Characterization and Evaluation of Heat–Moisture-Modified Black and Red Rice Starch: Physicochemical, Microstructural, and Functional Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Starch Extraction
2.3. Heat–Moisture Treatment (HMT)
2.4. Determination of Starch and Amylose Content
2.5. Color Determination
2.6. Extraction Yield
2.7. Determination of Phenolic Compounds by High-Performance Liquid Chromatography (HPLC)
2.8. Water Absorption Capacity
2.9. Oil Absorption Capacity
2.10. Whole Milk and Zero Lactose Absorption Index (IAL)
2.11. Syneresis Index
2.12. Fourier Transform Infrared Spectroscopy (FT-IR)
2.13. X-ray Diffraction (XRD)
2.14. Scanning Electron Micrographs (SEM)
2.15. Texture Profile
2.16. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Native and Modified Black and Red Rice Starch by Heat–Moisture (HMT)
3.2. Determination of Phenolic Compounds by HPLC
3.3. Functional Analysis of Starches Obtained from Black and Red Rice
3.4. Scanning Electron Microscopy (SEM)
3.5. X-ray Diffraction Analysis
3.6. Fourier Transform Infrared Spectroscopy (FT-IR)
3.7. Analysis of Texture Parameters
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Companhia Nacional de Abastecimento—CONAB. Acompanhamento da Safra Brasileira de Grãos, Brasília, DF, v. 10, Safra 2022/23, n. 9 Nono Levantamento, Junho 2023. Available online: https://www.conab.gov.br/ultimas-noticias/5074-brasil-deve-produzir-maior-safra-historica-de-graos-no-ciclo-2022-2023-com-317-6-milhoes-de-toneladas (accessed on 12 March 2022).
- Companhia Nacional de Abastecimento—CONAB. Acompanhamento da Safra Brasileira de Grãos. 2017. Available online: http://www.conab.gov.br/conteudos.php?a=1252 (accessed on 24 March 2022).
- Xiang, G.; Li, J.; Lin, Q.; Zhang, Y.; Ding, Y.; Guo, X.; Fang, Y. The effect of heat-moisture treatment changed the binding of starch, protein, and lipid in rice flour to affect its hierarchical structure and physicochemical properties. Food Chem. X 2023, 19, 100785. [Google Scholar] [CrossRef]
- Kringel, D.H.; El Halal, S.L.M.; Zavareze, E.D.R.; Dias, A.R.G. Methods for the extraction of roots, tubers, pulses, pseudocereals, and other unconventional starches sources: A review. Starch-Stärke 2020, 72, 1900234. [Google Scholar] [CrossRef]
- Ashogbon, A.O. Dual modification of various starches: Synthesis, properties and applications. Food Chem. 2021, 342, 128325. [Google Scholar] [CrossRef] [PubMed]
- Almeida, R.L.J.; Santos, N.C.; Padilha, C.E.; de Almeida Mota, M.M.; de Alcântara Silva, V.M.; André, A.M.M.C.N.; dos Santos, E.S. Application of pulsed electric field and drying temperature response on the thermodynamic and thermal properties of red rice starch (Oryza Sativa L.). J. Food Process Eng. 2022, 45, e13947. [Google Scholar] [CrossRef]
- Punia, S. Barley starch modifications: Physical, chemical and enzymatic-A review. Int. J. Biol. Macromol. 2020, 144, 578–585. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Yang, J.; Hua, S.; Hong, Y.; Gu, Z.; Cheng, L.; Li, C. Characteristics of starch-based Pickering emulsions from the interface perspective. Trends Food Sci. Technol. 2020, 105, 334–346. [Google Scholar] [CrossRef]
