Innovative Applications of Tenebrio molitor Larvae in Food Product Development: A Comprehensive Review
Abstract
:1. Introduction
2. Nutritional Value of T. molitor
3. Tenebrio molitor and Its Derivatives as Innovative Products for Human Consumption
3.1. Bakery Goods
3.1.1. Bread
3.1.2. Biscuits
3.1.3. Cracker
3.1.4. Bars
3.2. Meat
3.2.1. Burgers
3.2.2. Sausages
3.3. Sauces
3.4. Dairy Products
3.4.1. Ice Cream
3.4.2. Milk
3.4.3. Spreadable Cheese
3.5. Oil
3.6. Tenebrio molitor as Animal Feed to Enhance Meat for Human Consumption
4. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wallace, B. The Multidimensional Nature of Population/Environmental Problems. Polit. Life Sci. 1997, 16, 224–226. [Google Scholar] [CrossRef]
- Béné, C.; Barange, M.; Subasinghe, R.; Pinstrup-Andersen, P.; Merino, G.; Hemre, G.I.; Williams, M. Feeding 9 Billion by 2050–Putting Fish Back on the Menu. Food Secur. 2015, 7, 261–274. [Google Scholar] [CrossRef]
- Boyd, C.E.; McNevin, A.A.; Davis, R.P. The Contribution of Fisheries and Aquaculture to the Global Protein Supply. Food Secur. 2022, 14, 805–827. [Google Scholar] [CrossRef]
- Van Bavel, J. The World Population Explosion: Causes, Backgrounds and -Projections for the Future. Facts Views Vis. ObGyn 2013, 5, 281–291. [Google Scholar]
- Henchion, M.; Hayes, M.; Mullen, A.M.; Fenelon, M.; Tiwari, B. Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium. Foods 2017, 6, 53. [Google Scholar] [CrossRef]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a Cultivated Planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef]
- Le Mouël, C.; Forslund, A. How Can We Feed the World in 2050? A Review of the Responses from Global Scenario Studies. Eur. Rev. Agric. Econ. 2017, 44, 541–591. [Google Scholar] [CrossRef]
- Caro, D. Greenhouse Gas and Livestock Emissions and Climate Change; Elsevier: Amsterdam, The Netherlands, 2018; Volume 1, ISBN 9780128126882. [Google Scholar]
- Van Der Zijpp, A.; Wilke, P.; Carsan, S. Sustainable Livestock Intensification the Role of Livestock in Developing Communities: Enhancing Multifunctionality; UJ Press: Johannesburg, South Africa, 2008; pp. 123–150. [Google Scholar]
- Copping, A.E.; Hemery, L.G.; Viehman, H.; Seitz, A.C.; Staines, G.J.; Hasselman, D.J. Are Fish in Danger? A Review of Environmental Effects of Marine Renewable Energy on Fishes. Biol. Conserv. 2021, 262, 109297. [Google Scholar] [CrossRef]
- Dulvy, N.K.; Pacoureau, N.; Rigby, C.L.; Pollom, R.A.; Jabado, R.W.; Ebert, D.A.; Finucci, B.; Pollock, C.M.; Cheok, J.; Derrick, D.H.; et al. Overfishing Drives over One-Third of All Sharks and Rays toward a Global Extinction Crisis. Curr. Biol. 2021, 31, 4773–4787.e8. [Google Scholar] [CrossRef]
- Coleman, F.C.; Williams, S.L. Overexploiting Marine Ecosystem Engineers: Potential Consequences for Biodiversity. Trends Ecol. Evol. 2002, 17, 40–44. [Google Scholar] [CrossRef]
- Lachs, L.; Oñate-Casado, J. Fisheries and Tourism: Social, Economic, and Ecological Trade-Offs in Coral Reef Systems; Springer: Berlin/Heidelberg, Germany, 2020; ISBN 9783030203887. [Google Scholar]
- Patel, S.; Suleria, H.A.R.; Rauf, A. Edible Insects as Innovative Foods: Nutritional and Functional Assessments. Trends Food Sci. Technol. 2019, 86, 352–359. [Google Scholar] [CrossRef]
- Egas-Montenegro, E.; Ordo, R. International Journal of Gastronomy and Food Science Edible Insects: A Food Alternative for the Sustainable Development of the Planet. Int. J. Gastron. Food Sci. 2021, 23, 100304. [Google Scholar] [CrossRef]
- Guin, R.P.F.; Florença, S.G.; Boustani, N.M.; Chuck-hern, C.; Sari, M.M.; Ferreira, M.; Costa, C.A.; Cardoso, A.P.; Tarcea, M.; Correia, P.M.R.; et al. Are Consumers Aware of Sustainability Aspects Related to Edible Insects? Results from a Study Involving 14 Countries. Sustainability 2022, 14, 14125. [Google Scholar] [CrossRef]
