Dynamic Changes in Microbial Communities, Physicochemical Properties, and Flavor of Kombucha Made from Fu-Brick Tea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation FBT
2.2. Next Generation Sequencing and Data Analysis
2.3. pH, Total Sugar and Alcohol Analysis
2.4. Total Phenol, Total Flavone, and Organic Acid Analysis
2.5. HS-SPME-GC–MS Analysis of Volatile Compounds
2.6. Sensory Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Dynamic Shift of Microbial Communities
3.2. Dynamic Changes in the Physicochemical Properties
3.3. Dynamic Changes in Volatile Substances
3.4. Correlation of Microorganisms with Volatile Compounds
3.5. Sensory Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- May, A.; Narayanan, S.; Alcock, J.; Varsani, A.; Maley, C.; Aktipis, A. Kombucha: A novel model system for cooperation and conflict in a complex multi-species microbial ecosystem. PeerJ 2019, 7, e7565. [Google Scholar] [CrossRef]
- La China, S.; De Vero, L.; Anguluri, K.; Brugnoli, M.; Mamlouk, D.; Gullo, M. Kombucha tea as a reservoir of cellulose producing bacteria: Assessing diversity among Komagataeibacter isolates. Appl. Sci. 2021, 11, 1595. [Google Scholar] [CrossRef]
- Coelho, R.M.D.; de Almeida, A.L.; do Amaral, R.Q.G.; da Mota, R.N.; de Sousa, P.H.M. Kombucha: Review. Int. J. Gastron. Food Sci. 2020, 22, 100272. [Google Scholar] [CrossRef]
- Zhao, Z.J.; Sui, Y.C.; Wu, H.W.; Zhou, C.B.; Hu, X.C.; Zhang, J. Flavour chemical dynamics during fermentation of kombucha tea. Emir. J. Food Agric. 2018, 30, 732–741. [Google Scholar]
- Anguluri, K.; La China, S.; Brugnoli, M.; De Vero, L.; Pulvirenti, A.; Cassanelli, S.; Gullo, M. Candidate acetic acid bacteria strains for levan production. Polymers 2022, 14, 2000. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Li, Y.; Luo, Y.; Xiao, L.; Wang, K.; Huang, J.; Liu, Z. Characterization of the key aroma compounds and microorganisms during the manufacturing process of Fu brick tea. LWT-Food Sci. Technol. 2020, 127, 109355. [Google Scholar] [CrossRef]
- Chakravorty, S.; Bhattacharya, S.; Chatzinotas, A.; Chakraborty, W.; Bhattacharya, D.; Gachhui, R. Kombucha tea fermentation: Microbial and biochemical dynamics. Int. J. Food Microbiol. 2016, 220, 63–72. [Google Scholar] [CrossRef]
- Li, Q.; Jin, Y.; Huang, T.; Jiang, R.; Huang, F.; Liu, Z.; Huang, J.; Li, Q. Characteristic volatile components of different types of fermented brick tea. Food Ferment. Ind. 2021, 47, 188–196. [Google Scholar]
- Jayabalan, R.; Malbasa, R.V.; Loncar, E.S.; Vitas, J.S.; Sathishkumar, M. A review on kombucha tea microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Compr. Rev. Food Sci. Food Saf. 2014, 13, 538–550. [Google Scholar] [CrossRef]
- Zou, C.; Li, R.Y.; Chen, J.X.; Wang, F.; Yin, J.F. Zijuan tea-based Kombucha: Physicochemical, sensorial, and antioxidant profile. Food Chem. 2021, 363, 130322. [Google Scholar] [CrossRef]
