Valorization of Prickly Pear Peel Residues (Opuntia ficus-indica) Using Solid-State Fermentation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Conditions (Raw Material)
2.2. Physicochemical Analysis of the Raw Material
2.3. Growth Kinetics of Filamentous Fungi
2.4. Experimental Design Box–Hunter and Hunter (Fermentation Process and Treatments)
2.5. Condensed and Hydrolyzable Tannin Determination
2.6. Antioxidant Activity
2.7. Antimicrobial and Antifungal Activity
2.8. HPLC–MS Analysis of Extracts Fermentation
3. Results and Discussion
3.1. Physicochemical Analysis of Prickly Peer Peel Residues
3.2. Growth Kinetics of Filamentous Fungi
3.3. Evaluation of Box–Hunter and Hunter Design and Response Factors
3.4. Antioxidant Activity in the Fermentation Extracts
3.5. Antimicrobial and Antifungal Activity in the Fermentation Extracts
3.6. HPLC–MS Analysis of the Fermentation Extracts
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amaral, D.T.; Bonatelli, I.A.S.; Romeiro-Brito, M.; Moraes, E.M.; Franco, F.F. Spatial Patterns of Evolutionary Diversity in Cactaceae Show Low Ecological Representation within Protected Areas. Biol. Conserv. 2022, 273, 109677. [Google Scholar] [CrossRef]
- de Araújo, F.F.; de Paulo Farias, D.; Neri-Numa, I.A.; Pastore, G.M. Underutilized Plants of the Cactaceae Family: Nutritional Aspects and Technological Applications. Food Chem. 2021, 362, 130196. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Cadena, R.; Espinosa-Solares, T.; Medina-Moreno, S.A.; Martínez, A.; Lizardi-Jiménez, M.A.; Téllez-Jurado, A. Effect of the Age of Opuntia ficus-indica Cladodes on the Release of Simple Sugars. Biocatal. Agric. Biotechnol. 2021, 33, 102010. [Google Scholar] [CrossRef]
- di Bella, G.; Vecchio, G.L.; Albergamo, A.; Nava, V.; Bartolomeo, G.; Macrì, A.; Bacchetta, L.; lo Turco, V.; Potortì, A.G. Chemical Characterization of Sicilian Dried Nopal [Opuntia ficus-indica (L.) Mill.]. J. Food Compost. Anal. 2022, 106, 104307. [Google Scholar] [CrossRef]
- Feugang, J.M.; Konarski, P.; Zou, D.; Stintzing, F.C.; Zou, C. Nutritional and Medicinal Use of Cactus Pear (Opuntia spp.) Cladodes and Fruits. Front. Biosci. 2006, 11, 2574–2589. [Google Scholar] [CrossRef]
- Rodríguez, L.V.; Figueroa, G.A.; Méndez, C.H.H.; Nieto, A.P.; Vieyra, M.I.G.; Núñez, J.R.R. Physical Properties of Mucilage Prickly Pear. Acta Univ. 2016, 26, 8–11. [Google Scholar] [CrossRef]
- da Silveira Agostini-Costa, T. Genetic and Environment Effects on Bioactive Compounds of Opuntia Cacti–A Review. J. Food Compost. Anal. 2022, 109, 104514. [Google Scholar] [CrossRef]
- Yang, L.; Lu, M.; Carl, S.; Mayer, J.A.; Cushman, J.C.; Tian, E.; Lin, H. Biomass Characterization of Agave and Opuntia as Potential Biofuel Feedstocks. Biomass Bioenergy 2015, 76, 43–53. [Google Scholar] [CrossRef]
- Kuti, J.O. Antioxidant Compounds from Four Opuntia Cactus Pear Fruit Varieties. Food Chem. 2004, 85, 527–533. [Google Scholar] [CrossRef]
