Fabrication of Whey Protein Isolate-Pectin Nanoparticles by Thermal Treatment: Effect of Dynamic High-Pressure Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Particle Size and Charge Measurements
2.4. Fluorescence Spectroscopy
2.5. Reducing-Sugar-Ends Content Measurement
2.6. Statistical Analysis
3. Results and Discussion
3.1. Influence of pH on WPI/Pectin Complexes
3.2. Influence of DHP Treatment on Individual WPI and Pectin
3.3. Influence of DHP Treatment on WPI/Pectin Complexes
3.4. Influence of DHP Treatment on WPI/Pectin Particles
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, L.; Remondetto, G.E.; Subirade, M. Food protein-based materials as nutraceutical delivery systems. Trends Food Sci. Technol. 2006, 17, 272–283. [Google Scholar] [CrossRef]
- Emerich, D.F.; Thanos, C.G. Targeted nanoparticle-based drug delivery and diagnosis. J. Drug Target. 2007, 15, 163–183. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Votruba, A.R.; Farokhzad, O.C.; Langer, R. Nanotechnology in drug delivery and tissue engineering: From discovery to applications. Nano Lett. 2010, 10, 3223–3230. [Google Scholar] [CrossRef] [PubMed]
- Lobato-Calleros, C.; Martínez-Torrijos, O.; Sandoval-Castilla, O.; Pérez-Orozco, J.P.; Vernon-Carter, E.J. Flow and creep compliance properties of reduced-fat yoghurts containing protein-based fat replacers. Int. Dairy J. 2004, 14, 777–782. [Google Scholar] [CrossRef]
- Zeeb, B.; Schöck, V.; Schmid, N.; Majer, L.; Herrmann, K.; Hinrichs, J.; Weiss, J. Mixing behaviour of WPI-pectin-complexes in meat dispersions: Impact of biopolymer ratios. Food Funct. 2017, 8, 333. [Google Scholar] [CrossRef]
- Zeeb, B.; Salminen, H.; Fischer, L.; Weiss, J. Impact of heat and laccase on the pH and freeze-thaw stability of oil-in-water emulsions stabilized by adsorbed biopolymer nanoparticles. Food Biophys. 2014, 9, 125–137. [Google Scholar] [CrossRef]
- De Kruif, C.G.; Tuinier, R. Polysaccharide protein interactions. Food Hydrocoll. 2001, 15, 555–563. [Google Scholar] [CrossRef]
- Turgeon, S.L.; Schmitt, C.; Sanchez, C. Protein-polysaccharide complexes and coacervates. Curr. Opin. Colloid Interface Sci. 2007, 12, 166–178. [Google Scholar] [CrossRef]
- Norton, I.T.; Frith, W.J. Microstructure design in mixed bioplymer composites. Food Hydrocoll. 2001, 15, 1513–1525. [Google Scholar] [CrossRef]
- Sperber BL, H.M.; Schols, H.A.; Stuart MA, C.; Norde, W.; Voragen AG, J. Influence of the overall charge and local charge density of pectin on the complex formation between pectin and β-lactoglobulin. Food Hydrocoll. 2009, 23, 765–772. [Google Scholar] [CrossRef]
- Jones, O.G.; McClements, D.J. Recent progress in biopolymer nanoparticle and microparticle formation by heat-treating electrostatic protein-polysaccharide complexes. Adv. Colloid Interface Sci. 2011, 167, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Clark, A.H.; Kavanagh, G.M.; Ross-Murphy, S.B. Globular protein gelation-theory and experiment. Food Hydrocoll. 2001, 15, 383–400. [Google Scholar] [CrossRef]
- Guo, X.; Chen, M.; Li, Y.; Dai, T.; Shuai, X.; Chen, J.; Liu, C. Modification of food macromolecules using dynamic high pressure microfluidization: A review. Trends Food Sci. Technol. 2020, 100, 223–234. [Google Scholar] [CrossRef]