- Tarahi, M.; Shahidi, F.; Hedayati, S. Physicochemical, pasting, and thermal properties of native corn starch–mung bean protein isolate composites. Gels 2022, 8, 693. [Google Scholar] [CrossRef]
- Li, Y.; Qin, C.; Dong, L.; Zhang, X.; Wu, Z.; Liu, L.; Liu, L. Whole grain benefit: Synergistic effect of oat phenolic compounds and β-glucan on hyperlipidemia via gut microbiota in high-fat-diet mice. Food Funct. 2022, 13, 12686–12696. [Google Scholar] [CrossRef]
- Ito, V.C.; Lacerda, L.G. Black rice (Oryza sativa L.): A review of its historical aspects, chemical composition, nutritional and functional properties, and applications and processing technologies. Food Chem. 2019, 301, 125304. [Google Scholar] [CrossRef]
- Lima, R.H.P.; Lopes, H.M.L.; Menezes, B.R.D.S.M.; Pereira, M.B.P.; Moreira, L.B.M. Desempenho agronômico de tipos especiais de arroz sob sistema de irrigação por inundação e transplante de mudas. MAGISTRA 2019, 30, 331–335. [Google Scholar]
- Xie, H.; Gao, J.; Xiong, X.; Gao, Q. Effect of heat-moisture treatment on the physicochemical properties and in vitro digestibility of the starch-guar complex of maize starch with varying amylose content. Food Hydrocoll. 2018, 83, 213–221. [Google Scholar] [CrossRef]
- Wu, H.; Sang, S.; Weng, P.; Pan, D.; Wu, Z.; Yang, J.; Liu, L. Structural, rheological, and gelling characteristics of starch-based materials in context to 3D food printing applications in precision nutrition. Compr. Rev. Food Sci. Food Saf. 2023, 1, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Li, L.; Zheng, X. Recent advances in heat-moisture modified cereal starch: Structure, functionality and its applications in starchy food systems. Food Chem. 2021, 344, 128700. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Shiraga, K.; Kondo, N.; Chen, S.; Yamashige, Y.; Ogawa, Y. Determining changes in crystallinity of rice starch after heat-moisture treatment using terahertz spectroscopy. Food Chem. 2023, 425, 136237. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Zhang, Q.; Yu, X.; Luo, X.; Jiang, H. Effect of annealing and heat-moisture pretreatment on the quality of 3D-printed wheat starch gels. Innov. Food Sci. Emerg. Technol. 2023, 84, 103274. [Google Scholar] [CrossRef]
- Jiali, L.; Wu, Z.; Liu, L.; Yang, J.; Wang, L.; Li, Z.; Liu, L. The research advance of resistant starch: Structural characteristics, modification method, immunomodulatory function, and its delivery systems application. Crit. Rev. Food Sci. Nutr. 2023, 1, 1–18. [Google Scholar] [CrossRef]
- Chu, T.; Shi, J.; Xia, Y.; Wang, H.; Fan, G.; Yang, M. Development of high strength potato starch nanocomposite films with excellent UV-blocking performance: Effect of heat moisture treatment synergistic with lignin sulfonic acid. Ind. Crops Prod. 2022, 187, 115327. [Google Scholar] [CrossRef]
- Yang, S.; Dhital, S.; Zhang, M.N.; Wang, J.; Chen, Z.G. Structural, gelatinization, and rheological properties of heat-moisture treated potato starch with added salt and its application in potato starch noodles. Food Hydrocoll. 2022, 131, 107802. [Google Scholar] [CrossRef]
- Mohamed, M.A.H.; Alsadon, A.A.; Al Mohaidib, M.S. Corn and potato starch as an agar alternative for Solanum tuberosum micropropagation. Afr. J. Biotechnol. 2010, 9, 12–16. [Google Scholar]
