Untargeted Lipidomics Reveal Quality Changes in High-Moisture Japonica Brown Rice at Different Storage Temperatures
Abstract
:1. Introduction
2. Materials and Methods
2.1. High-Moisture Japonica Brown Rice Sample Preparation
2.2. Color and Fatty Acid Values Measurement
2.3. HS-SPME/GC-MS Analysis of Volatile Compounds
2.3.1. Extraction of Volatile Compounds
2.3.2. Setting of Gas Chromatography (GC) Conditions
2.3.3. Setting of Mass Spectrometry (MS) Conditions
2.3.4. Identification and Relative Content Analysis of Volatile Compounds
2.4. Detection and Characterization of Lipid Metabolites
2.4.1. Extraction of Lipid Metabolites
2.4.2. UHPLC-LC-MS Analysis
2.4.3. Identification of Lipid Metabolites
2.5. Statistical Analysis
3. Results and Discussion
3.1. Changes in Color of High-Moisture Japonica Brown Rice during Storage
3.2. Changes in Fatty Acids Contents of High-Moisture Japonica Brown Rice during Storage
3.3. Analysis of Volatile Compounds in High-Moisture Japonica Brown Rice during Storage
3.4. Correlation Analysis of Color, FAV and Volatile Compounds
3.5. Analysis of Lipid Metabolism in High-Moisture Japonica Brown Rice at Different Storage Temperatures
3.6. Identification of Key Lipid Metabolites in High-Moisture Japonica Brown Rice
3.7. Analysis of Key Lipid Metabolism Pathways in High-Moisture Japonica Brown Rice
3.7.1. Glycerolipid Metabolism
3.7.2. Glycerophospholipid Metabolism
3.7.3. Sphingolipid Metabolism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Z.H.; Zhang, Q.C.; Dong, W.; Liu, Y.J.; Wei, S.W.; Zuo, M. FEDformer-Based Paddy Quality Assessment Model Affected by Toxin Change in Different Storage Environments. Foods 2023, 12, 1681. [Google Scholar] [CrossRef] [PubMed]
- Maiti, S.; Banik, A. Strategies to fortify the nutritional values of polished rice by implanting selective traits from brown rice: A nutrigenomics-based approach. Food Res. Int. 2023, 173, 113271. [Google Scholar] [CrossRef] [PubMed]
- Mir, S.A.; Shah, M.A.; Bosco, S.J.D.; Sunooj, K.V.; Farooq, S. A review on nutritional properties, shelf life, health aspects, and consumption of brown rice in comparison with white rice. Cereal Chem. 2020, 97, 895–903. [Google Scholar] [CrossRef]
- Zhai, Y.H.; Pan, L.H.; Luo, X.H.; Zhang, Y.W.; Wang, R.; Chen, Z.X. Effect of electron beam irradiation on storage, moisture and eating properties of high-moisture rice during storage. J. Cereal Sci. 2022, 103, 103407. [Google Scholar] [CrossRef]
- Castaño, S.M.; Medina, A.; Magan, N. Impact of storage environment on respiration, dry matter losses and fumonisin B1 contamination of stored paddy and brown rice. World Mycotoxin J. 2017, 10, 319–326. [Google Scholar] [CrossRef]
- Wang, T.; She, N.N.; Wang, M.N.; Zhang, B.; Qin, J.X.; Dong, J.Y.; Fang, G.Z.; Wang, S. Changes in Physicochemical Properties and Qualities of Red Brown Rice at Different Storage Temperatures. Foods 2021, 10, 2058. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.; Khir, R.; Pan, Z.L.; Wood, D.F.; Venkitasamy, C.; Tu, K.; El-Mashad, H.; Berrios, J. Influence of infrared drying on storage characteristics of brown rice. Food Chem. 2018, 264, 149–156. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, S.M.; Ramaswamy, H.S.; Hu, F.F.; Yu, Y. Effect of high pressure processing on rancidity of brown rice during storage. LWT 2018, 93, 405–411. [Google Scholar] [CrossRef]