- Kumar, A.; Dhiman, A.; Suhag, R.; Sehrawat, R.; Upadhyay, A.; McClements, D.J. Comprehensive review on potential applications of microfluidization in food processing. Food Sci. Biotechnol. 2022, 31, 17–36. [Google Scholar] [CrossRef]
- Liu, G.; Tu, Z.; Wang, H.; Zhang, L.; Huang, T.; Ma, D. Monitoring of the functional properties and unfolding change of ovalumin after DHPM treatment by HDX and FTIG MS. Food Chem. 2017, 227, 413–421. [Google Scholar] [CrossRef]
- Dissanayake, M.; Vasiljevic, T. Functional properties of why proteins affected by heat treatment and hydrodynamic high-pressure shearing. J. Dairy Res. 2009, 92, 1387–1397. [Google Scholar]
- Shen, L.; Tang, C.-H. Microfluidization as a potential technique to modify surface properties of soy protein isolate. Food Res. Int. 2012, 48, 108–118. [Google Scholar] [CrossRef]
- Moll, P.; Salminen, H.; Schmitt, C.; Weiss, J. Impact of microfluidization on colloidal proeprties of insoluble pea protein fractions. Eur. Food Res. Technol. 2021, 247, 545–554. [Google Scholar] [CrossRef]
- Zimmerer, L.; Jones, O.G. Emulsification capacity of microgels assembled from β-lactoglobulin and pectin. Food Biophys. 2014, 9, 229–237. [Google Scholar] [CrossRef]
- Ronkart, S.N.; Paquot, M.; Deroanne, C.; Fougnies, C.; Besbes, S.; Blecker, C.S. Development of gelling properties of inulin by microfluidization. Food Hydrocoll. 2010, 24, 318–324. [Google Scholar] [CrossRef]
- Kinsella, J.E.; Whitehead, D.M. Proteins in whey; chemical, physical, and functional properties. Adv. Food Nutr. Res. 1989, 33, 343–438. [Google Scholar] [PubMed]
- Liu, C.-M.; Zhong, J.-Z.; Liu, W.; Tu, Z.-C.; Wan, J.; Cai, X.-F.; Song, X.-Y. Relationship between functional properties and aggregation changes of whey protein induced by high pressure microfluidization. J. Food Sci. 2011, 76, E341–E347. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Zhao, J.; Xiong, Y.L. Coomassie Brilliant Blue-binding: A simple and effective method for the determination of water-insoluble protein surface hydrophobicity. Anal. Methods 2016, 8, 790–795. [Google Scholar] [CrossRef]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Jones, O.G.; Decker, E.A.; McClements, D.J. Formation of biopolymer particles by thermal treatment of β-lactoglobulin-pectin complexes. Food Hydrocoll. 2009, 23, 1312–1321. [Google Scholar] [CrossRef]
- Zdunek, A.; Pieczywek, P.M.; Cybulska, J. The primary, secondary, and structures of higher levels ofpectin polysaccharides. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1101–1117. [Google Scholar] [CrossRef]
- Weinbreck, F.; Nieuwenhuijse, H.; Robijn, G.W.; de Kruif, C.G. Complexation of whey proteins with carrageenan. J. Agric. Food Chem. 2004, 52, 3550–3555. [Google Scholar] [CrossRef]
- Maa, Y.-F.; Hsu, C.C. Performance of sonication and microfluidization for liquid-liquid emulsification. Pharm. Dev. Technol. 1999, 4, 233–240. [Google Scholar] [CrossRef]
- Alizadeh-Pasdar, N.; Li-Chan, E.C.Y. Comparison of protein surface hydrophobicity measured at various pH values using three different fluorescent probes. J. Agric. Food Chem. 2000, 48, 328–334. [Google Scholar] [CrossRef]
- Liu, C.-M.; Liang, L.; Shuai, X.-X.; Liang, R.-H.; Chen, J. Dynamic high-pressure microfluidization-treated pectin under different ethanol concentrations. Polymers 2018, 10, 1410. [Google Scholar] [CrossRef]