- Ginestra, G.; Parker, M.L.; Bennett, R.N.; Robertson, J.; Mandalari, G.; Narbad, A.; lo Curto, R.B.; Bisignano, G.; Faulds, C.B.; Waldron, K.W. Anatomical, Chemical, and Biochemical Characterization of Cladodes from Prickly Pear [Opuntia ficus-indica (L.) Mill.]. J. Agric. Food Chem. 2009, 57, 10323–10330. [Google Scholar] [CrossRef]
- Blando, F.; Russo, R.; Negro, C.; de Bellis, L.; Frassinetti, S. Antimicrobial and Antibiofilm Activity against Staphylococcus aureus of Opuntia ficus-indica (L.) Mill. Cladode Polyphenolic Extracts. Antioxidants 2019, 8, 117. [Google Scholar] [CrossRef] [PubMed]
- Brahmi, F.; Blando, F.; Sellami, R.; Mehdi, S.; de Bellis, L.; Negro, C.; Haddadi-Guemghar, H.; Madani, K.; Makhlouf-Boulekbache, L. Optimization of the Conditions for Ultrasound-Assisted Extraction of Phenolic Compounds from Opuntia ficus-indica [L.] Mill. Flowers and Comparison with Conventional Procedures. Ind. Crop. Prod. 2022, 184, 114977. [Google Scholar] [CrossRef]
- Bakar, B.; Çakmak, M.; Ibrahim, M.S.; Özer, D.; Saydam, S.; Karatas, F. Investigation of Amounts of Vitamins, Lycopene, and Elements in the Fruits of Opuntia ficus-indica Subjected to Different Pretreatments. Biol. Trace Elem Res. 2020, 198, 315–323. [Google Scholar] [CrossRef]
- Ouerghemmi, I.; Harbeoui, H.; Aidi Wannes, W.; Bettaieb Rebey, I.; Hammami, M.; Marzouk, B.; Saidani Tounsi, M. Phytochemical Composition and Antioxidant Activity of Tunisian Cactus Pear (Opuntia ficus indica L.) Flower. J. Food Biochem. 2017, 41, e12390. [Google Scholar] [CrossRef]
- Messina, C.M.; Renda, G.; La Barbera, L.; Santulli, A. By-Products of Farmed European Sea Bass (Dicentrarchus labrax L.) as a Potential Source of n-3 PUFA. Biologia 2013, 68, 288–293. [Google Scholar] [CrossRef]
- Messina, C.M.; Arena, R.; Morghese, M.; Santulli, A.; Liguori, G.; Inglese, P. Seasonal Characterization of Nutritional and Antioxidant Properties of Opuntia ficus-indica [(L.) Mill.] Mucilage. Food Hydrocoll. 2021, 111, 106398. [Google Scholar] [CrossRef]
- Pizzi, A. Tannins Medical/Pharmacological and Related Applications: A Critical Review. Sustain. Chem. Pharm. 2021, 22, 100481. [Google Scholar] [CrossRef]
- de Melo, L.F.M.; Aquino-Martins, V.G.d.Q.; da Silva, A.P.; Rocha, H.A.O.; Scortecci, K.C. Biological and Pharmacological Aspects of Tannins and Potential Biotechnological Applications. Food Chem. 2023, 414, 135645. [Google Scholar] [CrossRef]
- de Hoyos-Martínez, P.L.; Merle, J.; Labidi, J.; Charrier–El Bouhtoury, F. Tannins Extraction: A Key Point for Their Valorization and Cleaner Production. J. Clean. Prod. 2019, 206, 1138–1155. [Google Scholar] [CrossRef]
- Manan, M.A.; Webb, C. Modern Microbial Solid State Fermentation Technology for Future Biorefineries for the Production of Added-Value Products. Biofuel. Res. J. 2017, 4, 730–740. [Google Scholar] [CrossRef]
- Mansor, A.; Ramli, M.S.; Abdul Rashid, N.Y.; Samat, N.; Lani, M.N.; Sharifudin, S.A.; Raseetha, S. Evaluation of Selected Agri-Industrial Residues as Potential Substrates for Enhanced Tannase Production via Solid-State Fermentation. Biocatal. Agric. Biotechnol. 2019, 20, 101216. [Google Scholar] [CrossRef]