- Bento, J.A.C.; Ferreira, K.C.; de Oliveira, A.L.M.; Lião, L.M.; Caliari, M.; Júnior, M.S.S. Extraction, characterization, and technological properties of white garland-lily starch. Int. J. Biol. Macromol. 2019, 135, 422–428. [Google Scholar] [CrossRef]
- Almeida, R.L.J.; Santos, N.C.; Padilha, C.E.; Monteiro, S.S.; dos Santos, E.S. Impact of hydrothermal pre-treatments on physicochemical characteristics and drying kinetics of starch from red rice (Oryza sativa L.). J. Food Process. Preserv. 2021, 45, e15448. [Google Scholar] [CrossRef]
- Almeida, R.L.J.; Santos, N.C.; Feitoza, J.V.F.; da Silva, G.M.; de Sousa Muniz, C.E.; da Silva Eduardo, R.; de Almeida Mota, M.M. Effect of heat-moisture treatment on the thermal, structural, and morphological properties of Quinoa starch. Carbohydr. Polym. Technol. Appl. 2022, 3, 100192. [Google Scholar] [CrossRef]
- Almeida, R.L.J.; dos Santos Pereira, T.; Almeida, R.D.; Santiago, Â.M.; de Lima Marsiglia, W.I.M.; Nabeshima, E.H.; de Gusmão, R.P. Rheological and technological characterization of red rice modified starch and jaboticaba peel powder mixtures. Sci. Rep. 2021, 11, 9284. [Google Scholar] [CrossRef] [PubMed]
- Amaral, L.I.V.D.; Gaspar, M.; Costa, P.M.F.; Aidar, M.P.M.; Buckeridge, M.S. A new rapid and sensitive enzymatic method for extraction and quantification of starch in plant material. Hoehnea 2007, 34, 425–431. [Google Scholar] [CrossRef]
- Miller, G.L. Use of dinitrosalycilic acid reagent for the determination of reducing sugars. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Nadiha, M.N.; Fazilah, A.; Bhat, R.; Karim, A.A. Comparative susceptibilities of sago, potato, and corn starches to alkali treatment. Food Chem. 2010, 121, 1053–1059. [Google Scholar] [CrossRef]
- McGrance, S.J.; Cornell, H.J.; Rix, C.J. A simple and rapid colorimetric method for the determination of amylose in starch products. Starch-Stärke 1998, 50, 158–163. [Google Scholar] [CrossRef]
- Rolle, L.; Guidoni, S. Color and anthocyanin evaluation of red winegrapes by CIE L*, a*, b* parameters. Oeno One 2007, 41, 193–201. [Google Scholar] [CrossRef]
- Beuchat, L.R. Functional and electrophoretic characteristics of succinylated peanut flour protein. J. Agric. Food Chem. 1977, 25, 258–261. [Google Scholar] [CrossRef]
- Anderson, R.A. Gelatinization of corn grits by roll-and extrusion-cooking. J. Cereal. Sci. 1969, 14, 4–7. [Google Scholar]
- Farnsworth, J.P.; Li, J.; Hendricks, G.M.; Guo, M.R. Effects of transglutaminase treatment on functional properties and probiotic culture survivability of goat milk yogurt. Small Rumin. Res. 2006, 65, 113–121. [Google Scholar] [CrossRef]
- Wang, S.; Chao, C.; Cai, J.; Niu, B.; Copeland, L.; Wang, S. Starch–lipid, and starch–lipid–protein complexes: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1056–1079. [Google Scholar] [CrossRef] [PubMed]
- Guo, P.; Yu, J.; Wang, S.; Wang, S.; Copeland, L. Effects of particle size and water content during cooking on the physicochemical properties and in vitro starch digestibility of milled durum wheat grains. Food Hydrocoll. 2018, 77, 445–453. [Google Scholar] [CrossRef]
