The Influence of Lactiplantibacillus plantarum and Oenococcus oeni Starters on the Volatile and Sensory Properties of Black Raspberry Wine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Black Raspberries and Wine-Making-Related Microorganisms
2.2. Production of Black Raspberry Wine
2.3. Cell Growth during Fermentation
2.4. Basic Analysis
2.5. Volatile Fingerprint Analysis
2.6. Sensory Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Fermentation Process
3.2. Basic Composition
3.3. Volatile Composition
3.4. Principal Component Analysis
3.5. Sensory Analysis
3.6. Relationship between PLS Analysis of Volatile Compounds and Sensory Description
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Compound | CAS | Formula | Molecular Weight | Retention Index | Retention Time [sec] | Drift Time [RIP rel] |
---|---|---|---|---|---|---|
ethyl isobutyrate | C97621 | C6H12O2 | 116.2 | 977 | 210.494 | 1.5572 |
ethyl propanoate | C105373 | C5H10O2 | 102.1 | 969.2 | 207.073 | 1.4504 |
methyl 2-methylbutanoate-M | C868575 | C6H12O2 | 116.2 | 1038.8 | 243.147 | 1.1893 |
methyl 2-methylbutanoate-D | C868575 | C6H12O2 | 116.2 | 1038.4 | 242.884 | 1.5816 |
nonanal | C124196 | C9H18O | 142.2 | 1400.6 | 685.257 | 1.4854 |
3-methyl-3-buten-1-ol | C763326 | C5H10O | 86.1 | 1220.5 | 401.632 | 1.4943 |
2-methyl-1-propanol | C78831 | C4H10O | 74.1 | 1103.4 | 287.083 | 1.3644 |
ethanol | C64175 | C2H6O | 46.1 | 939 | 195.258 | 1.1425 |
1-propanol | C71238 | C3H8O | 60.1 | 1051.4 | 250.914 | 1.2615 |
3-methyl-1-pentanol | C589355 | C6H14O | 102.2 | 1347.4 | 588.502 | 1.31 |
1-butanol-M | C71363 | C4H10O | 74.1 | 1156.5 | 332.878 | 1.1828 |
1-butanol-D | C71363 | C4H10O | 74.1 | 1156 | 332.375 | 1.3817 |
3-hydroxy-2-butanone | C513860 | C4H8O2 | 88.1 | 1300.2 | 509.817 | 1.0707 |
acetone | C67641 | C3H6O | 58.1 | 829.9 | 157.636 | 1.1147 |
1-hexanol-M | C111273 | C6H14O | 102.2 | 1376.8 | 641.44 | 1.328 |
1-hexanol-D | C111273 | C6H14O | 102.2 | 1374.2 | 636.746 | 1.6482 |
isopropyl alcohol | C67630 | C3H8O | 60.1 | 975 | 209.62498 | 1.486 |
butanal | C123728 | C4H8O | 72.11 | 880.9 | 175.144 | 1.2769 |
2-pentanone | C107879 | C5H10O | 86.1 | 928.6 | 191.527 | 1.3715 |
2-octanone | C111137 | C8H16O | 128.21 | 1290 | 494.12997 | 1.286 |
-terpinene | C99865 | C10H16 | 136.23 | 1176 | 352.365 | 1.179 |
terpinolene | C586629 | C10H16 | 136.23 | 1080 | 269.88 | 1.073 |
ethyl acetate | C141786 | C4H8O2 | 88.1 | 896.1 | 180.334 | 1.3337 |
ethyl formate | C109944 | C3H6O2 | 74.1 | 842.6 | 161.989 | 1.1914 |
ethyl nonanoate | C123295 | C11H22O2 | 186.3 | 1500 | 868.348 | 1.5491 |
ethyl octanoate | C106321 | C10H20O2 | 172.3 | 1440.5 | 758.806 | 1.4819 |
ethyl lactate-M | C97643 | C5H10O3 | 118.1 | 1364.7 | 619.532 | 1.144 |