- Kumar, V.; Ahluwalia, V.; Saran, S.; Kumar, J.; Patel, A.K.; Singhania, R.S. Recent Developments on Solid-State Fermentation for Production Of Microbial Secondary Metabolites: Challenges and Solutions. Bioresour. Technol. 2021, 323, 124566. [Google Scholar] [CrossRef] [PubMed]
- Olukomaiya, O.O.; Adiamo, O.Q.; Fernando, W.C.; Mereddy, R.; Li, X.; Sultanbawa, Y. Effect of Solid-State Fermentation on Proximate Composition, Anti-Nutritional Factor, Microbiological and Functional Properties of Lupin Flour. Food Chem. 2020, 315, 126238. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.C.; Liu, L.Y.; Yang, S.S. Protein Enrichment, Cellulase Production and in Vitro Digestion Improvement of Pangolagrass with Solid State Fermentation. J. Microbiol. Immunol. Infect. 2012, 45, 7–14. [Google Scholar] [CrossRef]
- Yafetto, L. Application of Solid-State Fermentation by Microbial Biotechnology for Bioprocessing of Agro-Industrial Wastes from 1970 to 2020: A Review and Bibliometric Analysis. Heliyon 2022, 8, e09173. [Google Scholar] [CrossRef] [PubMed]
- Munishamanna, K.B.; Suresha, K.B.; Veena, R.; Subramanya, S. Solid State Fermentation of Mango Peel and Mango Seed Waste by Different Yeasts and Bacteria for Nutritional Improvement. Int. J. Food Ferment. Technol. 2017, 7, 111. [Google Scholar] [CrossRef]
- Farinas, C.S. Advances in Cultivation Strategies of Aspergillus for Production of Enzymes Involved in the Saccharification of Lignocellulosic Feedstocks. In New and Future Developments in Microbial Biotechnology and Bioengineering: Aspergillus System Properties and Applications, 1st ed.; Gupta, V.K., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 141–154. [Google Scholar]
- Postigo, L.O.C.Y.; Jacobo-Velázquez, D.A.; Guajardo-Flores, D.; Garcia Amezquita, L.E.; García-Cayuela, T. Solid-State Fermentation for Enhancing the Nutraceutical Content of Agrifood by-Products: Recent Advances and Its Industrial Feasibility. Food Biosci. 2021, 41, 100926. [Google Scholar] [CrossRef]
- Cerda-Cejudo, N.D.; Buenrostro-Figueroa, J.J.; Sepúlveda, L.; Torres-Leon, C.; Chávez-González, M.L.; Ascacio-Valdés, J.A.; Aguilar, C.N. Recovery of Ellagic Acid from Mexican Rambutan Peel by Solid-State Fermentation-Assisted Extraction. Food Bioprod. Process. 2022, 134, 86–94. [Google Scholar] [CrossRef]
- Sepúlveda, L.; Wong-Paz, J.E.; Buenrostro-Figueroa, J.; Ascacio-Valdés, J.A.; Aguilera-Carbó, A.; Aguilar, C.N. Solid State Fermentation of Pomegranate Husk: Recovery of Ellagic Acid by SEC and Identification of Ellagitannins by HPLC/ESI/MS. Food Biosci. 2018, 22, 99–104. [Google Scholar] [CrossRef]
- Araújo, L.d.F.; Medeiros, A.N.; Perazzo Neto, A.; de Sousa Conrado Oliveira, L.; da Silva, F.L.H. Protein Enrichment of Cactus Pear (Opuntia ficus-indica Mill) Using Saccharomyces cerevisiae in Solid-State Fermentation. Braz. Arch. Biol. Technol. 2005, 48, 161–168. [Google Scholar] [CrossRef]