- Liu, J.G.; Liu, Y.Q.; Jia, M.; Kang, X.D.; Wang, S.M.; Sun, H.; Liu, M.; Wang, A.Q.; Strappe, P.; Zhou, Z.K. Association of enriched metabolites profile with the corresponding volatile characteristics induced by rice yellowing process. Food Chem. 2021, 349, 129173. [Google Scholar] [CrossRef]
- Liu, K.L.; Zhao, S.; Li, Y.; Chen, F.S. Analysis of volatiles in brown rice, germinated brown rice, and selenised germinated brown rice during storage at different vacuum levels. J. Sci. Food Agric. 2017, 98, 2295–2301. [Google Scholar] [CrossRef]
- Zhou, Y.M.; Gao, S.J.; Wei, J.N.; Chen, X.Y.; Zhu, S.Y.; Zhou, X.L. Systematical Construction of Rice Flavor Types Based on HS-SPME-GC-MS and Sensory Evaluation. Food Chem. 2023, 413, 135604. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.L.; Li, Y.; Chen, F.S.; Yong, F. Lipid oxidation of brown rice stored at different temperatures. Int. J. Food Sci. Technol. 2017, 52, 188–195. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, X.; Wang, N.N.; Lu, S.L.; Dong, J.; Qi, Z.L.; Zhou, J.R.; Wang, Q.L. Evaluation of changes in egg yolk lipids during storage based on lipidomics through UPLC-MS/MS. Food Chem. 2023, 398, 133931. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.P.; Zi, Y.; Huang, S.D.; Chen, J.H.; Wang, X.C.; Zhong, J. Development and application of lipidomics for food research. Adv. Food Nutr. Res. 2023, 104, 1–42. [Google Scholar] [CrossRef] [PubMed]
- Tietel, Z.; Hammann, S.; Meckelmann, S.W.; Ziv, C.; Pauling, J.K.; Wolk, M.; Wurf, V.; Alves, E.; Neves, B.; Domingues, M.R. An overview of food lipids toward food lipidomics. Compr. Rev. Food Sci. Food Saf. 2023, 22, 4302–4354. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.H.; Li, J.; Zhang, L.C.; Rao, Z.H.; Feng, S.N.; Wang, Y.J.; Liu, H.; Meng, Q.S. Integrated Lipidomic and Metabolomics Analysis Revealing the Effects of Frozen Storage Duration on Pork Lipids. Metabolites 2022, 12, 977. [Google Scholar] [CrossRef]
- Concepcion, J.C.T.; Calingacion, M.; Garson, M.J.; Fitzgerald, M.A. Lipidomics reveals associations between rice quality traits. Metabolomics 2020, 16, 54. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.Q.; Qiu, N.; Guyonnet, V.; Keast, R.; Zhu, C.X.; Mine, Y. UHPLC-Q-Orbitrap-based untargeted lipidomics reveals the variation of yolk lipids during egg storage. J. Sci. Food Agric. 2022, 102, 5690–5699. [Google Scholar] [CrossRef]
- Zhang, D.; Huang, S.S.; Wang, Q.; Shang, B.; Liu, J.L.; Xing, X.T.; Hong, Y.; Liu, H.; Duan, X.L.; Sun, H. Lipidomics and volatilomics reveal the changes in lipids and their volatile oxidative degradation products of brown rice during accelerated aging. Food Chem. 2023, 421, 136157. [Google Scholar] [CrossRef]
- Wu, Y.N.; He, S.D.; Pan, T.E.; Miao, X.Y.; Xiang, J.; Ye, Y.K.; Cao, X.D.; Sun, H.J. Enhancement of gamma-aminobutyric acid and relevant metabolites in brown glutinous rice (Oryza sativa L.) through salt stress and low-frequency ultrasound treatments at pre-germination stage. Food Chem. 2023, 410, 135362. [Google Scholar] [CrossRef]