ethyl lactate-D | C97643 | C5H10O3 | 118.1 | 1364.7 | 619.532 | 1.535 |
ethyl hexanoate-M | C123660 | C8H16O2 | 144.2 | 1245.1 | 431.951 | 1.3441 |
ethyl hexanoate-D | C123660 | C8H16O2 | 144.2 | 1242.8 | 428.993 | 1.7991 |
isoamyl acetate-M | C123922 | C7H14O2 | 130.2 | 1134.7 | 312.749 | 1.3063 |
isoamyl acetate-D | C123922 | C7H14O2 | 130.2 | 1133.5 | 311.742 | 1.7499 |
ethyl butyrate | C105544 | C6H12O2 | 116.2 | 1048.5 | 249.048 | 1.5572 |
isobutyl acetate | C110190 | C6H12O2 | 116.2 | 1024.5 | 234.746 | 1.6116 |
propyl acetate | C109604 | C5H10O2 | 102.1 | 987.8 | 215.468 | 1.4749 |
ethyl 2-methylbutanoate | C7452791 | C7H14O2 | 130.2 | 1061.5 | 257.378 | 1.248 |
ethyl 3-methylbutanoate | C108645 | C7H14O2 | 130.2 | 1076.3 | 267.348 | 1.2596 |
References
- Cappello, M.S.; Zapparoli, G.; Logrieco, A.; Bartowsky, E.J. Linking wine lactic acid bacteria diversity with wine aroma and flavour. Int. J. Food Microbiol. 2017, 243, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, A.; Taglieri, I.; Venturi, F.; Sanmartin, C.; Ferroni, G.; Macaluso, M.; Palla, F.; Flamini, G.; Zinnai, A. Technological improvements on FML in the Chianti classico wine production: Co-inoculation or sequential inoculation? Foods 2022, 11, 1011. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Xing, X.; Chu, Q.; Sun, S.; Wang, P. Impact of co-culture of Lactobacillus plantarum and Oenococcus oeni at different ratios on malolactic fermentation, volatile and sensory characteristics of mulberry wine. LWT 2022, 169, 113995. [Google Scholar] [CrossRef]
- Lucio, O.; Pardo, I.; Heras, J.; Krieger-Weber, S.; Ferrer, S. Use of starter cultures of Lactobacillus to induce malolactic fermentation in wine. Aust. J. Grape Wine Res. 2017, 23, 15–21. [Google Scholar] [CrossRef]
- Brizuela, N.; Tymczyszyn, E.E.; Semorile, L.C.; La Hens, D.V.; Delfederico, L.; Hollmann, A.; Bravo-Ferrada, B. Lactobacillus plantarum as a malolactic starter culture in winemaking: A new (old) player? Electron. J. Biotechnol. 2019, 38, 10–18. [Google Scholar] [CrossRef]
- Urbina, Á.; Calderón, F.; Benito, S. The combined use of Lachancea thermotolerans and Lactiplantibacillus plantarum (former Lactobacillus plantarum) in wine technology. Foods 2021, 10, 1356. [Google Scholar] [CrossRef]
- Brizuela, N.S.; Bravo-Ferrada, B.M.; Pozo-Bayón, M.Á.; Semorile, L.; Tymczyszyn, E.E. Changes in the volatile profile of Pinot noir wines caused by Patagonian Lactobacillus plantarum and Oenococcus oeni strains. Food Res. Int. 2018, 106, 22–28. [Google Scholar] [CrossRef]
- López-Seijas, J.; García-Fraga, B.; da Silva, A.F.; Zas-García, X.; Lois, L.C.; Gago-Martínez, A.; Leão-Martins, J.M.; Sieiro, C. Evaluation of malolactic bacteria associated with wines from Albariño variety as potential starters: Screening for quality and safety. Foods 2020, 9, 99. [Google Scholar] [CrossRef]