- Wang, C.; Xu, W.Z.; Yuan, Y.Q.; Zhai, Y.K.; Hu, T.F.; Huang, J.A.; Liu, Z.H.; Li, Q. Characterization and modelling of odor-active compounds release behavior from Fu-brick tea during boiling-water extraction by molecular sensory science approach. Food Chem.-X 2023, 17, 100551. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Zhang, J.; Lu, J.; Chen, D.; Song, S.; Wang, H.; Sun, M.; Feng, T. Revealing the influence of microbiota on the flavor of kombucha during natural fermentation process by metagenomic and GC-MS analysis. Food Res. Int. 2023, 169, 112909. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Huang, J.N.; Li, Y.D.; Zhang, Y.Y.; Luo, Y.; Chen, Y.; Lin, H.Y.; Wang, K.B.; Liu, Z.H. Fungal community succession and major components change during manufacturing process of Fu brick tea. Sci. Rep. 2017, 7, 6947. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, Z.Z.; Zhou, Y.B.; Ling, T.J.; Wan, X.C. Chinese dark teas: Postfermentation, chemistry and biological activities. Food Res. Int. 2013, 53, 600–607. [Google Scholar] [CrossRef]
- Cao, L.T.; Guo, X.M.; Liu, G.J.; Song, Y.L.; Ho, C.T.; Hou, R.Y.; Zhang, L.; Wan, X.C. A comparative analysis for the volatile compounds of various Chinese dark teas using combinatory metabolomics and fungal solid-state fermentation. J. Food Drug Anal. 2018, 26, 112–123. [Google Scholar] [CrossRef]
- Xu, W.; Tong, Y.; Tong, Q.; Liu, Y.; Wang, Z. Effects of different re-fermentation methods on the quality characteristics of kombucha beverages. J. Food Sci. Technol. 2023, 60, 1414–1424. [Google Scholar] [CrossRef]
- Charapitsa, S.; Sytova, S.; Kavalenka, A.; Sobolenko, L.; Shauchenka, Y.; Kostyuk, N.; Egorov, V.; Leschev, S.; Vetokhin, S.; Zayats, N.; et al. The method for direct gas chromatographic determination of acetaldehyde, methanol, and other volatiles using ethanol as a reference substance: Application for a wide range of alcoholic beverages. Food Anal. Methods 2021, 14, 2088–2100. [Google Scholar] [CrossRef]
- Singleton, V.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1964, 16, 144–158. [Google Scholar] [CrossRef]
- Farasat, M.; Khavari-Nejad, R.A.; Nabavi, S.M.; Namjooyan, F. Antioxidant activity, total phenolics and flavonoid contents of some edible green seaweeds from northern coasts of the Persian Gulf. Iran J. Pharm. Res. 2014, 13, 163–170. [Google Scholar]
- Wang, C.F.; Huang, C.R.; Lu, Y.C. Changes in the bio-compounds and biological activities of eight whole grains fermentation starter with different oxidized chin-shin oolong teas. Foods 2023, 12, 1643. [Google Scholar] [CrossRef]