- Florença, S.G.; Guin, R.P.F.; Gonçalves, F.J.A.; Jo, M.; Ferreira, M.; Costa, C.A.; Correia, P.M.R.; Cardoso, A.P.; Campos, S. The Motivations for Consumption of Edible Insects: A Systematic Review. Foods 2022, 11, 3643. [Google Scholar] [CrossRef]
- Ha, N.I.; Mun, S.K.; Im, S.B.; Jang, H.Y.; Jeong, H.G.; Kang, K.Y.; Park, K.W.; Seo, K.S.; Ban, S.E.; Kim, K.J.; et al. Changes in Functionality of Tenebrio molitor Larvae Fermented by Cordyceps militaris Mycelia. Foods 2022, 11, 2477. [Google Scholar] [CrossRef]
- Premalatha, M.; Abbasi, T.; Abbasi, T.; Abbasi, S.A. Energy-Efficient Food Production to Reduce Global Warming and Ecodegradation: The Use of Edible Insects. Renew. Sustain. Energy Rev. 2011, 15, 4357–4360. [Google Scholar] [CrossRef]
- Krongdang, S.; Phokasem, P.; Venkatachalam, K.; Charoenphun, N. Edible Insects in Thailand: An Overview of Status, Properties, Processing, and Utilization in the Food Industry. Foods 2023, 12, 2162. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Shah, M.A.; Centoducati, G. Prospects of Edible Insects as Sustainable Protein for Food and Feed—A Review. J. Insects Food Feed. 2023, 1, 4588. [Google Scholar] [CrossRef]
- van Huis, A. Edible Insects Contributing to Food Security? Agric. Food Secur. 2015, 4, 1–9. [Google Scholar] [CrossRef]
- Van Huis, A. Edible Insects Are the Future? Proc. Nutr. Soc. 2016, 75, 294–305. [Google Scholar] [CrossRef]
- Kouřimská, L.; Adámková, A. Nutritional and Sensory Quality of Edible Insects. NFS J. 2016, 4, 22–26. [Google Scholar] [CrossRef]
- Ojeda-Avila, T.; Woods, H.A.; Raguso, R.A. Effects of Dietary Variation on Growth, Composition, and Maturation of Manduca sexta (Sphingidae: Lepidoptera). J. Insect Physiol. 2003, 49, 293–306. [Google Scholar] [CrossRef]
- Bjørge, J.D.; Overgaard, J.; Malte, H.; Gianotten, N.; Heckmann, L.H. Role of Temperature on Growth and Metabolic Rate in the Tenebrionid Beetles Alphitobius Diaperinus and Tenebrio molitor. J. Insect Physiol. 2018, 107, 89–96. [Google Scholar] [CrossRef]
- Mancini, S.; Moruzzo, R.; Riccioli, F.; Paci, G. European Consumers’ Readiness to Adopt Insects as Food. A Review. Food Res. Int. 2019, 122, 661–678. [Google Scholar] [CrossRef]
- Piha, S.; Pohjanheimo, T.; Lähteenmäki-Uutela, A.; Křečková, Z.; Otterbring, T. The Effects of Consumer Knowledge on the Willingness to Buy Insect Food: An Exploratory Cross-Regional Study in Northern and Central Europe. Food Qual. Prefer. 2018, 70, 1–10. [Google Scholar] [CrossRef]
- Moruzzo, R.; Mancini, S.; Boncinelli, F.; Riccioli, F. Exploring the Acceptance of Entomophagy: A Survey of Italian Consumers. Insects 2021, 12, 123. [Google Scholar] [CrossRef]
- van Huis, A.; Rumpold, B. Strategies to Convince Consumers to Eat Insects? A Review. Food Qual. Prefer. 2023, 110, 104927. [Google Scholar] [CrossRef]
- Żuk-Gołaszewska, K.; Gałęcki, R.; Obremski, K.; Smetana, S.; Figiel, S.; Gołaszewski, J. Edible Insect Farming in the Context of the EU Regulations and Marketing—An Overview. Insects 2022, 13, 446. [Google Scholar] [CrossRef]
- Commission Implementing Regulation (EU) 2021/1975 of 12 November 2021 Authorising the Placing on the Market of Frozen, Dried and Powder Forms of Locusta Migratoria as a Novel Food under Regulation (EU) 2015/2283 of the European Parliament and of the Council and Amending Commission Implementing Regulation (EU) 2017/2470. Off. J. Eur. Union L402 2021, 1975, 10.
- Commission Implementing Regulation (EU) 2021/882 of 1 June 2021 Authorising the Placing on the Market of Dried Tenebrio molitor Larva as a Novel Food under Regulation (EU) 2015/2283 of the European Parliament and of the Council, and Amending Commission Implementing Regulation (EU) 2017/2470. Off. J. Eur. Union L194 2021, 882, 16–20.
- Commission Implementing Regulation (EU) 2023/58 of 5 January 2023 Authorising the Placing on the Market of the Frozen, Paste, Dried and Powder Forms of Alphitobius Diaperinus Larvae (Lesser Mealworm) as a Novel Food and Amending Implementing Regulation (EU) 2017/2470. Off. J. Eur. Union L5 2023, 58, 10–15.