- Herrera-Torres, E.; Murillo, M.; Berumen, L.; Soto-Cruz, N.; Paez-Lerma, J. Protein Enrichment of Opuntia ficus-indica Using Kluyveromyces marxianus In Solid-State Fermentation. Cienc. Investig Agrar. 2017, 44, 113–120. [Google Scholar] [CrossRef]
- Ali, S.K.; Mahmoud, S.M.; El-Masry, S.S.; Alkhalifah, D.H.M.; Hozzein, W.N.; Aboel-Ainin, M.A. Phytochemical Screening and Characterization of the Antioxidant, Anti-Proliferative and Antibacterial Effects of Different Extracts of Opuntia ficus-indica Peel. J. King Saud Univ. Sci. 2022, 34, 102216. [Google Scholar] [CrossRef]
- Kejla, L.; Schulzke, T.; Šimáček, P.; Auersvald, M. Anthrone Method Combined with Adsorption of Interferents as a New Approach towards Reliable Quantification of Total Carbohydrate Content in Pyrolysis Bio-Oils. J. Anal. Appl. Pyrolysis 2023, 173, 106066. [Google Scholar] [CrossRef]
- Prasertsung, I.; Chutinate, P.; Watthanaphanit, A.; Saito, N.; Damrongsakkul, S. Conversion of Cellulose into Reducing Sugar by Solution Plasma Process (SPP). Carbohydr. Polym. 2017, 172, 230–236. [Google Scholar] [CrossRef]
- Gu, L.B.; Zhang, G.J.; Du, L.; Du, J.; Qi, K.; Zhu, X.L.; Zhang, X.Y.; Jiang, Z.H. Comparative Study on the Extraction of Xanthoceras sorbifolia Bunge (Yellow Horn) Seed Oil Using Subcritical n-Butane, Supercritical CO2, and the Soxhlet Method. LWT 2019, 111, 548–554. [Google Scholar] [CrossRef]
- Deepachandi, B.; Weerasinghe, S.; Andrahennadi, T.P.; Karunaweera, N.D.; Wickramarachchi, N.; Soysa, P.; Siriwardana, Y. Quantification of Soluble or Insoluble Fractions of Leishmania Parasite Proteins in Microvolume Applications: A Simplification to Standard Lowry Assay. Int. J. Anal. Chem. 2020, 2020, 6129132. [Google Scholar] [CrossRef]
- Ruiz, H.A.; Rodríguez-Jasso, R.M.; Rodríguez, R.; Contreras-Esquivel, J.C.; Aguilar, C.N. Pectinase Production from Lemon Peel Pomace as Support and Carbon Source in Solid-State Fermentation Column-Tray Bioreactor. Biochem. Eng. J. 2012, 65, 90–95. [Google Scholar] [CrossRef]
- Mitchell, D.A.; von Meien, O.F.; Krieger, N.; Dalsenter, F.D.H. A Review of Recent Developments in Modeling of Microbial Growth Kinetics and Intraparticle Phenomena in Solid-State Fermentation. Biochem. Eng. J. 2004, 17, 15–26. [Google Scholar] [CrossRef]
- De León-Medina, J.C.; Buenrostro-Figueroa, J.J.; Sepúlveda, L.; Aguilar, C.N.; Ascacio-Valdés, J.A. Fungal Biodegradation of Ellagitannins Extracted from Rambutan Peel. Food Bioprod. Process. 2023, 141, 81–90. [Google Scholar] [CrossRef]
- Sawczuk, R.; Karpinska, J.; Filipowska, D.; Bajguz, A.; Hryniewicka, M. Evaluation of Total Phenols Content, Anti-DPPH Activity and the Content of Selected Antioxidants in the Honeybee Drone Brood Homogenate. Food Chem. 2022, 368, 130745. [Google Scholar] [CrossRef]
- Sepúlveda, L.; Romaní, A.; Aguilar, C.N.; Teixeira, J. Valorization of Pineapple Waste for the Extraction of Bioactive Compounds and Glycosides Using Autohydrolysis. Innov. Food Sci. Emerg. 2018, 47, 38–45. [Google Scholar] [CrossRef]