- Qu, C.L.; Xia, Y.Z.; Yang, Q.K.; Li, W.H.; Hu, M.; Lu, P. Novel insights into rice deterioration for nitrogen controlled atmosphere and re-aeration storage based on no-targeted metabolomics. LWT 2023, 178, 114631. [Google Scholar] [CrossRef]
- Li, Y.N.; Li, Y.F.; Chen, Z.X.; Bu, L.J.; Shi, F.; Huang, J.R. High-temperature air fluidization improves cooking and eating quality and storage stability of brown rice. Innov. Food. Sci Emerg. Technol. 2021, 67, 102536. [Google Scholar] [CrossRef]
- Li, Y.; Gao, C.; Wang, Y.; Fan, M.C.; Wang, L.; Qian, H.F. Analysis of the aroma volatile compounds in different stabilized rice bran during storage. Food Chem. 2023, 405, 134753. [Google Scholar] [CrossRef] [PubMed]
- Kibar, H.; Sönmez, F.; Temel, S. Effect of storage conditions on nutritional quality and color characteristics of quinoa varieties. J. Stored. Prod. Res. 2021, 91, 101761. [Google Scholar] [CrossRef]
- Wang, C.Y.; Feng, Y.C.; Fu, T.X.; Sheng, Y.N.; Zhang, S.; Zhang, Y.W.; Jiang, Y.J.; Yu, M.; Zhang, D.J. Effect of storage on metabolites of brown rice. J. Sci. Food Agric. 2020, 100, 4364–4377. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Liu, T.; Chen, Q.S.; Chen, Q.S. Dynamic monitoring of fatty acid value in rice storage based on a portable near-infrared spectroscopy system. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 240, 118620. [Google Scholar] [CrossRef] [PubMed]
- Shu, Z.X.; Jia, W.Q.; Zhang, W.; Wang, P.P. Selected quality attributes of paddy rice as affected by storage temperature history. Int. J. Food Prop. 2021, 24, 316–324. [Google Scholar] [CrossRef]
- Pereira, G.V.D.; Neto, D.P.D.; Magalhaes, A.I.; Vásquez, Z.S.; Medeiros, A.B.P.; Vandenberghe, L.P.S.; Soccol, C.R. Exploring the impacts of postharvest processing on the aroma formation of coffee beans—A review. Food Chem. 2019, 272, 441–452. [Google Scholar] [CrossRef]
- Akkad, R.; Buchko, A.; Johnston, S.P.; Han, J.; House, J.D.; Curtis, J.M. Sprouting improves the flavour quality of faba bean flours. Food Chem. 2021, 364, 130355. [Google Scholar] [CrossRef]
- Gao, C.; Li, Y.; Pan, Q.F.; Fan, M.C.; Wang, L.; Qian, H.F. Analysis of the key aroma volatile compounds in rice bran during storage and processing via HS-SPME GC/MS. J. Cereal Sci. 2021, 99, 103178. [Google Scholar] [CrossRef]
- Li, Z.H.; Sun, X.Y.; Xu, T.; Dai, W.; Yan, Q.; Li, P.; Fang, Y.; Ding, J. Insight into the dynamic variation and retention of major aroma volatile compounds during the milling of Suxiang japonica rice. Food Chem. 2023, 405, 134468. [Google Scholar] [CrossRef]
- Zhao, Q.Y.; Guo, H.; Hou, D.Z.; Laraib, Y.; Xue, Y.; Shen, Q. Influence of temperature on storage characteristics of different rice varieties. Cereal Chem. 2021, 98, 935–945. [Google Scholar] [CrossRef]
- Leal, A.R.; Dionísio, A.P.; de Abreu, F.A.P.; de Oliveira, G.F.; Araújo, I.M.D.; Magalhaes, H.C.R.; Leite, A.B.; da Silva, E.K.M.; do Nascimento, R.F.; do Nascimento, H.O.; et al. Impact of different kernel grades on volatile compounds profile, fatty acids and oxidative quality of cashew nut oil. Food Res. Int. 2023, 165, 112526. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, J.W.; Cheng, Y.J.; Liu, Y.F. Volatile components of deep-fried soybean oil as indicator indices of lipid oxidation and quality degradation. Eur. Food Res. Technol. 2020, 246, 1183–1192. [Google Scholar] [CrossRef]