- Moruzzo, R.; Riccioli, F.; Espinosa Diaz, S.; Secci, C.; Poli, G.; Mancini, S. Mealworm (Tenebrio molitor): Potential and Challenges to Promote Circular Economy. Animals 2021, 11, 2568. [Google Scholar] [CrossRef]
- Bordiean, A.; Krzyżaniak, M.; Stolarski, M.J.; Czachorowski, S.; Peni, D. Will Yellow Mealworm Become a Source of Safe Proteins for Europe? Agriculture 2020, 10, 233. [Google Scholar] [CrossRef]
- Tzompa-Sosa, D.A.; Moruzzo, R.; Mancini, S.; Schouteten, J.J.; Liu, A.; Li, J.; Sogari, G. Consumers’ Acceptance toward Whole and Processed Mealworms: A Cross-Country Study in Belgium, China, Italy, Mexico, and the US. PLoS ONE 2023, 18, e0279530. [Google Scholar] [CrossRef]
- Gkinali, A.-A.; Matsakidou, A.; Vasileiou, E.; Paraskevopoulou, A. Potentiality of Tenebrio molitor Larva-Based Ingredients for the Food Industry: A Review. Trends Food Sci. Technol. 2022, 119, 495–507. [Google Scholar] [CrossRef]
- Fischer, A.R.H.; Steenbekkers, L.P.A. All Insects Are Equal, but Some Insects Are More Equal than Others. Br. Food J. 2018, 120, 852–863. [Google Scholar] [CrossRef]
- Mancuso, T.; Pippinato, L.; Gasco, L. The European Insects Sector and Its Role in the Provision of Green Proteins in Feed Supply. Qual. Access Success 2019, 20, 374–381. [Google Scholar]
- Sogari, G.; Amato, M.; Biasato, I.; Chiesa, S.; Gasco, L. The Potential Role of Insects as Feed: A Multi-Perspective Review. Animals 2019, 9, 119. [Google Scholar] [CrossRef]
- Thévenot, A.; Rivera, J.L.; Wilfart, A.; Maillard, F.; Hassouna, M.; Senga-Kiesse, T.; Le Féon, S.; Aubin, J. Mealworm Meal for Animal Feed: Environmental Assessment and Sensitivity Analysis to Guide Future Prospects. J. Clean. Prod. 2018, 170, 1260–1267. [Google Scholar] [CrossRef]
- Selaledi, L.; Mbajiorgu, C.A.; Mabelebele, M. The Use of Yellow Mealworm (T. Molitor) as Alternative Source of Protein in Poultry Diets: A Review. Trop. Anim. Health Prod. 2020, 52, 7–16. [Google Scholar] [CrossRef]
- van Broekhoven, S. Quality and Safety Aspects of Mealworms as Human Food; Wageningen University and Research: Wageningen, The Netherlands, 2008; Volume 12, ISBN 9789462575714. [Google Scholar]
- Toviho, O.A. Nutrient Composition and Growth of Yellow Mealworm (Tenebrio molitor) at Different Ages and Stages of the Life Cycle. Agriculture 2022, 12, 1924. [Google Scholar] [CrossRef]
- Hosen, M.; Khan, A.R.; Hossain, M. Growth and Development of the Lesser Mealworm, Alphitobius Diaperinus (Panzer) (Coleoptera: Tenebrionidae) on Cereal Flours. Pak. J. Biol. Sci. 2004, 7, 1505–1508. [Google Scholar] [CrossRef]
- Rumbos, C.I.; Bliamplias, D.; Gourgouta, M.; Michail, V.; Athanassiou, C.G. Rearing Tenebrio molitor and Alphitobius diaperinus larvae on seed cleaning process byproducts. Insects 2021, 12, 293. [Google Scholar] [CrossRef]
- Rumbos, C.I.; Karapanagiotidis, I.T.; Mente, E.; Athanassiou, C.G. The Lesser Mealworm Alphitobius Diaperinus: A Noxious Pest or a Promising Nutrient Source? Rev. Aquac. 2019, 11, 1418–1437. [Google Scholar] [CrossRef]
- Mariod, A.A.; Mirghani, M.E.S.; Hussein, I. Tenebrio molitor Mealworm. In Unconventional Oilseeds and Oil Sources; Mariod, A.A., Mirghani, M.E.S., Hussein, I., Eds.; Academic Press: San Diego, CA, USA, 2017; pp. 331–336. [Google Scholar] [CrossRef]
- Gomaa, K.F.S. Evaluation of Five Pearl Millet Ecotypes Susceptibility to the Nymphal Instars of Migratory Locust. Trop. Drylands 2017, 1, 57–63. [Google Scholar] [CrossRef]
- Rumbos, C.I.; Karapanagiotidis, I.T.; Mente, E.; Psofakis, P.; Athanassiou, C.G. Evaluation of Various Commodities for the Development of the Yellow Mealworm, Tenebrio molitor. Sci. Rep. 2020, 10, 11224. [Google Scholar] [CrossRef]
- Dreyer, M.; Hörtenhuber, S.; Zollitsch, W.; Jäger, H.; Schaden, L.M.; Gronauer, A.; Kral, I. Environmental Life Cycle Assessment of Yellow Mealworm (Tenebrio molitor) Production for Human Consumption in Austria—A Comparison of Mealworm and Broiler as Protein Source. Int. J. Life Cycle Assess. 2021, 26, 2232–2247. [Google Scholar] [CrossRef]