- Sik, B.; Ajtony, Z.; Lakatos, E.; Székelyhidi, R. The Effects of Extraction Conditions on the Antioxidant Activities, Total Polyphenol and Monomer Anthocyanin Contents of Six Edible Fruits Growing Wild in Hungary. Heliyon 2022, 8, e12048. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhu, J.; Li, W.; Li, R.; Wang, X.; Qiao, H.; Sun, Q.; Zhang, H. Antibacterial Mechanism of the Polysaccharide Produced by Chaetomium globosum CGMCC 6882 against Staphylococcus aureus. Int. J. Biol. Macromol. 2020, 159, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Aqueveque, P.; Céspedes, C.L.; Becerra, J.; Aranda, M.; Sterner, O. Antifungal Activities of Secondary Metabolites Isolated from Liquid Fermentations of Stereum hirsutum (Sh134-11) against Botrytis cinerea (Grey Mould Agent). Food Chem. Toxicol. 2017, 109, 1048–1054. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, T.C.; Reis, N.d.S.; Silva, T.P.; Machado, F.d.P.P.; Bonomo, R.C.F.; Franco, M. Prickly Palm Cactus Husk as a Raw Material for Production of Ligninolytic Enzymes by Aspergillus niger. Food Sci. Biotechnol. 2016, 25, 205–211. [Google Scholar] [CrossRef]
- Moßhammer, M.R.; Stintzing, F.C.; Carle, R. Cactus Pear Fruits (Opuntia spp.): A Review of Processing Technologies and Current Uses. J. Prof. Assoc. Cactus 2006, 8, 1–25. [Google Scholar]
- Kuloyo, O.O.; Du Preez, J.C.; de Prado García-Aparicio, M.; Kilian, S.G.; Steyn, L.; Görgens, J. Opuntia ficus-indica Cladodes as Feedstock for Ethanol Production by Kluyveromyces marxianus and Saccharomyces cerevisiae. World J. Microbiol. Biotechnol. 2014, 30, 3173–3183. [Google Scholar] [CrossRef]
- Khatabi, O.; Hanine, H.; Elothmani, D.; Hasib, A. Extraction and Determination of Polyphenols and Betalain Pigments in The Moroccan Prickly Pear Fruits (Opuntia ficus indica). Arab. J. Chem. 2016, 9, S278–S281. [Google Scholar] [CrossRef]
- Pérez-Rodríguez, N.; Torrado-Agrasar, A.; Domínguez, J.M. Use of Aspergillus niger Extracts Obtained by Solid-State Fermentation. In Mushroom Biotechnology. Developments and Applications, 1st ed.; Petre, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 173–190. [Google Scholar]
- Torres-León, C.; Ramírez-Guzmán, N.; Ascacio-Valdés, J.; Serna-Cock, L.; dos Santos Correia, M.T.; Contreras-Esquivel, J.C.; Aguilar, C.N. Solid-State Fermentation with Aspergillus niger to Enhance the Phenolic Contents and Antioxidative Activity of Mexican Mango Seed: A Promising Source of Natural Antioxidants. LWT 2019, 112, 108236. [Google Scholar] [CrossRef]
- Sepúlveda, L.; de la Cruz, R.; Buenrostro, J.J.; Ascacio-Valdés, J.A.; Aguilera-Carbó, A.F.; Prado, A.; Rodríguez-Herrera, R.; Aguilar, C.N. Effect of Different Polyphenol Sources on The Efficiency of Ellagic Acid Release by Aspergillus niger. Rev. Argent. Microbiol. 2016, 48, 71–77. [Google Scholar] [CrossRef]
