Drying Technique Providing Maximum Benefits on Hydrogelling Ability of Avocado Seed Protein: Spray Drying
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Production
2.2.1. Defatting Avocado Seed
2.2.2. Protein Extraction from Avocado Seed
2.2.3. Drying methods
2.2.4. Hydrogel Preparation
2.3. Characterization and Technofunctional Analyses
2.3.1. Avocado Seed Protein Analyses
Chemical Composition
Fourier Transform Infrared Spectroscopy
2.3.2. Hydrogel Analyses
Color
Water Holding Capacity
Swelling Ratio
Protein Leachability
Scanning Electron Microscopy
Textural Behavior
Rheological Behavior
Release Behavior
2.3.3. Statistical Analysis
3. Result and Discussion
3.1. Physiochemical Properties of Avocado Seed Protein
3.2. FT-IR Spectrum for Avocado Seed Protein
3.3. Fabrication of Hydrogels Containing the Mixture of Avocado Seed Protein and Locust Bean Gum
3.3.1. Color
3.3.2. Water Holding Capacity
3.3.3. Swelling Properties
3.3.4. Protein Leachability
3.3.5. Appearance and Scanning Electron Microscopy Images
3.3.6. Textural Behavior
3.3.7. Dynamic Rheology Behavior
3.4. Release Behavior
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nazir, A.; Asghar, A.; Aslam Maan, A. Food Gels: Gelling Process and New Applications. In Advances in Food Rheology and Its Applications; Woodhead Publishing: Sawston, UK, 2017; pp. 335–353. [Google Scholar]
- Yang, X.; Li, A.; Li, D.; Guo, Y.; Sun, L. Applications of mixed polysaccharide-protein systems in fabricating multi-structures of binary food gels—A review. Trends Food Sci. Technol. 2021, 109, 197–210. [Google Scholar] [CrossRef]
- Zuniga, R.; Aguilera, J. Aerated food gels: Fabrication and potential applications. Trends Food Sci. Technol. 2008, 19, 176–187. [Google Scholar] [CrossRef]
- Cao, Y.; Mezzenga, R. Design principles of food gels. Nat. Food 2020, 1, 106–118. [Google Scholar] [CrossRef]
- Yang, J.; Shen, M.; Luo, Y.; Wu, T.; Wen, H.; Xie, J. Construction and characterization of Mesona chinensis polysaccharide-chitosan hydrogels, role of chitosan deacetylation degree. Carbohydr. Polym. 2021, 257, 117608. [Google Scholar] [CrossRef]
- Sun, X.; Agate, S.; Salem, K.S.; Lucia, L.; Pal, L. Hydrogel-Based Sensor Networks: Compositions, Properties, and Applications—A Review. ACS Appl. Bio Mater. 2020, 4, 140–162. [Google Scholar] [CrossRef]
- Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015, 6, 105–121. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Jia, X.; Yin, L. Hydrogel: Diversity of Structures and Applications in Food Science. Food Rev. Int. 2021, 37, 313–372. [Google Scholar] [CrossRef]
- Traffano-Schiffo, M.V.; Aguirre Calvo, T.R.; Avanza, M.V.; Santagapita, P.R. High-intensity ultrasound-assisted extraction of phenolic compounds from cowpea pods and its encapsulation in hydrogels. Heliyon 2020, 6, E04410. [Google Scholar] [CrossRef]
- Ćorković, I.; Pichler, A.; Šimunović, J.; Kopjar, M. Hydrogels: Characteristics and Application as Delivery Systems of Phenolic and Aroma Compounds. Foods 2021, 10, 1252. [Google Scholar] [CrossRef]
- Panahi, R.; Baghban-Salehi, M. Protein-Based Hydrogels. In Cellulose-Based Superabsorbent Hydrogels; Polymers and Polymeric Composites: A Reference Series; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1561–1600. [Google Scholar]
- Qin, F.; Johansen, A.Z.; Mussatto, S.I. Evaluation of different pretreatment strategies for protein extraction from brewer’s spent grains. Ind. Crops Prod. 2018, 125, 443–453. [Google Scholar] [CrossRef]