- Ferraz, C.A.; Fontes, R.L.; Fontes-Sant’Ana, G.C.; Calado, V.; López, E.O.; Rocha-Leão, M.H. Extraction, modification, and chemical, thermal, and morphological characterization of starch from the agro-industrial residue of mango (Mangifera indica L) var. Ubá. Starch-Stärke 2019, 71, 1800023. [Google Scholar] [CrossRef]
- Liu, C.; Liu, L.; Li, L.; Hao, C.; Zheng, X.; Bian, K.; Wang, X. Effects of different milling processes on whole wheat flour quality and performance in steamed bread making. LWT-Food Sci. Technol. 2015, 62, 310–318. [Google Scholar] [CrossRef]
- Moura, H.V.; de Gusmão, R.P.; Gusmão, T.A.S.; de Castro, D.S.; Almeida, R.L.J.; de Figueirêdo, R.M.F. Extraction and characterization of native starch from black and red Rice. J. Agric. Stud. 2020, 8, 1–17. [Google Scholar] [CrossRef]
- Bualuang, O.; Tirawanichakul, Y.; Tirawanichakul, S. Comparative study between hot air and infrared drying of parboiled rice: Kinetics and qualities aspects. J. Food Process. Preserv. 2012, 37, 1119–1132. [Google Scholar] [CrossRef]
- Compart, J.; Singh, A.; Fettke, J.; Apriyanto, A. Customizing Starch Properties: A Review of Starch Modifications and Their Applications. Polymers 2023, 15, 3491. [Google Scholar] [CrossRef]
- Ramli, M.E.; Salleh, R.M.; Tajarudin, H.A.; Zulkurnain, M. Influence of amylose content on phenolics fortification of different rice varieties with butterfly pea (Clitoria ternatea) flower extract through parboiling. LWT 2021, 147, 111493. [Google Scholar] [CrossRef]
- Kumar, A.; Lal, M.K.; Nayak, S.; Sahoo, U.; Behera, A.; Bagchi, T.B.; Sharma, S. Effect of parboiling on starch digestibility and mineral bioavailability in rice (Oryza sativa L.). LWT 2022, 156, 113026. [Google Scholar] [CrossRef]
- Mathobo, V.M.; Silungwe, H.; Ramashia, S.E.; Anyasi, T.A. Effects of heat-moisture treatment on the thermal, functional properties and composition of cereal, legume, and tuber starches—A review. J. Food Sci. Technol. 2021, 58, 412–426. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Na, Y.; Kim, J.; Kang, S.D.; Park, K.H. Properties and applications of starch modifying enzymes for use in the baking industry. Food Sci. Biotechnol. 2018, 27, 299–312. [Google Scholar] [CrossRef] [PubMed]
- Chrungoo, N.K.; Devi, A.G. Morphological and rheological properties of starches separated from cultivars of rice (Oryza sativa L.) from North East India. Am. J. Plant Sci. 2015, 6, 2019. [Google Scholar] [CrossRef]
- Elias, M.C.; Oliveira, M.; Vanier, N.L. Qualidade de arroz na pós-colheita e na agroindústria: Análise, conservação e tipificação. Pelotas Santa Cruz 2015, 1, 221. [Google Scholar]
- Falade, K.O.; Christopher, A.S. Physical, functional, pasting, and thermal properties of flours and starches of six Nigerian rice cultivars. Food Hydrocoll. 2015, 44, 478–490. [Google Scholar] [CrossRef]
- Amorim, I.S.; Almeida, M.C.S.; Chaves, R.P.F.; Chiste, R.C. Technological applications and color stability of carotenoids extracted from selected Amazonian fruits. Food Sci. Technol. 2022, 42, e01922. [Google Scholar] [CrossRef]
- Sindhu, R.; Devi, A.; Khatkar, B.S. Morphology, structure, and functionality of acetylated, oxidized, and heat moisture-treated amaranth starches. Food Hydrocoll. 2021, 118, 106800. [Google Scholar] [CrossRef]