- Wang, Z.; Ahmad, W.; Zhu, A.; Geng, W.; Kang, W.; Ouyang, Q.; Chen, Q. Identification of volatile compounds and metabolic pathway during ultrasound-assisted kombucha fermentation by HS-SPME-GC/MS combined with metabolomic analysis. Ultrason. Sonochem. 2023, 94, 106339. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, X.; Wu, Y.; Qu, F.; Liu, L.; Wang, B.; Wang, P.; Zhang, X. HS-SPME/GC-MS reveals the season effects on volatile compounds of green tea in high-latitude region. Foods 2022, 11, 3016. [Google Scholar] [CrossRef] [PubMed]
- Vandendool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas—Liquid partition chromatography. J. Chromatogr. 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Zhu, J.; Xiao, Z. Characterization of the key aroma compounds in peach by gas chromatography–olfactometry, quantitative measurements and sensory analysis. Eur. Food Res. Technol. 2018, 245, 129–141. [Google Scholar] [CrossRef]
- Abuduaibifu, A.; Tamer, C.E. Evaluation of physicochemical and bioaccessibility properties of goji berry kombucha. J. Food Process. Preserv. 2019, 43, e14077. [Google Scholar] [CrossRef]
- Zhou, L.; Sui, Y.; Zhu, Z.Z.; Li, S.Y.; Xu, R.; Wen, J.R.; Shi, J.B.; Cai, S.; Xiong, T.; Cai, F.; et al. Effects of degree of milling on nutritional quality, functional characteristics and volatile compounds of brown rice tea. Front. Nutr. 2023, 10, 1232251. [Google Scholar] [CrossRef]
- Spellerberg, I.F.; Fedor, P.J. A tribute to Claude Shannon (1916–2001) and a plea for more rigorous use of species richness, species diversity and the ‘Shannon-Wiener’ Index. Glob. Ecol. Biogeogr. 2003, 12, 177–179. [Google Scholar] [CrossRef]
- Lee, K.R.; Jo, K.; Ra, K.S.; Suh, H.J.; Hong, K.B. Kombucha fermentation using commercial kombucha pellicle and culture broth as starter. Food Sci. Technol. 2022, 42, e70020. [Google Scholar] [CrossRef]
- Li, Y.; Yan, P.; Lei, Q.; Li, B.; Sun, Y.; Li, S.; Lei, H.; Xie, N. Metabolic adaptability shifts of cell membrane fatty acids of Komagataeibacter hansenii HDM1-3 improve acid stress resistance and survival in acidic environments. J. Ind. Microbiol. Biotechnol. 2019, 46, 1491–1503. [Google Scholar] [CrossRef]
- Cai, Z.; Liu, S.; Liu, X.; Huang, J.; Zhou, L.; Zhu, Q. Study of the growth of Eurotium cristatum Fungi on some kinds of tea and plant materials. J. Tea Sci. 2010, 30, 263–268. [Google Scholar]
- Kuanyshev, N.; Ami, D.; Signori, L.; Porro, D.; Morrissey, J.P.; Branduardi, P. Assessing physio-macromolecular effects of lactic acid on Zygosaccharomyces baili cells during microaerobic fermentation. FEMS Yeast Res. 2016, 16, fow058. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.X.; Wang, L.; Tan, Y.W.; Wang, H.Y.; Yang, F.; Chen, L.Q.; Hao, F.; Lv, X.B.; Du, H.; Xu, Y. Effect of Pichia on shaping the fermentation microbial community of sauce-flavor Baijiu. Int. J. Food Microbiol. 2021, 336, 108898. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.L.; Yan, F.; Cao, Z.L.; Xie, F.Y.; Lin, J. Antioxidant activities of kombucha prepared from three different substrates and changes in content of probiotics during storage. Food Sci. Technol. 2014, 34, 123–126. [Google Scholar] [CrossRef]