- Zielińska, E.; Baraniak, B.; Karaś, M.; Rybczyńska, K.; Jakubczyk, A. Selected Species of Edible Insects as a Source of Nutrient Composition. Food Res. Int. 2015, 77, 460–466. [Google Scholar] [CrossRef]
- Jantzen da Silva Lucas, A.; Menegon de Oliveira, L.; da Rocha, M.; Prentice, C. Edible Insects: An Alternative of Nutritional, Functional and Bioactive Compounds. Food Chem. 2020, 311, 126022. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Han, T.; Kim, Y.Y. Mealworm (Tenebrio molitor Larvae) as an Alternative Protein Source for Monogastric Animal: A Review. Animals 2020, 10, 2068. [Google Scholar] [CrossRef]
- Benzertiha, A.; Kierończyk, B.; Kołodziejski, P.; Pruszyńska–Oszmałek, E.; Rawski, M.; Józefiak, D.; Józefiak, A. Tenebrio molitor and Zophobas Morio Full-Fat Meals as Functional Feed Additives Affect Broiler Chickens’ Growth Performance and Immune System Traits. Poult. Sci. 2020, 99, 196–206. [Google Scholar] [CrossRef]
- Ravzanaadii, N.; Kim, S.-H.; Choi, W.-H.; Hong, S.-J.; Kim, N.-J. Nutritional Value of Mealworm, Tenebrio molitor as Food Source. Int. J. Ind. Entomol. 2012, 25, 93–98. [Google Scholar] [CrossRef]
- Heidari-Parsa, S.; Imani, S.; Fathipour, Y.; Kheiri, F.; Chamani, M. Determination of Yellow Mealworm (Tenebrio molitor) Nutritional Value as an Animal and Human Food Supplementation. Arthropods 2018, 7, 94–102. [Google Scholar]
- Boulos, S.; Tännler, A.; Nyström, L. Nitrogen-to-Protein Conversion Factors for Edible Insects on the Swiss Market: T. molitor, A. domesticus, and L. migratoria. Front. Nutr. 2020, 7, 89. [Google Scholar] [CrossRef]
- Kotsou, K.; Chatzimitakos, T.; Athanasiadis, V.; Bozinou, E.; Rumbos, C.I.; Athanassiou, C.G.; Lalas, S.I. Enhancing the Nutritional Profile of Tenebrio molitor Using the Leaves of Moringa oleifera. Foods 2023, 12, 2612. [Google Scholar] [CrossRef]
- Gkinali, A.; Matsakidou, A.; Paraskevopoulou, A. Characterization of Tenebrio molitor Larvae Protein Preparations Obtained by Different Extraction Approaches. Foods 2022, 11, 3852. [Google Scholar] [CrossRef]
- Siulapwa, N.; Mwambungu, A.; Lungu, E.; Sichilima, W. Nutritional Value of Four Common Edible Insects in Zambia. Int. J. Sci. Res. 2012, 3, 2319–7064. [Google Scholar]
- Aberoumand, A.; Baesi, F. The Nutritional Quality and Contents of Heavy Elements Due to Thermal Processing and Storage in Canned Thunnus tonggol Fish Change Compared to Fresh Fish. Food Sci. Nutr. 2023, 11, 3588–3600. [Google Scholar] [CrossRef]
- Jensen, I.J.; Bodin, N.; Govinden, R.; Elvevoll, E.O. Marine Capture Fisheries from Western Indian Ocean: An Excellent Source of Proteins and Essential Amino Acids. Foods 2023, 12, 1015. [Google Scholar] [CrossRef] [PubMed]
- Adámková, A.; Mlček, J.; Adámek, M.; Borkovcová, M.; Bednářová, M.; Hlobilová, V.; Knížková, I.; Juríková, T. Tenebrio molitor (Coleoptera: Tenebrionidae)—Optimization of Rearing Conditions to Obtain Desired Nutritional Values. J. Insect Sci. 2020, 20, 24. [Google Scholar] [CrossRef]
- Machona, O.; Matongorere, M.; Chidzwondo, F.; Mangoyi, R. Evaluation of Nutritional Content of the Larvae of Tenebrio molitor, and Formulation of Broiler Stockfeed. Entomol. Appl. Sci. Lett. 2022, 9, 48–56. [Google Scholar] [CrossRef]
- Wu, R.A.; Ding, Q.; Yin, L.; Chi, X.; Sun, N.; He, R.; Luo, L.; Ma, H.; Li, Z. Comparison of the Nutritional Value of Mysore Thorn Borer (Anoplophora chinensis) and Mealworm Larva (Tenebrio molitor): Amino Acid, Fatty Acid, and Element Profiles. Food Chem. 2020, 323, 126818. [Google Scholar] [CrossRef]
- Ao, X.; Yoo, J.S.; Wu, Z.L.; Kim, I.H. Can Dried Mealworm (Tenebrio molitor) Larvae Replace Fish Meal in Weaned Pigs? Livest. Sci. 2020, 239, 104103. [Google Scholar] [CrossRef]