- Qiu, L.; Zhang, M.; Chang, L. Effects of lactic acid bacteria fermentation on the phytochemicals content, taste and aroma of blended edible rose and shiitake beverage. Food Chem. 2023, 405, 134722. [Google Scholar] [CrossRef]
- Cho, J.Y.; Jeong, J.H.; Kim, J.Y.; Kim, S.R.; Kim, S.J.; Lee, H.J.; Lee, S.H.; Park, K.H.; Moon, J.H. Change in the content of phenolic compounds and antioxidant activity during manufacturing of black raspberry (Rubus coreanus Miq.) wine. Food Sci. Biotechnol. 2013, 22, 1–8. [Google Scholar] [CrossRef]
- Yoon, H.H.; Son, R.H.; Ryu, E.H.; Jung, J.H. Analysis of biogenic amines content and the main volatile flavor compounds in black raspberry wine using traditional yeast. Korean J. Food Cook. Sci. 2015, 31, 296–303. [Google Scholar] [CrossRef]
- Liu, W.; Li, H.; Jiang, D.; Zhang, Y.; Zhang, S.; Sun, S. Effect of Saccharomyces cerevisiae, Torulaspora delbrueckii and malolactic fermentation on fermentation kinetics and sensory property of black raspberry wines. Food Microbiol. 2020, 91, 103551. [Google Scholar] [CrossRef]
- Liu, W.; Fan, M.; Sun, S.; Li, H. Effect of mixed fermentation by Torulaspora delbrueckii, Saccharomyces cerevisiae, and Lactobacillus plantarum on the sensory quality of black raspberry wines. Eur. Food Res. Technol. 2020, 246, 1573–1581. [Google Scholar] [CrossRef]
- Course, O.A.; Master, O.; Patronage, O. Compendium of International Methods of Wine and Must Analysis. Available online: https://www.oiv.int/index.php/standards/compendium-of-international-methods-of-wine-and-must-analysis/annex-e/annex-e-laboratory-quality-assurance/harmonised-guidelines-for-single-laboratory-validation (accessed on 6 April 2023).
- ISO Sensory analysis: Guidelines for the use of quantitative response scales. Available online: https://www.iso.org/standard/33817.html (accessed on 20 March 2023).
- Bleibaum, R.N. Descriptive Analysis Testing for Sensory Evaluation: Second Edition. Available online: https://www.astm.org/mnl13-2nd-eb.html (accessed on 20 March 2023).
- ISO Sensory analysis: Apparatus Wine-tasting glass. Available online: https://www.iso.org/standard/9002.html (accessed on 20 March 2023).
- Sun, S.Y.; Gong, H.S.; Liu, W.L.; Jin, C.W. Application and validation of autochthonous Lactobacillus plantarum starter cultures for controlled malolactic fermentation and its influence on the aromatic profile of cherry wines. Food Microbiol. 2016, 55, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, A.; Coton, M.; Coton, E.; Herrero, M.; García, L.A.; Díaz, M. Prevalent lactic acid bacteria in cider cellars and efficiency of Oenococcus oeni strains. Food Microbiol. 2012, 32, 32–37. [Google Scholar] [CrossRef]