- Yepes-Betancur, D.P.; Márquez-Cardozo, C.L.; Cadena-Chamorro, E.M.; Martinez-Saldarriaga, J.; Torres-León, C.; Ascacio-Valdés, A.; Aguilar, C.N. Solid-State Fermentation–Assisted Extraction of Bioactive Compounds from Hass Avocado Seeds. Food Bioprod. Process. 2021, 126, 155–163. [Google Scholar] [CrossRef]
- Šelo, G.; Planinić, M.; Tišma, M.; Tomas, S.; Komlenić, D.K.; Bucić-Kojić, A. A Comprehensive Review on Valorization of Agro-Food. Foods 2021, 10, 927. [Google Scholar] [CrossRef] [PubMed]
- Barba, F.J.; Putnik, P.; Bursać Kovačević, D.; Poojary, M.M.; Roohinejad, S.; Lorenzo, J.M.; Koubaa, M. Impact of Conventional and Non-Conventional Processing on Prickly Pear (Opuntia spp.) and Their Derived Products: From Preservation of Beverages to Valorization of by-Products. Trends Food Sci. Technol. 2017, 67, 260–270. [Google Scholar] [CrossRef]
- Bouazizi, S.; Montevecchi, G.; Antonelli, A.; Hamdi, M. Effects of Prickly Pear (Opuntia ficus-indica L.) Peel Flour as an Innovative Ingredient in Biscuits Formulation. LWT 2020, 124, 109155. [Google Scholar] [CrossRef]
- Masmoudi, M.; Baccouche, A.; Borchani, M.; Besbes, S.; Blecker, C.; Attia, H. Physico-Chemical and Antioxidant Properties of Oils and by-Products Obtained by Cold Press-Extraction of Tunisian Opuntia spp. Seeds. Appl. Food Res. 2021, 1, 100024. [Google Scholar] [CrossRef]
- Aruwa, C.E.; Amoo, S.O.; Kudanga, T. Extractable and Macromolecular Antioxidants of Opuntia ficus-indica Cladodes: Phytochemical Profiling, Antioxidant and Antibacterial Activities. S. Afr. J. Bot. 2019, 125, 402–410. [Google Scholar] [CrossRef]
- Alqurashi, A.S.; Al Masoudi, L.M.; Hamdi, H.; Abu Zaid, A. Chemical Composition and Antioxidant, Antiviral, Antifungal, Antibacterial and Anticancer Potentials of Opuntia ficus-indica Seed Oil. Molecules 2022, 27, 5453. [Google Scholar] [CrossRef]
- Brahmi, F.; Haddad, S.; Bouamara, K.; Yalaoui-Guellal, D.; Prost-Camus, E.; de Barros, J.P.P.; Prost, M.; Atanasov, A.G.; Madani, K.; Boulekbache-Makhlouf, L.; et al. Comparison of Chemical Composition and Biological Activities of Algerian Seed Oils of Pistacia lentiscus L., Opuntia ficus indica (L.) Mill. and Argania spinosa L. Skeels. Ind. Crop. Prod. 2020, 151, 112456. [Google Scholar] [CrossRef]
- Ammar, I.; Ennouri, M.; Khemakhem, B.; Yangui, T.; Attia, H. Variation in Chemical Composition and Biological Activities of Two Species of Opuntia Flowers at Four Stages of Flowering. Ind. Crop. Prod. 2012, 37, 34–40. [Google Scholar] [CrossRef]
- El-Hawary, S.S.; Sobeh, M.; Badr, W.K.; Abdelfattah, M.A.O.; Ali, Z.Y.; El-Tantawy, M.E.; Rabeh, M.A.; Wink, M. HPLC-PDA-MS/MS Profiling of Secondary Metabolites from Opuntia ficus-indica Cladode, Peel and Fruit Pulp Extracts and Their Antioxidant, Neuroprotective Effect in Rats with Aluminum Chloride Induced Neurotoxicity. Saudi. J. Biol. Sci. 2020, 27, 2829–2838. [Google Scholar] [CrossRef]