- Yoo, J.S.; Cho, K.H.; Hong, J.S.; Jang, H.S.; Chung, Y.H. Nutrient Ileal Digestibility Evaluation of Dried Tenebrio molitor. Asian Australas. J. Anim. Sci. 2018, 32, 387. [Google Scholar] [CrossRef]
- Dreassi, E.; Cito, A.; Zanfini, A.; Materozzi, L.; Botta, M.; Francardi, V. Dietary Fatty Acids Influence the Growth and Fatty Acid Composition of the Yellow Mealworm Tenebrio molitor (Coleoptera: Tenebrionidae). Lipids 2017, 52, 285–294. [Google Scholar] [CrossRef]
- Di Pasquale, M.G. The Essentials of Essential Fatty Acids. J. Diet. Suppl. 2009, 6, 143–161. [Google Scholar] [CrossRef]
- Lawal, K.G.; Kavle, R.R.; Akanbi, T.O.; Mirosa, M.; Agyei, D. Enrichment in Specific Fatty Acids Profile of Tenebrio molitor and Hermetia illucens Larvae through Feeding. Futur. Foods 2021, 3, 100016. [Google Scholar] [CrossRef]
- Ali, M.Y.; Sina, A.A.I.; Khandker, S.S.; Neesa, L.; Tanvir, E.M.; Kabir, A.; Khalil, M.I.; Gan, S.H. Nutritional Composition and Bioactive Compounds in Tomatoes and Their Impact on Human Health and Disease: A Review. Foods 2021, 10, 45. [Google Scholar] [CrossRef]
- Ghosh, S.; Lee, S.M.; Jung, C.; Meyer-Rochow, V.B. Nutritional Composition of Five Commercial Edible Insects in South Korea. J. Asia Pac. Entomol. 2017, 20, 686–694. [Google Scholar] [CrossRef]
- Meyer-Rochow, V.B. Can Insects Help to Ease the Problem of World Food Shortage? Search 1975, 6, 261–262. [Google Scholar]
- Errico, S.; Spagnoletta, A.; Verardi, A.; Moliterni, S.; Dimatteo, S.; Sangiorgio, P. Tenebrio molitor as a Source of Interesting Natural Compounds, Their Recovery Processes, Biological Effects, and Safety Aspects. Compr. Rev. Food Sci. Food Saf. 2022, 21, 148–197. [Google Scholar] [CrossRef]
- Sete da Cruz, R.M.; da Silva, C.; da Silva, E.A.; Hegel, P.; Barão, C.E.; Cardozo-Filho, L. Composition and Oxidative Stability of Oils Extracted from Zophobas morio and Tenebrio molitor Using Pressurized N-Propane. J. Supercrit. Fluids 2022, 181, 105504. [Google Scholar] [CrossRef]
- Alves, A.V.; Freitas de Lima, F.; Granzotti da Silva, T.; de Oliveira, V.S.; Kassuya, C.A.L.; Sanjinez-Argandoña, E.J. Safety Evaluation of the Oils Extracted from Edible Insects (Tenebrio molitor and Pachymerus Nucleorum) as Novel Food for Humans. Regul. Toxicol. Pharmacol. 2019, 102, 90–94. [Google Scholar] [CrossRef]
- Gantner, M.; Kr, K.; Piotrowska, A.; Sionek, B.; Sadowska, A. Adding Mealworm (Tenebrio molitor L.) Powder to Wheat Bread: Effects on Physicochemical, Sensory and Microbiological Qualities of the End-Product. Molecules 2022, 27, 6155. [Google Scholar] [CrossRef]
- Wu, R.A.; Ding, Q.; Lu, H.; Tan, H.; Sun, N.; Wang, K.; He, R.; Luo, L.; Ma, H.; Li, Z. Caspase 3-Mediated Cytotoxicity of Mealworm Larvae (Tenebrio molitor) Oil Extract against Human Hepatocellular Carcinoma and Colorectal Adenocarcinoma. J. Ethnopharmacol. 2020, 250, 112438. [Google Scholar] [CrossRef]
- Purschke, B.; Stegmann, T.; Schreiner, M.; Jäger, H. Pilot-scale Supercritical CO2 Extraction of Edible Insect Oil from Tenebrio molitor L. Larvae—Influence of Extraction Conditions on Kinetics, Defatting Performance and Compositional Properties. Eur. J. Lipid Sci. Technol. 2017, 119, 1600134. [Google Scholar] [CrossRef]
- Kim, Y.M. Quality characteristics of white bread with Tenebrio molitor linne powder. Korean J. Food Nutr. 2017, 30, 1164–1175. [Google Scholar] [CrossRef]
- Mancini, S.; Fratini, F.; Tuccinardi, T.; Degl’Innocenti, C.; Paci, G. Tenebrio molitor Reared on Different Substrates: Is It Gluten Free? Food Control 2020, 110, 20–23. [Google Scholar] [CrossRef]
- Harrison, J.F. Insect Acid-Base Physiology. Annu. Rev. Entomol. 2001, 46, 221–250. [Google Scholar] [CrossRef]
- Roncolini, A.; Milanović, V.; Cardinali, F.; Osimani, A.; Garofalo, C.; Sabbatini, R.; Clementi, F.; Pasquini, M.; Mozzon, M.; Foligni, R.; et al. Protein Fortification with Mealworm (Tenebrio molitor L.) Powder: Effect on Textural, Microbiological, Nutritional and Sensory Features of Bread. PLoS ONE 2019, 14, e0211747. [Google Scholar] [CrossRef] [PubMed]