- Li, M.-Y.; Xiao, Y.; Zhong, K.; Bai, J.-R.; Wu, Y.-P.; Zhang, J.-Q.; Gao, H. Characteristics and chemical compositions of Pingwu Fuzhuan brick-tea, a distinctive post-fermentation tea in Sichuan province of China. Int. J. Food Prop. 2019, 22, 878–889. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, W.; Xiao, B. Analysis of volatile components of twenty-five Hunan and Shaanxi Fuzhuan tea samples by HS-SPME GC-MS. J. Northwest A F Univ. Nat. Sci. Ed. 2017, 45, 151–160. [Google Scholar]
- Tan, X.; Li, Q.; Wang, Q.; Li, X.; Zhang, X. Progresses in functional microorganisms associated with flavor compounds in kombucha tea. Food Sci. 2020, 41, 327–335. [Google Scholar]
- Yao, H.; Ma, J.; Feng, H.; Zhao, R. Analysis on the evolutionary changes of fungus fermentation with the characteristics of fu brick tea based on microbiome amplicator ITS. J. Chin. Inst. Food Sci. Technol. 2023, 23, 306–317. [Google Scholar]
- Dong, W.W.; Zeng, Y.T.; Cui, Y.X.; Chen, P.; Cai, K.Y.; Guo, T.T.; Tan, G.X.; Peng, N.; Liang, Y.X.; Zhao, S.M. Unraveling the composition and succession of microbial community and its relationship to flavor substances during Xin-flavor baijiu brewing. Int. J. Food Microbiol. 2023, 372, 109679. [Google Scholar] [CrossRef]
- Zhang, T.; Sha, H.Y.; Li, Z.J. Diversity of indigenous bacteria in fermented dough with Saccharomyces cerevisiae Y10 and Torulaspora delbrueckii Y22. Food Biosci. 2022, 48, 101786. [Google Scholar] [CrossRef]
- Jiang, R.; Huang, Y.; Jin, Y.; Li, Y.; Huang, J.A.; Li, Q. Study of aroma compounds and their source in fu brick tea. J. Food Sci. Biotechnol. 2021, 40, 101–111. [Google Scholar]
- Xiao, Y.; Huang, Y.X.; Chen, Y.L.; Xiao, L.K.; Zhang, X.L.; Yang, C.H.W.; Li, Z.J.; Zhu, M.Z.; Liu, Z.H.; Wang, Y.L. Discrimination and characterization of the volatile profiles of five Fu brick teas from different manufacturing regions by using HS-SPME/GC-MS and HS-GC-IMS. Curr. Res. Food Sci. 2022, 5, 1788–1807. [Google Scholar] [CrossRef] [PubMed]
- Godoy, L.; García, V.; Peña, R.; Martínez, C.; Ganga, M.A. Identification of the Dekkera bruxellensis phenolic acid decarboxylase (PAD) gene responsible for wine spoilage. Food Control 2014, 45, 81–86. [Google Scholar] [CrossRef]
- Phung, L.T.; Kitwetcharoen, H.; Chamnipa, N.; Boonchot, N.; Thanonkeo, S.; Tippayawat, P.; Klanrit, P.; Yamada, M.; Thanonkeo, P. Changes in the chemical compositions and biological properties of kombucha beverages made from black teas and pineapple peels and cores. Sci. Rep. 2023, 13, 7859. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.H.; Chen, J.H.; Zhou, Y.; Chen, X.Y. Differences in sensory quality and chemical composition of Fuzhuan Tea of different storage ages. Food Sci. 2010, 31, 228–232. [Google Scholar]