- Mena, P.; Tassotti, M.; Andreu, L.; Nuncio-Jáuregui, N.; Legua, P.; del Rio, D.; Hernández, F. Phytochemical Characterization of Different Prickly Pear (Opuntia ficus-indica (L.) Mill.) Cultivars and Botanical Parts: UHPLC-ESI-MSn Metabolomics Profiles and Their Chemometric Analysis. Food Res. Int. 2018, 108, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Carpena, M.; Cassani, L.; Gomez-Zavaglia, A.; Garcia-Perez, P.; Seyyedi-Mansour, S.; Cao, H.; Simal-Gandara, J.; Prieto, M.A. Application of Fermentation for The Valorization of Residues from Cactaceae Family. Food Chem. 2023, 410, 135369. [Google Scholar] [CrossRef]
- Benayad, Z.; Martinez-Villaluenga, C.; Frias, J.; Gomez-Cordoves, C.; Es-Safi, N.E. Phenolic Composition, Antioxidant and Anti-Inflammatory Activities of Extracts from Moroccan Opuntia ficus-indica Flowers Obtained by Different Extraction Methods. Ind. Crop. Prod. 2014, 62, 412–420. [Google Scholar] [CrossRef]
- Aruwa, C.E.; Amoo, S.; Kudanga, T. Phenolic Compound Profile and Biological Activities of Southern African Opuntia ficus-indica Fruit Pulp and Peels. LWT 2019, 111, 337–344. [Google Scholar] [CrossRef]
- Guevara-Figueroa, T.; Jiménez-Islas, H.; Reyes-Escogido, M.L.; Mortensen, A.G.; Laursen, B.B.; Lin, L.W.; de León-Rodríguez, A.; Fomsgaard, I.S.; Barba de la Rosa, A.P. Proximate Composition, Phenolic Acids, and Flavonoids Characterization of Commercial and Wild Nopal (Opuntia spp.). J. Food Compos. Anal. 2010, 23, 525–532. [Google Scholar] [CrossRef]
- de Albuquerque, J.G.; Escalona-Buendía, H.B.; Cordeiro, A.M.T.d.M.; Lima, M.d.S.; Aquino, J.d.S.; Vasconcelos, M.A.d.S. Ultrasound Treatment for Improving the Bioactive Compounds and Quality Properties of a Brazilian Nopal (Opuntia ficus-indica) Beverage during Shelf-Life. LWT 2021, 149, 111814. [Google Scholar] [CrossRef]
- Antika, L.D.; Tasfiyati, A.N.; Hikmat, H.; Septama, A.W. Scopoletin: A Review of Its Source, Biosynthesis, Methods of Extraction, and Pharmacological Activities. Z. Naturforsch. C J. Biosci. 2022, 77, 303–316. [Google Scholar] [CrossRef]
- Elbatreek, M.H.; Mahdi, I.; Ouchari, W.; Mahmoud, M.F.; Sobeh, M. Current Advances on the Therapeutic Potential of Pinocembrin: An Updated Review. Biomed. Pharmacother. 2023, 157, 114032. [Google Scholar] [CrossRef]
- Xu, D.; Qiao, F.; Xi, P.; Lin, Z.; Jiang, Z.; Romanazzi, G.; Gao, L. Efficacy of Pterostilbene Suppression of Postharvest Gray Mold in Table Grapes and Potential Mechanisms. Postharvest Biol. Technol. 2022, 183, 111745. [Google Scholar] [CrossRef]
Treatment | Temperature (°C) | Inoculum (spores/g) | Humidity (%) | pH | NaNO3 (g/L) | MgSO4 (g/L) | KCl (g/L) | KH2PO4 (g/L) |
---|---|---|---|---|---|---|---|---|
1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 |
2 | 1 | −1 | −1 | −1 | −1 | 1 | 1 | 1 |
3 | −1 | 1 | −1 | −1 | 1 | −1 | 1 | 1 |
4 | 1 | 1 | −1 | −1 | 1 | 1 | −1 | −1 |
5 | −1 | −1 | 1 | −1 | 1 | 1 | 1 | −1 |
6 | 1 | −1 | 1 | −1 | 1 | −1 | −1 | 1 |
7 | −1 | 1 | 1 | −1 | −1 | 1 | −1 | 1 |
8 | 1 | 1 | 1 | −1 | −1 | −1 | 1 | −1 |
9 | −1 | −1 | −1 | 1 | 1 | 1 | −1 | 1 |
10 | 1 | −1 | −1 | 1 | 1 | −1 | 1 | −1 |
11 | −1 | 1 | −1 | 1 | −1 | 1 | 1 | −1 |
12 | 1 | 1 | −1 | 1 | −1 | −1 | −1 | 1 |