- Commission Regulation (EC). N0.1441/2007 Amending Regulation (EC) No 2073/2005 on Microbiological Criteria for Foodstuffs. Off. J. Eur. Union 2007, 322, 12–29. [Google Scholar]
- Khuenpet, K.; Pakasap, C.; Vatthanakul, S.; Kitthawee, S. Effect of Larval—Stage Mealworm (Tenebrio molitor) Powder on Qualities of Bread. Int. J. Agric. Technol. 2020, 16, 283–296. [Google Scholar]
- Ahmad, S.; Naz, A.; Usman, M.; Amjad, A.; Pasha, I.; Farooq, U. Impediment Effect of Chemical Agents (Additives) on Gluten Development in Cookie Dough. J. Food Sci. Technol. 2022, 59, 1396–1406. [Google Scholar] [CrossRef]
- Zielińska, E.; Pankiewicz, U. Nutritional, Physiochemical, and Antioxidative Characteristics of Shortcake Biscuits Enriched with Tenebrio molitor Flour. Molecules 2020, 25, 5629. [Google Scholar] [CrossRef]
- Xie, X.; Yuan, Z.; Fu, K.; An, J.; Deng, L. Effect of Partial Substitution of Flour with Mealworm (Tenebrio molitor L.) Powder on Dough and Biscuit Properties. Foods 2022, 11, 2156. [Google Scholar] [CrossRef]
- Mihaly Cozmuta, A.; Uivarasan, A.; Peter, A.; Nicula, C.; Kovacs, D.E.; Mihaly Cozmuta, L. Yellow Mealworm (Tenebrio molitor) Powder Promotes a High Bioaccessible Protein Fraction and Low Glycaemic Index in Biscuits. Nutrients 2023, 15, 997. [Google Scholar] [CrossRef]
- Biltoft-Jensen, A.; Matthiessen, J.; Ygil, K.H.; Christensen, T. Defining Energy-Dense, Nutrient-Poor Food and Drinks and Estimating the Amount of Discretionary Energy. Nutrients 2022, 14, 1477. [Google Scholar] [CrossRef]
- Djouadi, A.; Sales, J.R.; Carvalho, M.O.; Raymundo, A. Development of Healthy Protein-Rich Crackers Using Tenebrio molitor Flour. Foods 2022, 11, 702. [Google Scholar] [CrossRef]
- Tsao, R. Chemistry and Biochemistry of Dietary Polyphenols. Nutrients 2010, 2, 1231–1246. [Google Scholar] [CrossRef]
- Bartkowicz, J.; Babicz-Zielińska, E. Acceptance of Bars with Edible Insects by a Selected Group of Students from Tri-City, Poland. Czech J. Food Sci. 2020, 38, 192–197. [Google Scholar] [CrossRef]
- Caparros Megido, R.; Gierts, C.; Blecker, C.; Brostaux, Y.; Haubruge, É.; Alabi, T.; Francis, F. Consumer Acceptance of Insect-Based Alternative Meat Products in Western Countries. Food Qual. Prefer. 2016, 52, 237–243. [Google Scholar] [CrossRef]
- Kim, H.W.; Setyabrata, D.; Lee, Y.J.; Jones, O.G.; Kim, Y.H.B. Pre-Treated Mealworm Larvae and Silkworm Pupae as a Novel Protein Ingredient in Emulsion Sausages. Innov. Food Sci. Emerg. Technol. 2016, 38, 116–123. [Google Scholar] [CrossRef]
- Hirschman, C. The Contributions of Immigrants to American Culture. Daedalus 2013, 142, 26–47. [Google Scholar] [CrossRef]
- Choi, Y.S.; Kim, T.K.; Choi, H.D.; Park, J.D.; Sung, J.M.; Jeon, K.H.; Paik, H.D.; Kim, Y.B. Optimization of Replacing Pork Meat with Yellow Worm (Tenebrio molitor L.) for Frankfurters. Korean J. Food Sci. Anim. Resour. 2017, 37, 617–625. [Google Scholar] [CrossRef]
- Grossi, G.; Goglio, P.; Vitali, A.; Williams, A.G. Livestock and Climate Change: Impact of Livestock on Climate and Mitigation Strategies. Anim. Front. 2019, 9, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Woo, K.-L.; Lee, S.-C.; Jang, D.-K. Quality Characteristics of Soy Sauces Containing Shiitake Mushroom (Lentinus edodes). Appl. Biol. Chem. 2003, 46, 220–224. [Google Scholar]
- Nelson, G.; Chandrashekar, J.; Hoon, M.A.; Feng, L.; Zhao, G.; Ryba, N.J.; Zuker, C.S. An Amino-Acid Taste Receptor. Nature 2002, 416, 199–202. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.M.; Lee, C.B.; Kim, H.S. Quality Characteristics of Soy Sauces by Various Manufacturing Methods. Culin. Sci. Hosp. Res. 2016, 22, 57–65. [Google Scholar] [CrossRef]