- Wang, S.; Li, S.; Zhao, H.; Gu, P.; Chen, Y.; Zhang, B.; Zhu, B. Acetaldehyde released by Lactobacillus plantarum enhances accumulation of pyranoanthocyanins in wine during malolactic fermentation. Food Res. Int. 2018, 108, 254–263. [Google Scholar] [CrossRef]
- Li, H.; Jiang, D.; Liu, W.; Yang, Y.; Zhang, Y.; Jin, C.; Sun, S. Comparison of fermentation behaviors and properties of raspberry wines by spontaneous and controlled alcoholic fermentations. Food Res. Int. 2020, 128, 108801. [Google Scholar] [CrossRef]
- Wang, S.; Chen, H.; Sun, B. Recent progress in food flavor analysis using gas chromatography–ion mobility spectrometry (GC–IMS). Food Chem. 2020, 315, 126158. [Google Scholar] [CrossRef]
- Diez-Ozaeta, I.; Lavilla, M.; Amarita, F. Wine aroma profile modification by Oenococcus oeni strains from Rioja Alavesa region: Selection of potential malolactic starters. Int. J. Food Microbiol. 2021, 356, 109324. [Google Scholar] [CrossRef]
- Kong, C.L.; Li, A.H.; Su, J.; Wang, X.C.; Chen, C.Q.; Tao, Y.S. Flavor modification of dry red wine from Chinese spine grape by mixed fermentation with Pichia fermentans and S. cerevisiae. LWT 2019, 109, 83–92. [Google Scholar] [CrossRef]
- Sánchez-Palomo, E.; Delgado, J.; Ferrer, M.; Viñas, M.G. The aroma of La Mancha Chelva wines: Chemical and sensory characterization. Food Res. Int. 2019, 119, 135–142. [Google Scholar] [CrossRef]
- Wu, B.; Liu, J.; Yang, W.; Zhang, Q.; Yang, Z.; Liu, H.; Lv, Z.; Zhang, C.; Jiao, Z. Nutritional and flavor properties of grape juice as affected by fermentation with lactic acid bacteria. Int. J. Food Prop. 2021, 24, 906–922. [Google Scholar] [CrossRef]
- Dzedze, N.; Van Breda, V.; Hart, R.; Van Wyk, J. Wine chemical, sensory, aroma compound and protein analysis of wines produced from chemical and biological fungicide treated Chenin blanc grapes. Food Control 2019, 105, 265–276. [Google Scholar] [CrossRef]
- Filipe-Ribeiro, L.; Milheiro, J.; Matos, C.C.; Cosme, F.; Nunes, F.M. Data on changes in red wine phenolic compounds, headspace aroma compounds and sensory profile after treatment of red wines with activated carbons with different physicochemical characteristics. Data Brief 2017, 12, 188–202. [Google Scholar] [CrossRef]
- Tian, T.; Sun, J.; Wu, D.; Xiao, J.; Lu, J. Objective measures of greengage wine quality: From taste-active compound and aroma-active compound to sensory profiles. Food Chem. 2021, 340, 128179. [Google Scholar] [CrossRef] [PubMed]
- Vararu, F.; Moreno-García, J.; Zamfir, C.I.; Cotea, V.V.; Moreno, J. Selection of aroma compounds for the differentiation of wines obtained by fermenting musts with starter cultures of commercial yeast strains. Food Chem. 2016, 197, 373–381. [Google Scholar] [CrossRef] [PubMed]