13 | −1 | −1 | 1 | 1 | −1 | −1 | 1 | 1 |
14 | 1 | −1 | 1 | 1 | −1 | 1 | −1 | −1 |
15 | −1 | 1 | 1 | 1 | 1 | −1 | −1 | −1 |
16 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Factors | Levels | |||||||
+1 | −1 | |||||||
Temperature (°C) | 30 | 25 | ||||||
Inoculum (spores/g) | 1 × 107 | 1 × 106 | ||||||
Humidity (%) | 70 | 60 | ||||||
pH | 7 | 6 | ||||||
NaNO3 (g/L) | 6 | 3 | ||||||
MgSO4 (g/L) | 0.52 | 0.26 | ||||||
KCl (g/L) | 0.52 | 0.26 | ||||||
KH2PO4 (g/L) | 1.52 | 0.52 |
Samples | ABTS (%) | DPPH (%) | FRAP (mgTEq/L) |
---|---|---|---|
Unfermented | 25.56 ± 2.14 a | 1.77 ± 0.14 a | 1070.91 ± 0.94 a |
T13 | 85.59 ± 1.14 b | 51.29 ± 1.17 b | 1990.78 ± 54.60 b |
T16 | 90.61 ± 0.64 c | 52.05 ± 1.55 b | 3121.00 ± 58.36 c |
Samples | E. coli (mm Inhibition) | Botrytis sp. (% Inhibition) | Alternaria sp. (% Inhibition) |
---|---|---|---|
T13 | 13.75 ± 0.28 a | 2 ± 0.00 a | 13 ± 6.00 a |
T16 | 18.33 ± 0.57 b | 9 ± 0.00 b | 19 ± 1.00 a |
Retention Time (min) | Metabolite Name | m/z | Formula | Unfermented Sample | Treatment 13 | Treatment 16 |
---|---|---|---|---|---|---|
5.8 | Hydroxytyrosol acetate (3,4-DHPEA-AC) | 195 | C10H12O4 | - | + | + |
7.3 | Caffeic acid 4-O-glucoside | 341 | C15H18O9 | + | - | - |
21.3 | Pinocembrin | 255 | C15H12O4 | - | + | + |
32.1 | p-Coumaroyl glycolic acid | 221 | C11H10O5 | - | - | + |
35.5 | Sinensetin | 371 | C20H20O7 | - | + | + |
42.8 | Isorhamnetin 3-O-glucoside | 477 | C22H22O12 | - | + | - |
44.1 | Apigenin 7-O-diglucuronide | 621 | C27H26O17 | - | + | + |
46.0 | Quercetin | 301 | C15H10O7 | + | - | - |
48.6 | (+)-Catechin | 289 | C15H14O6 | - | - | + |
51.0 | Rhamnetin | 315 | C16H12O7 | - | - | + |
54.8 | Cyanidin | 286 | C15H11O6 | + | - | - |
56.1 | Isorhamnetin | 315 | C16H12O7 | + | + | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coronado-Contreras, A.; Ruelas-Chacón, X.; Reyes-Acosta, Y.K.; Dávila-Medina, M.D.; Ascacio-Valdés, J.A.; Sepúlveda, L. Valorization of Prickly Pear Peel Residues (Opuntia ficus-indica) Using Solid-State Fermentation. Foods 2023, 12, 4213. https://doi.org/10.3390/foods12234213
Coronado-Contreras A, Ruelas-Chacón X, Reyes-Acosta YK, Dávila-Medina MD, Ascacio-Valdés JA, Sepúlveda L. Valorization of Prickly Pear Peel Residues (Opuntia ficus-indica) Using Solid-State Fermentation. Foods. 2023; 12(23):4213. https://doi.org/10.3390/foods12234213
Chicago/Turabian StyleCoronado-Contreras, Arturo, Xochitl Ruelas-Chacón, Yadira K. Reyes-Acosta, Miriam Desiree Dávila-Medina, Juan A. Ascacio-Valdés, and Leonardo Sepúlveda. 2023. "Valorization of Prickly Pear Peel Residues (Opuntia ficus-indica) Using Solid-State Fermentation" Foods 12, no. 23: 4213. https://doi.org/10.3390/foods12234213
APA StyleCoronado-Contreras, A., Ruelas-Chacón, X., Reyes-Acosta, Y. K., Dávila-Medina, M. D., Ascacio-Valdés, J. A., & Sepúlveda, L. (2023). Valorization of Prickly Pear Peel Residues (Opuntia ficus-indica) Using Solid-State Fermentation. Foods, 12(23), 4213. https://doi.org/10.3390/foods12234213