- Li, X.; Shi, J.; Scanlon, M.; Xue, S.J.; Lu, J. Effects of pretreatments on physicochemical and structural properties of proteins isolated from canola seeds after oil extraction by supercritical-CO2 process. LWT 2021, 137, 110415. [Google Scholar] [CrossRef]
- Bangar, S.P.; Dunno, K.; Dhull, S.B.; Kumar Siroha, A.; Changan, S.; Maqsood, S.; Rusu, A.V. Avocado seed discoveries: Chemical composition, biological properties, and industrial food applications. Food Chem. X 2022, 16, 100507. [Google Scholar] [CrossRef] [PubMed]
- Figueroa, J.G.; Borrás-Linares, I.; Lozano-Sánchez, J.; Quirantes-Piné, R.; Segura-Carretero, A. Optimization of drying process and pressurized liquid extraction for recovery of bioactive compounds from avocado peel by-product. Electrophoresis 2018, 39, 1908–1916. [Google Scholar] [CrossRef] [PubMed]
- Melgar, B.; Dias, M.I.; Ciric, A.; Sokovic, M.; Garcia-Castello, E.M.; Rodriguez-Lopez, A.D.; Barros, L.; Ferreira, I.C.R.F. Bioactive characterization of Persea americana Mill. by-products: A rich source of inherent antioxidants. Ind. Crops Prod. 2018, 111, 212–218. [Google Scholar] [CrossRef]
- Lightfoot, D.A.; Tremocoldi, M.A.; Rosalen, P.L.; Franchin, M.; Massarioli, A.P.; Denny, C.; Daiuto, É.R.; Paschoal, J.A.R.; Melo, P.S.; de Alencar, S.M. Exploration of avocado by-products as natural sources of bioactive compounds. PLoS ONE 2018, 13, e0192577. [Google Scholar] [CrossRef]
- C Egbuonu, A.C. Proximate, Functional, Antinutrient and Antimicrobial Properties of Avocado Pear (Persea americana) Seeds. J. Nutr. Health Food Eng. 2018, 8, 78–82. [Google Scholar] [CrossRef]
- Shen, Y.; Tang, X.; Li, Y. Drying methods affect physicochemical and functional properties of quinoa protein isolate. Food Chem. 2021, 339, 127823. [Google Scholar] [CrossRef]
- Lin, Y.; Pangloli, P.; Dia, V.P. Physicochemical, functional and bioactive properties of hempseed (Cannabis sativa L.) meal, a co-product of hempseed oil and protein production, as affected by drying process. Food Chem. 2021, 350, 129188. [Google Scholar] [CrossRef]
- Brishti, F.H.; Chay, S.Y.; Muhammad, K.; Ismail-Fitry, M.R.; Zarei, M.; Karthikeyan, S.; Saari, N. Effects of drying techniques on the physicochemical, functional, thermal, structural and rheological properties of mung bean (Vigna radiata) protein isolate powder. Food Res. Int. 2020, 138, 109783. [Google Scholar] [CrossRef]
- Timilsena, Y.P.; Adhikari, R.; Barrow, C.J.; Adhikari, B. Physicochemical and functional properties of protein isolate produced from Australian chia seeds. Food Chem. 2016, 212, 648–656. [Google Scholar] [CrossRef]
- Feyzi, S.; Varidi, M.; Zare, F.; Varidi, M.J. Effect of drying methods on the structure, thermo and functional properties of fenugreek (Trigonella foenum graecum) protein isolate. J. Sci. Food Agric. 2017, 98, 1880–1888. [Google Scholar] [CrossRef] [PubMed]
- Piskov, S.; Timchenko, L.; Avanesyan, S.; Siddiqui, S.A.; Sizonenko, M.; Kurchenko, V.; Rzhepakovsky, I.; Blinov, A.; Nagdalian, A.; Shariati, M.A.; et al. A Comparative Study on the Structural Properties and Lipid Profile of Mushroom (Pleurotus ostreatus) Powder Obtained by Different Drying Methods. Agriculture 2022, 12, 1590. [Google Scholar] [CrossRef]