Parameters * | After AF | BRO-1 | BRO-2 | BRL-1 | BRL-2 |
---|---|---|---|---|---|
pH | 3.44 ± 0.01 | 3.50 ± 0.01 a | 3.51 ± 0.01 a | 3.48 ± 0.01 a | 3.49 ± 0.01 a |
Residual sugar (g/L) | 2.88 ± 0.02 | 2.09 ± 0.02 b | 2.24 ± 0.02 c | 1.17 ± 0.02 a | 1.23 ± 0.03 a |
Volatile acidity (g/L) | 0.29 ± 0.01 | 0.38 ± 0.02 a | 0.40 ± 0.02 a | 0.42 ± 0.03 a | 0.47 ± 0.02 b |
Total acidity (g/L) | 9.61 ± 0.04 | 9.18 ± 0.05 a | 9.22 ± 0.04 a | 9.23 ± 0.04 a | 9.27 ± 0.04 a |
Ethanol (%) | 11.03 ± 0.05 | 10.88 ± 0.04 a | 10.74 ± 0.06 a | 11.05 ± 0.09 b | 11.10 ± 0.10 b |
Dry extract (g/L) | 34.0 ± 0.5 | 32.6 ± 0.5 a | 31.9 ± 0.5 a | 33.0 ± 0.4 ab | 33.4 ± 0.5 b |
Compounds * | BRO1 | BRO2 | BRL1 | BRL2 |
---|---|---|---|---|
Esters | ||||
Ethyl isobutyrate | 107.703 ± 3.684 a | 221.020 ± 2.033 b | 218.183 ± 6.634 b | 225.047 ± 9.265 b |
Ethyl propanoate | 54.393 ± 0.655 a | 72.903 ± 0.554 b | 158.403 ± 9.462 c | 155.623 ± 8.847 c |
Methyl 2-methylbutanoate-M | 69.780 ± 1.586 d | 39.733 ± 2.850 b | 52.607 ± 0.663 c | 31.940 ± 0.467 a |
Methyl 2-methylbutanoate-D | 43.010 ± 2.914 a | 47.653 ± 1.526 b | 121.157 ± 0.670 c | 127.740 ± 3.234 d |
Ethyl acetate | 2641.353 ± 69.427 a | 2919.587 ± 22.880 b | 2854.257 ± 54.245 b | 2695.293 ± 118.110 a |
Ethyl formate | 587.293 ± 9.184 b | 703.973 ± 11.123 c | 491.847 ± 17.171a | 693.387 ± 35.134 c |
Ethyl nonanoate | 50.630 ± 5.623 a | 43.960 ± 2.511 a | 65.497 ± 5.691 b | 64.503 ± 2.443 b |
Ethyl octanoate | 121.980 ± 13.178 a | 128.920 ± 2.666 a | 150.210 ± 14.800 b | 133.793 ± 7.801 ab |
Ethyl lactate-M | 300.407 ± 11.082 a | 386.587 ± 21.771 c | 355.847 ± 4.176 b | 365.860 ± 8.238 bc |
Ethyl lactate-D | 114.487 ± 0.503 c | 52.843 ± 3.864 b | 25.527 ± 0.711 a | 26.977 ± 0.365 a |
Ethyl hexanoate-M | 253.450 ± 7.137 a | 241.017 ± 3.186 a | 287.283 ± 12.983 b | 282.663 ± 10.136 b |
Ethyl hexanoate-D | 91.013 ± 3.581 c | 68.190 ± 3.526 a | 75.893 ± 5.853 ab | 81.150 ± 6.747 b |
Isoamyl acetate-M | 194.910 ± 3.321 ab | 184.210 ± 0.265 a | 203.693 ± 8.404 b | 206.877 ± 10.912 b |
Isoamyl acetate-D | 258.697 ± 3.147 d | 98.830 ± 1.408 a | 132.530 ± 6.457 b | 190.977 ± 13.594 c |
Ethyl butyrate | 176.967 ± 2.340 b | 153.747 ± 1.589 a | 144.117 ± 14.776 a | 198.247 ± 15.421 c |
Isobutyl acetate | 86.443 ± 0.090 c | 114.173 ± 0.878 d | 35.640 ± 2.422 a | 58.153 ± 1.804 b |
Propyl acetate | 35.857 ± 2.198 b | 89.043 ± 1.573 c | 29.207 ± 1.045 a | 36.107 ± 1.909 b |
Ethyl 2-methylbutanoate | 19.930 ± 1.428 a | 103.137 ± 8.491 c | 53.307 ± 17.010 b | 68.453 ± 20.714 b |
Ethyl 3-methylbutanoate | 94.653 ± 4.332 a | 137.337 ± 3.891 b | 105.527 ± 20.149 a | 103.977 ± 12.443 a |
Alcohols | ||||
3-Methyl-3-buten-1-ol | 4074.960 ± 103.636 a | 4190.300 ± 54.368 b | 4065.073 ± 14.993 a | 4398.860 ± 15.909 c |