- Gramza-Michalowska, A.; Kulczynski, B.; Xindi, Y.; Gumienna, M. Research on the effect of culture time on the kombucha tea beverage’s antiradical capacity and sensory value. Acta Sci. Pol. Technol. Aliment. 2016, 15, 447–457. [Google Scholar] [CrossRef]
- Vitas, J.S.; Cvetanovic, A.D.; Maskovic, P.Z.; Svarc-Gajic, J.V.; Malbasa, R.V. Chemical composition and biological activity of novel types of kombucha beverages with yarrow. J. Funct. Foods 2018, 44, 95–102. [Google Scholar] [CrossRef]
Samples | Bacteria | Fungi | ||
---|---|---|---|---|
Chao Index | Shannon Index | Chao Index | Shannon Index | |
D 0 | 190.55 | 1.74 | 28.00 | 1.29 |
D 3 | 181.43 | 1.37 | 29.25 | 1.45 |
D 7 | 161.11 | 0.97 | 34.00 | 1.57 |
D 10 | 153.00 | 0.53 | 35.51 | 1.68 |
D 14 | 151.30 | 0.22 | 37.25 | 1.76 |
Time (d) | pH | Reducing Sugar (g/L) | Alcohol (%) | Acetic Acid (g/L) | Glucuronic Acid (g/L) | Total Phenols (mg/L) | Total Flavones (mg/L) |
---|---|---|---|---|---|---|---|
D 0 | 5.16 ± 0.01 a | 0.02 ± 0.00 c | 0.18 ± 0.00 d | 0.35 ± 0.02 e | 0.50 ± 0.01 d | 573.71 ± 0.42 b | 169.79 ± 1.00 cd |
D 3 | 3.01 ± 0.03 b | 10.99 ± 0.46 b | 1.14 ± 0.08 a | 1.01 ± 0.04 d | 0.69 ± 0.07 bc | 638.77 ± 17.72 b | 176.17 ± 2.49 bc |
D 7 | 2.69 ± 0.03 c | 38.40 ± 1.16 a | 1.23 ± 0.03 a | 2.81 ± 0.01 c | 0.99 ± 0.05 a | 705.43 ± 22.29 a | 182.65 ± 0.57 ab |
D 10 | 2.58 ± 0.01 d | 38.00 ± 1.57 a | 0.84 ± 0.02 b | 6.72 ± 0.01 b | 0.74 ± 0.05 b | 741.23 ± 17.20 a | 187.78 ± 2.95 a |
D 14 | 2.55 ± 0.02 d | 36.61 ± 1.55 a | 0.59 ± 0.00 c | 10.57 ± 0.06 a | 0.58 ± 0.00 cd | 751.11 ± 41.57 a | 161.16 ± 5.89 d |
Number | Volatile Compounds | RI | D 0 | D 3 | D 7 | D 10 | D 14 |
---|---|---|---|---|---|---|---|
C1 | Ethanol | 952 | 1234.30 ± 251.89 | 16,301.58 ± 749.91 | 24,121.57 ± 1738.78 | 21,361.17 ± 233.76 | — |
C2 | 2-Hexadecanol | 1063 | 288.90 ± 61.43 | 55.36 ± 1.44 | 173.15 ± 12.61 | — | — |
C3 | 4-Methyl-2-pentanol | 1204 | 357.57 ± 34.32 | 802.42 ± 89.52 | — | — | — |
C4 | 3-Methyl-1-butanol | 1253 | 2099.66 ± 335.53 | 5633.09 ± 461.33 | 5096.93 ± 134.36 | 3626.46 ± 247.04 | 2013.89 ± 106.04 |
C5 | Hexyl alcohol | 1437 | 63.72 ± 5.37 | 46.22 ± 11.83 | — | — | — |
C6 | 2-Ethylhexanol | 1572 | 38.24 ± 9.81 | 214.84 ± 9.39 | 267.80 ± 19.37 | 215.44 ± 18.61 | 259.61 ± 12.09 |
C7 | Linalool | 1614 | 111.35 ± 19.82 | 366.89 ± 61.94 | 524.98 ± 27.88 | 409.19 ± 12.81 | 270.00 ± 13.87 |
C8 | Phenethyl alcohol | 1981 | 444.55 ± 95.79 | 1656.53 ± 323.66 | 2904.51 ± 304.26 | 2904.04 ± 131.65 | 2948.15 ± 618.25 |
C9 | Heptaethylene glycol | 2699 | 42.05 ± 7.03 | 49.62 ± 7.33 | 51.21 ± 1.28 | 61.36 ± 8.00 | — |
C10 | alpha-Terpineol | 1738 | — | — | 61.50 ± 1.06 | 71.10 ± 9.26 | 109.05 ± 7.67 |
C11 | Isobutyl alcohol | 1115 | — | — | — | 242.67 ± 20.17 | 124.47 ± 5.07 |
C12 | D-Alaninol | 588 | 244.98 ± 38.29 | — | — | — | — |