- Gan, Y.; Xu, D.; Zhang, J.; Wang, Z.; Wang, S.; Guo, H.; Zhang, K.; Li, Y.; Wang, Y. Rana chensinensis Ovum Oil Based on CO2 Supercritical Fluid Extraction: Response Surface Methodology Optimization and Unsaturated Fatty Acid Ingredient Analysis. Molecules 2020, 25, 4170. [Google Scholar] [CrossRef]
- Yücetepe, M.; Başyiğit, B.; Karaaslan, M. Design of novel nutritious microcapsules comprising ω-5 fatty acids and essential amino acids by assembling pomegranate seed derived macromolecules. LWT 2021, 143, 111162. [Google Scholar] [CrossRef]
- Başyiğit, B.; Yücetepe, M.; Karaaslan, A.; Karaaslan, M. High efficiency microencapsulation of extra virgin olive oil (EVOO) with novel carrier agents: Fruit proteins. Mater. Today Commun. 2021, 28, 102618. [Google Scholar] [CrossRef]
- He, Z.; Liu, C.; Zhao, J.; Li, W.; Wang, Y. Physicochemical properties of a ginkgo seed protein-pectin composite gel. Food Hydrocoll. 2021, 118, 106781. [Google Scholar] [CrossRef]
- Dakia, P.A.; Blecker, C.; Robert, C.; Wathelet, B.; Paquot, M. Composition and physicochemical properties of locust bean gum extracted from whole seeds by acid or water dehulling pre-treatment. Food Hydrocoll. 2008, 22, 807–818. [Google Scholar] [CrossRef]
- López-Monterrubio, D.I.; Lobato-Calleros, C.; Alvarez-Ramirez, J.; Vernon-Carter, E.J. Huauzontle (Chenopodium nuttalliae Saff.) protein: Composition, structure, physicochemical and functional properties. Food Hydrocoll. 2020, 108, 106043. [Google Scholar] [CrossRef]
- Vanden Braber, N.L.; Di Giorgio, L.; Aminahuel, C.A.; Díaz Vergara, L.I.; Martín Costa, A.O.; Montenegro, M.A.; Mauri, A.N. Antifungal whey protein films activated with low quantities of water soluble chitosan. Food Hydrocoll. 2021, 110, 106156. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, J.; Liu, C.; Li, W. Influence of γ-aminobutyric acid on gelling properties of heat-induced whey protein gels. Food Hydrocoll. 2019, 94, 287–293. [Google Scholar] [CrossRef]
- Chang, Z.; Chen, Y.; Tang, S.; Yang, J.; Chen, Y.; Chen, S.; Li, P.; Yang, Z. Construction of chitosan/polyacrylate/graphene oxide composite physical hydrogel by semi-dissolution/acidification/sol-gel transition method and its simultaneous cationic and anionic dye adsorption properties. Carbohydr. Polym. 2020, 229, 115431. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Wang, Y.; Xiong, Y.L.; Rentfrow, G.K.; Newman, M.C. Oxidation promotes cross-linking but impairs film-forming properties of whey proteins. J. Food Eng. 2013, 115, 11–19. [Google Scholar] [CrossRef]
- Hall, T.J.; Azoidis, I.; Barroso, I.A.; Hughes, E.A.B.; Grover, L.M.; Cox, S.C. Formulation of an antimicrobial superabsorbent powder that gels in situ to produce reactive oxygen. Mater. Sci. Eng. C 2021, 118, 111479. [Google Scholar] [CrossRef]
- Basyigit, B. Designing Nanoliposome-in-Natural Hydrogel Hybrid System for Controllable Release of Essential Oil in Gastrointestinal Tract: A Novel Vehicle. Foods 2023, 12, 2242. [Google Scholar] [CrossRef]
- Demirkıran, E.; Başyïğit, B.; Altun, G.; Yücetepe, M.; Sağlam, H.; Karaaslan, M. Facile construction of fruit protein based natural hydrogel via intra/inter molecular cross-linking. Food Hydrocoll. 2022, 133, 107899. [Google Scholar] [CrossRef]
- Liu, J.; Li, Z.; Lin, Q.; Jiang, X.; Yao, J.; Yang, Y.; Shao, Z.; Chen, X. A Robust, Resilient, and Multi-Functional Soy Protein-Based Hydrogel. ACS Sustain. Chem. Eng. 2018, 6, 13730–13738. [Google Scholar] [CrossRef]