2-Methyl-1-propanol | 1856.930 ± 33.980 b | 1977.940 ± 28.017 c | 1715.123 ± 23.318 a | 1859.720 ± 12.170 b |
Ethanol | 3441.210 ± 74.189 a | 3364.883 ± 50.225 a | 3436.547 ± 40.510 a | 3431.833 ± 27.747 a |
1-Propanol | 631.563 ± 18.098 c | 523.727 ± 5.672 a | 525.577 ± 15.288 a | 601.093 ± 14.209 b |
3-Methyl-1-pentanol | 106.010 ± 2.342 d | 85.280 ± 4.787 c | 36.707 ± 1.208 a | 43.230 ± 2.270 b |
1-Butanol-M | 107.667 ± 2.015 b | 162.567 ± 2.987 d | 154.570 ± 5.768 c | 98.707 ± 0.677 a |
1-Butanol-D | 37.803 ± 1.406 a | 107.743 ± 3.060 c | 82.833 ± 5.679 b | 33.320 ± 1.761 a |
1-Hexanol-M | 27.867 ± 2.000 ab | 32.983 ± 3.758 b | 30.747 ± 3.522 ab | 25.017 ± 3.273 a |
1-Hexanol-D | 15.940 ± 0.251 ab | 12.710 ± 3.332 a | 15.230 ± 1.725 ab | 22.190 ± 8.267 b |
Isopropyl alcohol | 38.637 ± 1.301 a | 47.583 ± 1.480 b | 60.227 ± 6.981 c | 59.067 ± 3.021 c |
Aldehydes and ketones | ||||
Nonanal | 106.110 ± 5.987 b | 131.587 ± 2.312 c | 82.977 ± 4.422 a | 81.013 ± 4.422 a |
Butanal | 17.000 ± 1.215 a | 18.747 ± 1.052 a | 17.060 ± 1.194 a | 18.863 ± 0.621 a |
3-Hydroxy-2-butanone | 55.507 ± 5.366 a | 64.993 ± 7.110 a | 89.107 ± 5.986 b | 64.387 ± 1.759 a |
Acetone | 85.797 ± 3.468 a | 140.050 ± 3.665 c | 96.087 ± 3.477 b | 281.280 ± 6.148 d |
2-Pentanone | 46.833 ± 4.456 b | 79.703 ± 5.619 c | 23.803 ± 2.437 a | 51.867 ± 1.474 b |
2-Octanone | 54.747 ± 1.898 c | 59.953 ± 1.275 c | 14.547 ± 3.940 a | 23.833 ± 4.162 b |
Others | ||||
-Terpinene | 25.633 ± 1.376 a | 26.083 ± 4.230 ab | 27.047 ± 3.727 ab | 31.737 ± 1.812 b |
Terpinolene | 54.220 ± 1.062 a | 83.440 ± 2.881 b | 83.707 ± 1.276 b | 82.073 ± 1.672 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Sun, S.; Zhou, H.; Cheng, Z. The Influence of Lactiplantibacillus plantarum and Oenococcus oeni Starters on the Volatile and Sensory Properties of Black Raspberry Wine. Foods 2023, 12, 4212. https://doi.org/10.3390/foods12234212
Wang C, Sun S, Zhou H, Cheng Z. The Influence of Lactiplantibacillus plantarum and Oenococcus oeni Starters on the Volatile and Sensory Properties of Black Raspberry Wine. Foods. 2023; 12(23):4212. https://doi.org/10.3390/foods12234212
Chicago/Turabian StyleWang, Changsen, Shuyang Sun, Haoran Zhou, and Zhenzhen Cheng. 2023. "The Influence of Lactiplantibacillus plantarum and Oenococcus oeni Starters on the Volatile and Sensory Properties of Black Raspberry Wine" Foods 12, no. 23: 4212. https://doi.org/10.3390/foods12234212
APA StyleWang, C., Sun, S., Zhou, H., & Cheng, Z. (2023). The Influence of Lactiplantibacillus plantarum and Oenococcus oeni Starters on the Volatile and Sensory Properties of Black Raspberry Wine. Foods, 12(23), 4212. https://doi.org/10.3390/foods12234212