- Cho, J.H.; Zhao, H.L.; Kim, J.S.; Kim, S.H.; Chung, C.H. Characteristics of Fermented Seasoning Sauces Using Tenebrio molitor Larvae. Innov. Food Sci. Emerg. Technol. 2018, 45, 186–195. [Google Scholar] [CrossRef]
- Lee, H.; Kim, Y. Development of a Low-Salt Soy Sauce with Enhanced Flavor and Functionality with Soy Residue and Tenebrio molitor Larvae Powder. J. Food Process. Preserv. 2022, 46, e16546. [Google Scholar] [CrossRef]
- Doig, A.J. Frozen, but No Accident—Why the 20 Standard Amino Acids Were Selected. FEBS J. 2017, 284, 1296–1305. [Google Scholar] [CrossRef]
- Yoo, J.; Hwang, J.-S.; Goo, T.-W.; Yun, E.-Y. Comparative Analysis of Nutritional and Harmful Components in Korean and Chinese Mealworms (Tenebrio molitor). J. Korean Soc. Food Sci. Nutr. 2013, 42, 249–254. [Google Scholar] [CrossRef]
- Alvarez, V.B. Ice Cream and Related Products. In The Sensory Evaluation of Dairy Products; Clark, S., Costello, M., Drake, M., Bodyfelt, F., Eds.; Springer US: New York, NY, USA, 2009; pp. 271–331. ISBN 978-0-387-77408-4. [Google Scholar]
- Alvarez, V. Ice Cream and Frozen Desserts. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley Online Library: Hoboken, NJ, USA, 2023; pp. 281–344. ISBN 978-3-031-30018-9. [Google Scholar]
- Balaji, P.; Shalini, N.; Santhasheela, M.; Vidhyavathi, A. Consumer Choice of Ice Creams: A Binary Logit Model of Analysis. Madras Agric. J. 2021, 108, 1–6. [Google Scholar] [CrossRef]
- Hernández Toxqui, A.G.; Ramírez Ramírez, J.; Pino Moreno, J.M.; Talamantes Gómez, J.M.; Angeles Campos, S.C.; Ramírez Orejel, J.C. Development of Nutraceutical Ice Creams Using Flour Yellow Worm Larvae (Tenebrio molitor), Chia (Salvia Hispanica), and Quinoa (Chenopodium Quinoa). Front. Vet. Sci. 2021, 8, 629180. [Google Scholar] [CrossRef]
- Bus, A.; Worsley, A. Consumers’ Sensory and Nutritional Perceptions of Three Types of Milk. Public Health Nutr. 2003, 6, 201–208. [Google Scholar] [CrossRef]
- Smith, T.; Campbell, R.; Drake, M. Sensory Properties of Milk Protein Ingredients. In Advanced Dairy Chemistry: Volume 1B: Proteins: Applied Aspects; Springer: Berlin/Heidelberg, Germany, 2016; pp. 197–223. ISBN 978-1-4939-2799-9. [Google Scholar]
- Tello, A.; Aganovic, K.; Parniakov, O.; Carter, A.; Heinz, V.; Smetana, S. Product Development and Environmental Impact of an Insect-Based Milk Alternative. Futur. Foods 2021, 4, 100080. [Google Scholar] [CrossRef]
- Opio, C. The Global Livestock Environmental Assessment Model; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2017; pp. 22–26. [Google Scholar]
- Garcia-Fontanals, L.; Llorente, R.; Valderrama, J.; Bravo, S.; Talens, C. Hybrid Spreadable Cheese Analogues with Faba Bean and Mealworm (Tenebrio molitor) Flours: Optimisation Using Desirability-Based Mixture Design. Foods 2023, 12, 1522. [Google Scholar] [CrossRef]
- Martineau-Côté, D.; Achouri, A.; Karboune, S.; L’Hocine, L. Faba Bean: An Untapped Source of Quality Plant Proteins and Bioactives. Nutrients 2022, 14, 1541. [Google Scholar] [CrossRef]
- Son, Y.J.; Choi, S.Y.; Hwang, I.K.; Nho, C.W.; Kim, S.H. Could Defatted Mealworm (Tenebrio molitor) and Mealworm Oil Be Used as Food Ingredients? Foods 2020, 9, 40. [Google Scholar] [CrossRef]
- Kamal-Eldin, A. Effect of Fatty Acids and Tocopherols on the Oxidative Stability of Vegetable Oils. Eur. J. Lipid Sci. Technol. 2006, 108, 1051–1061. [Google Scholar] [CrossRef]
- Kalompatsios, D.; Athanasiadis, V.; Chatzimitakos, T.; Palaiogiannis, D.; Lalas, S.I.; Makris, D.P. Sustainable Exploitation of Waste Orange Peels: Enrichment of Commercial Seed Oils and the Effect on Their Oxidative Stability. Waste 2023, 1, 761–774. [Google Scholar] [CrossRef]
- Rizvi, S.; Raza, S.T.; Ahmed, F.; Ahmad, A.; Abbas, S.; Mahdi, F. The Role of Vitamin E in Human Health and Some Diseases. Sultan Qaboos Univ. Med. J. 2014, 14, 157–165. [Google Scholar]
