20.8 | |
PA4 | 63.9 ± 10.5 | 255.4 ± 42.1 | 49.4 ± 6.8 | 197.7 ± 27.1 | 53.1 ± 5.2 | 212.6 ± 21.0 | 44.5 ± 4.9 | 177.8 ± 19.6 | |
PS3 | 69.9 ± 12.1 | 279.7 ± 48.5 | 35.4 ± 3.8 | 141.6 ± 15.1 | 52.8 ± 12.9 | 211.0 ± 51.7 | 43.2 ± 8.7 | 172.7 ± 34.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khamnuan, S.; Phrutivorapongkul, A.; Pitchakarn, P.; Buacheen, P.; Karinchai, J.; Chittasupho, C.; Na Takuathung, M.; Theansungnoen, T.; Thongkhao, K.; Intharuksa, A. The Identification and Cytotoxic Evaluation of Nutmeg (Myristica fragrans Houtt.) and Its Substituents. Foods 2023, 12, 4211. https://doi.org/10.3390/foods12234211
Khamnuan S, Phrutivorapongkul A, Pitchakarn P, Buacheen P, Karinchai J, Chittasupho C, Na Takuathung M, Theansungnoen T, Thongkhao K, Intharuksa A. The Identification and Cytotoxic Evaluation of Nutmeg (Myristica fragrans Houtt.) and Its Substituents. Foods. 2023; 12(23):4211. https://doi.org/10.3390/foods12234211
Chicago/Turabian StyleKhamnuan, Suthiwat, Ampai Phrutivorapongkul, Pornsiri Pitchakarn, Pensiri Buacheen, Jirarat Karinchai, Chuda Chittasupho, Mingkwan Na Takuathung, Tinnakorn Theansungnoen, Kannika Thongkhao, and Aekkhaluck Intharuksa. 2023. "The Identification and Cytotoxic Evaluation of Nutmeg (Myristica fragrans Houtt.) and Its Substituents" Foods 12, no. 23: 4211. https://doi.org/10.3390/foods12234211
APA StyleKhamnuan, S., Phrutivorapongkul, A., Pitchakarn, P., Buacheen, P., Karinchai, J., Chittasupho, C., Na Takuathung, M., Theansungnoen, T., Thongkhao, K., & Intharuksa, A. (2023). The Identification and Cytotoxic Evaluation of Nutmeg (Myristica fragrans Houtt.) and Its Substituents. Foods, 12(23), 4211. https://doi.org/10.3390/foods12234211