- Mira, N.V.M.D.; Barros, R.M.C.; Schiocchet, M.A.; Noldin, J.A.; Lanfer-Marquez, U.M. Extração, análise e distribuição dos ácidos fenólicos em genótipos pigmentados e não pigmentados de arroz (Oryza sativa L.). Food Sci. Technol. 2008, 28, 994–1002. [Google Scholar] [CrossRef]
- Tyagi, A.; Shabbir, U.; Chen, X.; Chelliah, R.; Elahi, F.; Ham, H.J.; Oh, D.H. Phytochemical profiling and cellular antioxidant efficacy of different rice varieties in colorectal adenocarcinoma cells exposed to oxidative stress. PLoS ONE 2022, 17, e0269403. [Google Scholar] [CrossRef]
- Mackon, E.; Jeazet Dongho Epse Mackon, G.C.; Ma, Y.; Haneef Kashif, M.; Ali, N.; Usman, B.; Liu, P. Recent insights into anthocyanin pigmentation, synthesis, trafficking, and regulatory mechanisms in rice (Oryza sativa L.) caryopsis. Biomolecules 2021, 11, 394. [Google Scholar] [CrossRef]
- Harnly, J.M.; Doherty, R.F.; Beecher, G.R.; Holden, J.M.; Haytowitz, D.B.; Bhagwat, S.; Gebhardt, S. Flavonoid content of US fruits, vegetables, and nuts. J. Agric. Food Chem. 2006, 54, 9966–9977. [Google Scholar] [CrossRef]
- 54 Moura, F.F.; Moursi, M.; Donahue Angel, M.; Angeles-Agdeppa, I.; Atmarita, A.; Gironella, G.M.; Carriquiry, A. Biofortified β-carotene rice improves vitamin A intake and reduces the prevalence of inadequacy among women and young children in a simulated analysis in Bangladesh, Indonesia, and the Philippines. Am. J. Clin. Nutr. 2016, 104, 769–775. [Google Scholar] [CrossRef]
- Nawaz, H.; Waheed, R.; Nawaz, M.; Shahwar, D. Physical and chemical modifications in starch structure and reactivity. Chem. Prop. Starch 2020, 9, 13–35. [Google Scholar]
- Almeida, R.L.J.; Rios, N.S.; Dos Santos, E.S. Modification of red rice starch by a combination of hydrothermal pretreatments and α-amylase hydrolysis. Carbohydr. Polym. 2022, 296, 119963. [Google Scholar] [CrossRef] [PubMed]
- Paixão e Silva, G.D.L.; Bento, J.A.C.; Soares Júnior, M.S.; Caliari, M. Trend of modification by autoclave at low pressure and by natural fermentation in sweet potato and cassava starches. Polysaccharides 2021, 2, 354–372. [Google Scholar] [CrossRef]
- Damodaran, S.; Parkin, K.L. Química de Alimentos de Fennema, 5th ed.; Artmed: Porto Alegre, Brazil, 2019. [Google Scholar]
- Ramos, A.H.; Rockenbach, B.A.; Ferreira, C.D.; Gutkoski, L.C.; de Oliveira, M. Characteristics of flour and starch isolated from red rice subjected to different drying conditions. Starch-Stärke 2019, 71, 1800257. [Google Scholar] [CrossRef]
- Ziegler, V.; Ferreira, C.D.; Goebel, J.T.S.; El Halal, S.L.M.; Santetti, G.S.; Gutkoski, L.C.; da Rosa Zavareze, E.; Elias, M.C. Changes in properties of starch isolated from whole rice grains with brown, black, and red pericarp after storage at different temperatures. Food Chem. 2017, 216, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Pan, K.; Yu, M.; Li, L.; Tang, J.; Cheng, B.; Jiang, Y. Differences in starch multi-layer structure, pasting, and rice eating quality between fresh rice and 7 years stored rice. Curr. Res. Food Sci. 2022, 5, 1379–1385. [Google Scholar] [CrossRef] [PubMed]