- Maraschiello, C.; Sárraga, C.; García Regueiro, J.A. Glutathione Peroxidase Activity, TBARS, and α-Tocopherol in Meat from Chickens Fed Different Diets. J. Agric. Food Chem. 1999, 47, 867–872. [Google Scholar] [CrossRef]
- Surai, P.F.; Sparks, N.H.C. Tissue-Specific Fatty Acid and α-Tocopherol Profiles in Male Chickens Depending on Dietary Tuna Oil and Vitamin E Provision. Poult. Sci. 2000, 79, 1132–1142. [Google Scholar] [CrossRef]
- Okogeri, O.; Tasioula-Margari, M. Changes Occurring in Phenolic Compounds and α-Tocopherol of Virgin Olive Oil during Storage. J. Agric. Food Chem. 2002, 50, 1077–1080. [Google Scholar] [CrossRef]
- Gasco, L.; Dabbou, S.; Gai, F.; Brugiapaglia, A.; Schiavone, A.; Birolo, M.; Xiccato, G.; Trocino, A. Quality and Consumer Acceptance of Meat from Rabbits Fed Diets in Which Soybean Oil Is Replaced with Black Soldier Fly and Yellow Mealworm Fats. Animals 2019, 9, 629. [Google Scholar] [CrossRef]
Composition of Dry Weight (%) | |||
---|---|---|---|
Crude Protein | Crude Fat | Ash | Ref. |
36.8 | 26.0 | ~1.0 | [60] |
46.4 | 32.2 | 2.9 | [35] |
47.0 | 29.6 | 2.6 | [56] |
51.0 | ne * | ne | [59] |
60.2 | 19.1 | 4.2 | [58] |
75.1 | ne | ne | [61] |
His | Iso | Leu | Lys | Met | Phe | Thr | Trp | Val | Ref. |
---|---|---|---|---|---|---|---|---|---|
0.8 | 1.3 | 2.2 | 1.6 | 0.6 | 1.3 | 1.3 | 0.3 | 2.2 | [67] |
1.5 | 3.6 | 3.4 | 2.9 | 0.7 | 1.6 | 1.8 | nd * | 2.4 | [57] |
2.6 | 2.8 | 4.8 | 1.8 | 1.4 | 1.4 | 2.9 | 1.9 | 4.0 | [43] |
2.8 | 6.5 | 6.2 | 5.3 | 1.2 | 3.2 | 3.3 | 0.02 | 4.5 | [68] |
3.1 | 4.0 | 7.3 | 5.8 | 2.2 | 1.8 | 4.3 | 0.7 | 5.3 | [69] |
C14:0 | C16:0 | C16:1 | C18:1 | C18:2 (ω-6) | C20:0 | C18:3 (ω-3) | ∑ SFA | ∑ UFA | Ref. |
---|---|---|---|---|---|---|---|---|---|
2.1 | 18.8 | 0.5 | 28.6 | 48.1 | 0.6 | 0.2 | 22.5 | 77.5 | [58] |
2.1 | 17.2 | 1.9 | 43.8 | 29.4 | nr * | 2.3 | 21.0 | 79.0 | [62] |
2.3 | 21.4 | 0.1 | 39.1 | 27.3 | 1.4 | 0.1 | 31.6 | nr | [65] |
4.3 | 21.1 | 1.9 | 52.9 | 11.5 | 0.5 | 0.2 | 33.2 | nr | [66] |
5.0 | 19.1 | 1.7 | 49.9 | 18.1 | 0.1 | 0.4 | 28.6 | nr | [67] |
Bakery Products | Percentage (%) of T. molitor Flour Addition | Protein Content (g/100 g) | Fat Content (g/100 g) | Ash Content (g/100 g) | Ref. |
---|---|---|---|---|---|
Bread | 0 | 8.9 | 0.1 | 0.5 | [85] |
5 | 10.5 | 0.5 | 0.5 | ||
10 | 11.6 | 1.1 | 0.6 | ||
0 | 9.6 | ne * | ne | [87] | |
5 | 12.6 | ne | ne | ||
10 | 13.2 | ne | ne | ||
15 | 13.7 | ne | ne | ||
Biscuits | 0 | 9.1 | 27.0 | 0.3 | [89] |
15 | 13.5 | 27.2 | 0.6 | ||
20 | 11.9 | 26.9 | 0.7 | ||
30 | 10.8 | 28.5 | 0.4 | ||
0 | 9.1 | 18.5 | 2.0 | [90] | |
5 | 10.3 | 19.4 | 2.1 | ||
10 | 13.0 | 19.7 | 2.3 | ||
15 | 14.2 | 20.5 | 2.3 | ||
20 | 16.0 | 22.3 | 2.4 | ||
0 | 29.1 | 46.4 | 1.4 | [91] | |
15 | 31.3 | 47.8 | 1.6 | ||
Cracker | 0 | 9.7 | 12.7 | 1.9 | [93] |
6 | 13.9 | 11.1 | 2.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotsou, K.; Chatzimitakos, T.; Athanasiadis, V.; Bozinou, E.; Athanassiou, C.G.; Lalas, S.I. Innovative Applications of Tenebrio molitor Larvae in Food Product Development: A Comprehensive Review. Foods 2023, 12, 4223. https://doi.org/10.3390/foods12234223
Kotsou K, Chatzimitakos T, Athanasiadis V, Bozinou E, Athanassiou CG, Lalas SI. Innovative Applications of Tenebrio molitor Larvae in Food Product Development: A Comprehensive Review. Foods. 2023; 12(23):4223. https://doi.org/10.3390/foods12234223
Chicago/Turabian StyleKotsou, Konstantina, Theodoros Chatzimitakos, Vassilis Athanasiadis, Eleni Bozinou, Christos G. Athanassiou, and Stavros I. Lalas. 2023. "Innovative Applications of Tenebrio molitor Larvae in Food Product Development: A Comprehensive Review" Foods 12, no. 23: 4223. https://doi.org/10.3390/foods12234223
APA StyleKotsou, K., Chatzimitakos, T., Athanasiadis, V., Bozinou, E., Athanassiou, C. G., & Lalas, S. I. (2023). Innovative Applications of Tenebrio molitor Larvae in Food Product Development: A Comprehensive Review. Foods, 12(23), 4223. https://doi.org/10.3390/foods12234223