- Zhang, D.; Duan, X.L.; Shang, B.; Hong, Y.; Sun, H. Analysis of lipidomics profile of rice and changes during storage by UPLC-Q-extractive orbitrap mass spectrometry. Food Res. Int. 2021, 142, 110214. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.J.; Wang, L.B.; Qiu, J.; Li, Z.G. Effects of superheated steam processing on common buckwheat grains: Lipase inactivation and its association with lipidomics profile during storage. J. Cereal Sci. 2020, 95, 103057. [Google Scholar] [CrossRef]
- Chen, J.Z.; Nichols, K.K.; Wilson, L.; Barnes, S.; Nichols, J.J. Untargeted lipidomic analysis of human tears: A new approach for quantification of O-acyl-omega hydroxy fatty acids. Ocul. Surf. 2019, 17, 347–355. [Google Scholar] [CrossRef]
- Muller, A.; Nunes, M.T.; Maldaner, V.; Coradi, P.C.; Moraes, R.S.D.; Martens, S.; Leal, A.F.; Pereira, V.F.; Marin, C.K. Rice Drying, Storage and Processing: Effects of Post-Harvest Operations on Grain Quality. Rice Sci. 2022, 29, 16–30. [Google Scholar] [CrossRef]
- Mukhopadhyay, T.K.; Trauner, D. Concise Synthesis of Glycerophospholipids. J. Org. Chem. 2022, 88, 11253–11257. [Google Scholar] [CrossRef]
- Copic, A.; Dieudonne, T.; Lenoir, G. Phosphatidylserine transport in cell life and death. Curr. Opin. Cell Biol. 2023, 83, 102192. [Google Scholar] [CrossRef]
- Drabik, K.; Próchniak, T.; Spustek, D.; Wengerska, K.; Batkowska, J. The Impact of Package Type and Temperature on the Changes in Quality and Fatty Acids Profile of Table Eggs during Their Storage. Foods 2021, 10, 2047. [Google Scholar] [CrossRef]
- Liu, X.; Li, Y.H.; Liu, Q.; Du, H.J.; Ma, G.X.; Shen, F.; Hu, Q.H. Mechanism of electron beam irradiation on the lipid metabolism of paddy during high temperature storage. J. Cereal Sci. 2023, 111, 103668. [Google Scholar] [CrossRef]
- Pant, D.C.; Aguilera-Albesa, S.; Pujol, A. Ceramide signalling in inherited and multifactorial brain metabolic diseases. Neurobiol. Dis. 2020, 143, 105014. [Google Scholar] [CrossRef]
NO. | Volatile Compounds | 15.5% | |||
---|---|---|---|---|---|
0 Day | 90 Day | ||||
- | 15 °C | 20 °C | 25 °C | ||
Alcohols | |||||
1 | 1-Heptanol | 1.89 ± 0.13 a | 1.86 ± 0.12 a | / | 0.33 ± 0.02 b |
2 | 1-Octanol | 5.25 ± 0.20 a | 3.99 ± 0.19 b | 1.93 ± 0.12 c | 1.70 ± 0.44 c |
3 | 1-Nonanol | 1.46 ± 0.12 a | 0.95 ± 0.05 b | 0.64 ± 0.08 c | 0.60 ± 0.08 c |
4 | 1-Octen-3-ol | / | 5.72 ± 0.03 a | 5.43 ± 0.04 b | 5.15 ± 0.03 c |
5 | 2-Octyl-1-decanol | 0.44 ± 0.07 a | 0.47 ± 0.08 a | / | / |
6 | 2-Hexyl-1-decanol | 1.87 ± 0.17 a | 2.01 ± 0.41 a | 1.12 ± 0.22 b | 1.10 ± 0.33 b |
7 | Linalool oxide | / | 0.96 ± 0.02 a | 0.84 ± 0.22 a | 0.39 ± 0.07 b |
8 | alpha-Terpineol | / | 1.76 ± 0.04 a | 1.19 ± 0.12 b | 0.58 ± 0.25 c |
9 | 4,8-Dimethyl-1-nonanol | 0.83 ± 0.06 a | 0.76 ± 0.01 a | 0.45 ± 0.09 b | 0.25 ± 0.06 c |
10 | 3,7,11-Trimethyl-1-dodecanol | 0.23 ± 0.02 b | 0.38 ± 0.03 a | / | 0.26 ± 0.04 b |
Ketones | |||||
11 | Geranylacetone | 1.75 ± 0.15 a | 1.19 ± 0.10 b | / | / |