- Zhong, L.; Li, X.; Duan, M.; Song, Y.; He, N.; Che, L. Impacts of high hydrostatic pressure processing on the structure and properties of pectin. LWT 2021, 148, 111793. [Google Scholar] [CrossRef]
- Laneuville, S.I.; Paquin, P.; Turgeon, S.L. Effect of preparation conditions on the characteristics of whey protein-xanthan gum complexes. Food Hydrocoll. 2000, 14, 305–314. [Google Scholar] [CrossRef]
- Oakenfull, D.; Scott, A. Hydrophobic interaction in the gelation of high methoxyl pectins. J. Food Sci. 1984, 49, 1093–1098. [Google Scholar] [CrossRef]
- Girard, M.; Turgeon, S.L.; Gauthier, S.F. Interbiopolymer complexing between β-lactoglobulin and low- and high-methylated pectin measured by potentiometric titration and ultrafiltration. Food Hydrocoll. 2002, 16, 585–591. [Google Scholar] [CrossRef]
- Chanasattru, W.; Jones, O.G.; Decker, E.A.; McClements, D.J. Impact of cosolvents on formation and properties of biopolymer nanoparticles formed by heat treatment of β-lactoglobulin-pectin complexes. Food Hydrocoll. 2009, 23, 2450–2457. [Google Scholar] [CrossRef]
- Bromley EH, C.; Krebs MR, H.; Donald, A.M. Mechanisms of structure formation in particulate gels of β-lactoglobulin formed near the isoelectric point. Eur. Phys. J. E 2006, 21, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Jones, O.G.; McClements, D.J. Biopolymer nanoparticles from heat-treated electrostatic protein-polysaccharide complexes: Factors affecting particle characteristics. J. Food Sci. 2010, 75, N36–N43. [Google Scholar] [CrossRef]
- Wagoner, T.B.; Foegeding, E.A. WPI protein-pectin soluble complexes for beverage applications. Food Hydrocoll. 2017, 63, 130–138. [Google Scholar] [CrossRef]
- Phan-Xuan, T.; Durand, D.; Nicolai, T. On the crucial importance of the pH for the formation and self-stabilizaiton of protein microgels and strands. Langmuir 2011, 27, 15092–15101. [Google Scholar] [CrossRef]
- Phan-Xuan, T.; Durand, D.; Nicolai, T.; Donato, L.; Schmitt, C.; Bovetto, L. Tuning the structure of protein particles and gels with calcium or sodium ions. Biomacromolecules 2013, 14, 1980–1989. [Google Scholar] [CrossRef]
- Jones, O.; Decker, E.A.; McClements, D.J. Thermal analysis of β-lactoglobulin complexes with pectins or carrageenan for production of stable biopolymer particles. Food Hydrocoll. 2010, 24, 239–248. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Im, S.; Jones, O.G.; Choi, S.J. Fabrication of Whey Protein Isolate-Pectin Nanoparticles by Thermal Treatment: Effect of Dynamic High-Pressure Treatment. Foods 2023, 12, 4217. https://doi.org/10.3390/foods12234217
Im S, Jones OG, Choi SJ. Fabrication of Whey Protein Isolate-Pectin Nanoparticles by Thermal Treatment: Effect of Dynamic High-Pressure Treatment. Foods. 2023; 12(23):4217. https://doi.org/10.3390/foods12234217
Chicago/Turabian StyleIm, Sohyeon, Owen Griffith Jones, and Seung Jun Choi. 2023. "Fabrication of Whey Protein Isolate-Pectin Nanoparticles by Thermal Treatment: Effect of Dynamic High-Pressure Treatment" Foods 12, no. 23: 4217. https://doi.org/10.3390/foods12234217
APA StyleIm, S., Jones, O. G., & Choi, S. J. (2023). Fabrication of Whey Protein Isolate-Pectin Nanoparticles by Thermal Treatment: Effect of Dynamic High-Pressure Treatment. Foods, 12(23), 4217. https://doi.org/10.3390/foods12234217