- Tabakoglu, N.; Karaca, H. Effects of ozone-enriched storage atmosphere on postharvest quality of black mulberry fruits (Morus nigra L.). LWT 2018, 92, 276–281. [Google Scholar] [CrossRef]
- Rahman, M.S.; Go, G.-w.; Seo, J.-K.; Gul, K.; Choi, S.-G.; Yang, H.-S. Thiol concentration, structural characteristics and gelling properties of bovine heart protein concentrates. LWT 2019, 111, 175–181. [Google Scholar] [CrossRef]
- Lin, N.; Liu, B.; Liu, Z.; Qi, T. Effects of different drying methods on the structures and functional properties of phosphorylated Antarctic krill protein. J. Food Sci. 2020, 85, 3690–3699. [Google Scholar] [CrossRef]
- Caballero, S.; Davidov-Pardo, G. Comparison of legume and dairy proteins for the impact of Maillard conjugation on nanoemulsion formation, stability, and lutein color retention. Food Chem. 2021, 338, 128083. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, N.; Ma, G.; Zhong, L.; Pei, F.; Hu, Q.; Xu, J. Characterization of soy protein isolate/Flammulina velutipes polysaccharide hydrogel and its immunostimulatory effects on RAW264.7 cells. Food Chem. Toxicol. 2021, 151, 112126. [Google Scholar] [CrossRef] [PubMed]
- Gunasekaran, S. Whey Protein Hydrogels and Nanoparticles for Encapsulation and Controlled Delivery of Bioactive Compounds. In Whey Processing, Functionality and Health Benefits; John Wiley & Sons: Hoboken, NJ, USA, 2008; pp. 227–284. [Google Scholar]
- Maltais, A.; Remondetto, G.E.; Subirade, M. Soy protein cold-set hydrogels as controlled delivery devices for nutraceutical compounds. Food Hydrocoll. 2009, 23, 1647–1653. [Google Scholar] [CrossRef]
- Netanel Liberman, G.; Ochbaum, G.; Bitton, R.; Arad, S. Antimicrobial hydrogels composed of chitosan and sulfated polysaccharides of red microalgae. Polymer 2021, 215, 123353. [Google Scholar] [CrossRef]
- Başyiğit, B.; Altun, G.; Yücetepe, M.; Karaaslan, A.; Karaaslan, M. Locust bean gum provides excellent mechanical and release attributes to soy protein-based natural hydrogels. Int. J. Biol. Macromol. 2023, 231, 123352. [Google Scholar] [CrossRef] [PubMed]
- Slavutsky, A.M.; Bertuzzi, M.A. Formulation and characterization of hydrogel based on pectin and brea gum. Int. J. Biol. Macromol. 2019, 123, 784–791. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, X.; Teng, A.; Liu, A. Mechanical reinforcement of gelatin hydrogel with nanofiber cellulose as a function of percolation concentration. Int. J. Biol. Macromol. 2017, 103, 226–233. [Google Scholar] [CrossRef]
- Yuan, C.; Du, L.; Zhang, G.; Jin, Z.; Liu, H. Influence of cyclodextrins on texture behavior and freeze-thaw stability of kappa-carrageenan gel. Food Chem. 2016, 210, 600–605. [Google Scholar] [CrossRef]
- Ikeda, S.; Morris, V.J. Fine-Stranded and Particulate Aggregates of Heat-Denatured Whey Proteins Visualized by Atomic Force Microscopy. Biomacromolecules 2002, 3, 382–389. [Google Scholar] [CrossRef]
- Guo, X.Y.; Peng, Z.Q.; Zhang, Y.W.; Liu, B.; Cui, Y.Q. The solubility and conformational characteristics of porcine myosin as affected by the presence of l-lysine and l-histidine. Food Chem. 2015, 170, 212–217. [Google Scholar] [CrossRef]
- Lei, Z.; Fu, Y.; Xu, P.; Zheng, Y.; Zhou, C. Effects of l -arginine on the physicochemical and gel properties of chicken actomyosin. Int. J. Biol. Macromol. 2016, 92, 1258–1265. [Google Scholar] [CrossRef] [PubMed]