12 | (R,S)-5-Ethyl-6-methyl-3E-hepten-2-one | 0.97 ± 0.23 a | 0.86 ± 0.05 a | 0.41 ± 0.18 b | 0.20 ± 0.04 b |
13 | 6,10-Dimethyl-undecan-2-one | 0.98 ± 0.06 a | 1.02 ± 0.13 a | 0.51 ± 0.11 b | / |
14 | 2,6,10-Trimethyl-14-pentadecanone | 2.36 ± 0.45 a | 1.20 ± 0.08 b | 0.59 ± 0.05 c | 0.31 ± 0.10 c |
Aldehydes | |||||
15 | Undecanal | 0.68 ± 0.01 a | 0.59 ± 0.01 a | 0.35 ± 0.06 b | 0.28 ± 0.09 b |
16 | Tetradecanal | 0.44 ± 0.07 a | 0.32 ± 0.03 b | / | / |
17 | Octanal | 2.17 ± 0.31 a | 2.29 ± 0.25 a | / | / |
18 | Nonanal | 14.60 ± 0.21 a | 11.94 ± 0.68 b | 8.56 ± 0.41 c | 7.59 ± 1.47 c |
19 | Decanal | 3.32 ± 0.09 a | 3.05 ± 0.05 b | / | / |
20 | (E)-2-octenal | 2.17 ± 0.10 a | 1.00 ± 0.35 b | / | / |
21 | (E)-2-Nonenal | 1.29 ± 0.08 a | 0.70 ± 0.15 b | 0.22 ± 0.00 c | 0.21 ± 0.03 c |
22 | (E)-2-Decenal | 4.71 ± 0.54 a | 2.48 ± 0.33 b | 1.10 ± 0.11 c | 0.64 ± 0.03 d |
23 | 2-Undecenal | 3.88 ± 0.46 a | 2.32 ± 0.18 b | / | / |
Hydrocarbons | |||||
24 | Dodecane | 1.88 ± 0.06 a | 1.11 ± 0.03 b | 1.20 ± 0.03 b | 1.57 ± 0.04 a |
25 | Tridecane | 2.53 ± 0.42 a | 0.98 ± 0.02 c | 1.48 ± 0.15 b | 1.81 ± 0.17 b |
26 | Tetradecane | 1.93 ± 0.35 c | 2.28 ± 0.05 b | 2.54 ± 0.02 a | 2.78 ± 0.21 a |
27 | Heptadecane | 0.20 ± 0.01 d | 0.69 ± 0.00 c | 1.09 ± 0.02 b | 1.50 ± 0.04 a |
28 | Tetradecane, 3-methyl- | / | 0.50 ± 0.03 b | 1.19 ± 0.62 a | 1.53 ± 0.35 a |
29 | Pentadecane, 3-methyl- | / | 1.01 ± 0.02 b | 1.21 ± 0.05 a | 1.27 ± 0.01 a |
30 | Pentadecane, 4-methyl- | / | / | 0.43 ± 0.18 b | 1.16 ± 0.24 a |
31 | Pentadecane, 5-methyl- | / | 0.61 ± 0.01 b | 0.95 ± 0.07 a | 1.18 ± 0.21 a |
32 | Cyclopentane, undecyl- | 0.28 ± 0.10 c | 0.66 ± 0.01 b | 0.81 ± 0.02 a | 0.86 ± 0.05 a |
33 | Dodecane, 4,6-dimethyl- | / | 0.54 ± 0.02 b | 0.57 ± 0.03 b | 0.68 ± 0.01 a |
34 | Hexadecane, 2,6,10,14-tetramethyl- | / | 0.64 ± 0.05 b | 1.08 ± 0.41 a | 1.28 ± 0.14 a |
35 | Heneicosane, 11-(1-ethylpropyl)- | / | / | 0.89 ± 0.67 a | 1.32 ± 0.03 a |
Others | |||||
36 | 2-pentylfuran | 4.90 ± 0.04 b | 5.98 ± 0.32 a | 2.25 ± 0.45 c | 1.53 ± 0.57 c |
37 | Ethyl palmitate | 0.38 ± 0.00 b | 0.60 ± 0.06 a | / | / |
38 | 2,4-bis(1,1-dimethylethyl)- phenol | / | 2.18 ± 0.09 a | 1.38 ± 0.10 b | 0.92 ± 0.04 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, L.; Zhao, Y.; Xu, X.; Li, Y.; Lv, H. Untargeted Lipidomics Reveal Quality Changes in High-Moisture Japonica Brown Rice at Different Storage Temperatures. Foods 2023, 12, 4218. https://doi.org/10.3390/foods12234218
Qu L, Zhao Y, Xu X, Li Y, Lv H. Untargeted Lipidomics Reveal Quality Changes in High-Moisture Japonica Brown Rice at Different Storage Temperatures. Foods. 2023; 12(23):4218. https://doi.org/10.3390/foods12234218
Chicago/Turabian StyleQu, Lingyu, Yan Zhao, Xiangdong Xu, Yanfei Li, and Haoxin Lv. 2023. "Untargeted Lipidomics Reveal Quality Changes in High-Moisture Japonica Brown Rice at Different Storage Temperatures" Foods 12, no. 23: 4218. https://doi.org/10.3390/foods12234218
APA StyleQu, L., Zhao, Y., Xu, X., Li, Y., & Lv, H. (2023). Untargeted Lipidomics Reveal Quality Changes in High-Moisture Japonica Brown Rice at Different Storage Temperatures. Foods, 12(23), 4218. https://doi.org/10.3390/foods12234218