- Bertoft, E. Understanding starch structure: Recent progress. Agronomy 2017, 7, 56. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Yu, J.; Wang, S. A comparative study of annealing of waxy, normal and high-amylose maize starches: The role of amylose molecules. Food Chem. 2014, 164, 332–338. [Google Scholar] [CrossRef]
- Fonseca, L.M.; El Halal, S.L.M.; Dias, A.R.G.; da Rosa Zavareze, E. Physical modification of starch by heat-moisture treatment and annealing and their applications: A review. Carbohydr. Polym. 2021, 274, 118665. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Chi, C.; Liu, X.; Zhang, Y.; Zhang, H.; Wang, H. Understanding the structural and digestion changes of starch in heat-moisture treated polished rice grains with varying amylose content. Int. J. Biol. Macromol. 2019, 139, 785–792. [Google Scholar] [CrossRef] [PubMed]
- Muscat, D.; Tobin, M.J.; Guo, Q.; Adhikari, B. Understanding the distribution of natural wax in starch–wax films using synchrotron-based FTIR (S-FTIR). Carbohydr. Polym. 2014, 102, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Bartz, J.; Madruga, K.M.; Klein, B.; Pinto, V.Z.; Dias, Á.R.G. Pasting properties of native and acetylated rice starches. Braz. J. Food Technol. 2012, 15, 78–83. [Google Scholar] [CrossRef]
- Iurckevicz, G.; Marques, P.T.; Lima, V.A. Chemical and Chemometric Analysis of Modified Starch Matrices for Sodium Trimetaphosphate. Rev. Virtual Química 2017, 9, 1462–1480. [Google Scholar] [CrossRef]
- Jung, K.J.; Lee, H.; Lee, S.H.; Kim, J.C. Retrogradation of heat-gelatinized rice grain in sealed packaging: Investigation of moisture relocation. Food Sci. Technol. 2016, 37, 97–102. [Google Scholar] [CrossRef]
- Mahajan, P.; Bera, M.B.; Panesar, P.S. Structural, functional, textural characterization and in vitro digestibility of underutilized Kutki millet (Panicum sumatrense) starch. LWT-Food Sci. Technol. 2022, 154, 112831. [Google Scholar] [CrossRef]
- Borba, V.S.; Silveira, C.O.; Alves, J.B.; Gropelli, V.M.; Badiale-Furlong, E. Modificações do amido e suas implicações tecnológicas e nutricionais. In Ciência e Tecnologia de Alimentos: Pesquisa e Práticas Contemporâneas; [S.L.], Editora Científica Digital: São Paulo, Brazil, 2021; pp. 428–457. [Google Scholar] [CrossRef]
- Silva, L.R.; de Carvalho, C.W.P.; Velasco, J.I.; Fakhouri, F.M. Extraction and characterization of starches from pigmented rice. Int. J. Biol. Macromol. 2020, 156, 485–493. [Google Scholar] [CrossRef]
- Nishinari, K.; Turcanu, M.; Nakauma, M.; Fang, Y. Role of fluid cohesiveness in safe swallowing. npj Sci. Food 2019, 3, 5. [Google Scholar] [CrossRef]
- Apostolidis, E.; Kioupis, D.; Kakali, G.; Stoforos, N.G.; Mandala, I. Effect of starch concentration and resistant starch filler addition on the physical properties of starch hydrogels. J. Food Sci. 2021, 86, 5340–5352. [Google Scholar] [CrossRef]
Formulations | Extraction Yield (%) | Starch (g 100 g−1) | Amylose (g 100 g−1) | Color |
---|---|---|---|---|
AP | 52.06 ± 1.14 A | 82.06 ± 0.54 A | 12.11 ± 0.55 B | (L) 62.71 ± 5.28 B (a) 4.92 ± 0.08 B (b) 6.52 ± 0.12 C |
APHMT | 44.31 ± 1.21 B | 73.05 ± 0.62 B | 9.39 ± 0.28 D | (L) 28.11 ± 2.14 D (a) 10.04 ± 1.03 A (b) 6.84 ± 0.91 C |