- Lei, Z.; Fu, Y.; Zheng, Y.; Xu, P.; Zhou, C. Effects of l-lysine on thermal gelation properties of chicken breast actomyosin. Food Sci. Biotechnol. 2017, 26, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Li, J.; Tan, S. Effect of l-lysine on the physicochemical properties of pork sausage. Food Sci. Biotechnol. 2014, 23, 775–780. [Google Scholar] [CrossRef]
- Başyiğit, B.; Altun, G.; Özaslan, Z.T.; Karaaslan, M. Synthesizing mechanically robust natural pea protein hydrogels via deep cryogenic treatment: State of the art in bioactive compound delivery system. Food Hydrocoll. 2023, 146, 109202. [Google Scholar] [CrossRef]
- Ciolacu, D.; Oprea, A.M.; Anghel, N.; Cazacu, G.; Cazacu, M. New cellulose–lignin hydrogels and their application in controlled release of polyphenols. Mater. Sci. Eng. C 2012, 32, 452–463. [Google Scholar] [CrossRef]
- Chen, H.; Qiu, X.; Xia, T.; Li, Q.; Wen, Z.; Huang, B.; Li, Y. Mesoporous Materials Make Hydrogels More Powerful in Biomedicine. Gels 2023, 9, 207. [Google Scholar] [CrossRef]
- Lupu, A.; Gradinaru, L.M.; Gradinaru, V.R.; Bercea, M. Diversity of Bioinspired Hydrogels: From Structure to Applications. Gels 2023, 9, 376. [Google Scholar] [CrossRef]
Parameters | AD | OD | VD | FD | SD |
---|---|---|---|---|---|
Protein content | 64.81 ± 0.17 c | 62.37 ± 0.26 d | 62.06 ± 0.53 d | 67.37 ± 0.61 a | 65.93 ± 0.17 b |
Moisture content | 5.35 ± 0.07 a | 5.35 ± 0.08 a | 4.88 ± 0.04 b | 4.69 ± 0.08 c | 4.22 ± 0.04 d |
Lipid content | 2.4 ± 0.14 ab | 2.25 ± 0.07 b | 2.15 ± 0.07 b | 2.6 ± 0.14 a | 2.7 ± 0.15 a |
Ash content | 8.7 ± 0.14 a | 8.7 ± 0.32 a | 8.55 ± 0.35 a | 8.8 ± 0.21 a | 8.8 ± 0.28 a |
Water activity | 0.38 ± 0.00 a | 0.27 ± 0.01 e | 0.35 ± 0.00 b | 0.34 ± 0.00 c | 0.32 ± 0.00 d |
Color | ||||||
---|---|---|---|---|---|---|
L* | a* | b* | Water Holding Capacity (%) | Swelling Ratio (%) | Protein Leachability (%) | |
AD-ASP + LB | 29.09 ± 0.05 b | 2.17 ± 0.22 b | 1.34 ± 0.13 b | 64.8 ± 0.72 e | 14.39 ± 0.15 d | 24.03 ± 0.55 e |
OD-ASP + LB | 26.62 ± 0.23 c | 2.63 ± 0.31 b | 1.88 ± 0.02 b | 72.29 ± 0.48 d | 18.93 ± 0.21 c | 17.69 ± 0.13 c |
VD-ASP + LB | 28.12 ± 0.33 b | 2.61 ± 0.1 b | 1.57 ± 0.02 b | 76.17 ± 2.33 c | 23.05 ± 0.11 b | 19.1 ± 0.25 d |
FD-ASP + LB | 26.77 ± 0.99 c | 2.38 ± 0.23 b | 1.78 ± 0.44 b | 86.83 ± 0.18 b | 34.1 ± 1.86 a | 12.14 ± 0.13 b |
SD-ASP + LB | 31.78 ± 0.04 a | 3.81 ± 0.15 a | 2.98 ± 0.05 a | 93.79 ± 0.96 a | 33.51 ± 0.42 a | 7.99 ± 0.67 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdullah, B.A.; Basyigit, B.; Karaaslan, M. Drying Technique Providing Maximum Benefits on Hydrogelling Ability of Avocado Seed Protein: Spray Drying. Foods 2023, 12, 4219. https://doi.org/10.3390/foods12234219
Abdullah BA, Basyigit B, Karaaslan M. Drying Technique Providing Maximum Benefits on Hydrogelling Ability of Avocado Seed Protein: Spray Drying. Foods. 2023; 12(23):4219. https://doi.org/10.3390/foods12234219
Chicago/Turabian StyleAbdullah, Bakhtiyar Azad, Bulent Basyigit, and Mehmet Karaaslan. 2023. "Drying Technique Providing Maximum Benefits on Hydrogelling Ability of Avocado Seed Protein: Spray Drying" Foods 12, no. 23: 4219. https://doi.org/10.3390/foods12234219
APA StyleAbdullah, B. A., Basyigit, B., & Karaaslan, M. (2023). Drying Technique Providing Maximum Benefits on Hydrogelling Ability of Avocado Seed Protein: Spray Drying. Foods, 12(23), 4219. https://doi.org/10.3390/foods12234219