AV | 49.11 ± 0.98 C | 81.12 ± 1.06 A | 15.46 ± 0.59 A | (L) 71.16 ± 2.62 A (a) −0.78 ± 0.40 C (b) 10.16 ± 0.15 B |
AVHMT | 41.07 ± 1.31 D | 69.65 ± 0.86 C | 10.87 ± 0.67 C | (L) 52.88 ± 9.33 C (a) 4.64 ± 0.65 B (b) 20.00 ± 1.19 A |
Formulation | Gallic Acid (mg of Gallic Acid L−1) | Proanthocyanidins (mg of Catechin L−1) | Quercetin (mg of Quercetin L1) |
---|---|---|---|
AP | 2.49 ± 0.19 A | 0.71 ± 0.06 C | 2.96 ± 0.12 A |
APHMT | 1.52 ± 0.17 B | 0.48 ± 0.04 D | 2.58 ± 0.09 B |
AV | 0.91 ± 0.09 C | 1.37 ± 0.10 A | 1.95 ± 0.18 C |
AVHMT | 0.63 ± 0.11 D | 1.02 ± 0.05 B | 1.20 ± 0.11 D |
Formulation | Water Absorption (g 100 g−1) | Oil Absorption (g 100 g−1) | Lactose-Free Milk Absorption (g 100 g−1) | Whole Milk Absorption (g 100 g−1) |
---|---|---|---|---|
AP | 63.66 ± 0.11 C | 63.55 ± 0.35 C | 65.24 ± 0.31 D | 64.31 ± 0.26 D |
APHMT | 73.53 ± 0.26 A | 72.12 ± 0.28 A | 73.58 ± 0.16 B | 73.93 ± 0.11 A |
AV | 70.01 ± 0.18 B | 58.52 ± 0.11 D | 70.57 ± 0.09 C | 70.40 ± 0.32 C |
AVHMT | 74.01 ± 0.29 A | 65.96 ± 0.26 B | 74.24 ± 0.27 A | 71.36 ± 0.19 B |
Formulation | Mean Diameter (µm) | Relative Crystallinity (%) | IR (1022/1047) cm−1 | IR (995/1022) cm−1 |
---|---|---|---|---|
AP | 1.81- 6.12 | 24.03 ± 0.13 A | 1.39 ± 0.02 B | 1.28 ± 0.01 B |
APHMT | 57.63–588.23 | 15.08 ± 0.39 C | 1.34 ± 0.01 C | 1.08 ± 0.03 C |
AV | 1.55–6.28 | 23.88 ± 0.19 A | 1.45 ± 0.03 A | 1.32 ± 0.01 A |
AVHMT | 29.41–352.94 | 21.69 ± 0.32 B | 1.33 ± 0.02 C | 1.28 ± 0.01 B |
Formulation | Parameter | |||
---|---|---|---|---|
Firmness (N) | Gumminess (N) | Cohesiveness | Adhesiveness (N.m) | |
AP | 0.52 ± 0.02 A | 0.42 ± 0.02 A | 0.74 ± 0.01 A | 0.49 ± 0.02 A |
APHMT | 0.46 ± 0.02 B | 0.37 ± 0.02 B | 0.68 ± 0.02 B | 0.47 ± 0.02 A |
AV | 0.41 ± 0.02 C | 0.30 ± 0.02 C | 0.63 ± 0.01 C | 0.41 ± 0.02 B |
AVHMT | 0.34 ± 0.01 D | 0.22 ± 0.02 D | 0.52 ± 0.03 D | 0.35 ± 0.01 C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro, V.H.d.A.; Cavalcanti-Mata, M.E.R.M.; Almeida, R.L.J.; Silva, V.M.d.A. Characterization and Evaluation of Heat–Moisture-Modified Black and Red Rice Starch: Physicochemical, Microstructural, and Functional Properties. Foods 2023, 12, 4222. https://doi.org/10.3390/foods12234222
Ribeiro VHdA, Cavalcanti-Mata MERM, Almeida RLJ, Silva VMdA. Characterization and Evaluation of Heat–Moisture-Modified Black and Red Rice Starch: Physicochemical, Microstructural, and Functional Properties. Foods. 2023; 12(23):4222. https://doi.org/10.3390/foods12234222
Chicago/Turabian StyleRibeiro, Victor Herbert de Alcântara, Mario Eduardo Rangel Moreira Cavalcanti-Mata, Raphael Lucas Jacinto Almeida, and Virgínia Mirtes de Alcântara Silva. 2023. "Characterization and Evaluation of Heat–Moisture-Modified Black and Red Rice Starch: Physicochemical, Microstructural, and Functional Properties" Foods 12, no. 23: 4222. https://doi.org/10.3390/foods12234222
APA StyleRibeiro, V. H. d. A., Cavalcanti-Mata, M. E. R. M., Almeida, R. L. J., & Silva, V. M. d. A. (2023). Characterization and Evaluation of Heat–Moisture-Modified Black and Red Rice Starch: Physicochemical, Microstructural, and Functional Properties. Foods, 12(23), 4222. https://doi.org/10.3390/foods12234222