S1 | D-Alanine | 715 | — | 63.49 ± 17.17 | 1449.83 ± 207.70 | 1248.76 ± 80.45 | — |
S2 | DL-Alanine | 852 | — | 689.94 ± 53.69 | 450.01 ± 125.53 | 1225.57 ± 184.15 | — |
S3 | Acetic acid | 1522 | 3606.66 ± 358.55 | 14,238.89 ± 1534.35 | 19,109.59 ± 1774.21 | 20,850.24 ± 2779.53 | 29,033.70 ± 1363.81 |
S4 | 2-Methylpropionic acid | 1632 | 65.92 ± 5.03 | 342.10 ± 83.67 | 261.86 ± 96.80 | 347.56 ± 12.44 | 514.09 ± 34.95 |
S5 | Isovaleric acid | 1715 | 181.25 ± 16.78 | 1542.36 ± 23.28 | 1268.29 ± 225.04 | 859.60 ± 455.22 | 2471.62 ± 264.49 |
S6 | Octanoic acid | 2094 | — | 256.71 ± 52.62 | 296.02 ± 34.11 | — | 180.97 ± 52.23 |
S7 | Decanoic acid | 2302 | — | 59.67 ± 7.41 | 400.28 ± 30.53 | — | — |
Z1 | Ethyl acetate | 910 | 2529.29 ± 353.63 | 3523.14 ± 531.95 | 6785.00 ± 1808.67 | 15,836.06 ± 430.06 | 21,176.62 ± 3496.57 |
Z2 | Ethyl caprate | 1687 | — | 85.26 ± 9.49 | 126.42 ± 17.48 | 146.20 ± 16.14 | 129.23 ± 21.65 |
Z3 | Isobornyl acetate | 1739 | — | 57.37 ± 12.12 | — | — | — |
Z4 | Phenethyl acetate | 1798 | 62.98 ± 2.07 | 165.47 ± 31.55 | 273.48 ± 17.59 | 646.79 ± 9.25 | 904.79 ± 33.09 |
Z5 | Acetic acid, amyl ester | 1130 | 191.50 ± 42.09 | — | 741.72 ± 49.37 | — | — |
Z6 | 9-Octadecen-12-ynoic acid methyl ester | 1122 | 50.95 ± 5.55 | — | — | — | — |
Z7 | Pentanoic acid, octylester | 1290 | 83.57 ± 9.77 | — | — | — | — |
Z8 | Methyl salicylate | 1776 | 28.55 ± 0.67 | — | — | — | — |
Z9 | Diisobutyl phthalate | 2619 | 142.70 ± 30.62 | — | — | — | — |
Z10 | (E)-2-Hexenyl benzoate | 1581 | — | — | 71.18 ± 11.65 | — | — |
Z11 | Isoamyl acetate | 1130 | — | — | — | 1135.76 ± 109.74 | 1187.25 ± 184.94 |
Z12 | Ethyl caproate | 1256 | — | — | — | 125.00 ± 36.02 | 166.92 ± 6.03 |
Z13 | Ethyl phenylacetate | 1785 | — | — | — | 87.91 ± 2.05 | 163.22 ± 3.93 |
Z14 | Ethyl palmitate | 1883 | — | — | — | 61.18 ± 3.81 | 64.85 ± 8.24 |
Z15 | Methyl acetate | 863 | — | — | — | — | 524.42 ± 26.95 |
Z16 | 12,15-Octadecadiynoic acid methyl ester | 1673 | — | — | — | — | 61.44 ± 4.17 |
Q1 | 1-Nonanal; | 1460 | 59.17 ± 13.31 | 33.96 ± 3.54 | 180.16 ± 29.46 | 156.69 ± 20.38 | — |
Q2 | Benzaldehyde | 1581 | — | 186.60 ± 36.33 | — | — | — |
Q3 | 2,5-Dimethylbenzaldehyde | 1792 | 117.60 ± 10.08 | 257.10 ± 8.77 | 167.92 ± 2.98 | 252.21 ± 26.84 | 234.24 ± 15.42 |
Q4 | Octanal | 1336 | 39.34 ± 7.25 | — | — | — | — |
Q5 | trans,trans-2,4-Heptadienal | 1562 | 30.92 ± 7.64 | — | — | — | — |
T1 | 2-Octanone, 1-nitro- | 1123 | — | 463.76 ± 66.65 | — | — | — |
T2 | Methylheptenone | 1408 | 61.29 ± 12.90 | 49.33 ± 8.97 | — | — | — |
T3 | (3E,5E-)3,5-Octadien-2-one | 1586 | 81.61 ± 25.30 | — | — | — | — |
T4 | beta-Ionone | 2016 | 68.72 ± 12.28 | — | — | — | — |
F1 | 2,6-Di-tert-butyl-4-methylphenol | 2000 | 1702.59 ± 113.89 | 2313.07 ± 240.37 | 2858.42 ± 172.66 | 2691.40 ± 41.43 | 2154.56 ± 149.84 |
F2 | 4-Ethylguaiacol | 2060 | — | 76.37 ± 14.22 | 69.33 ± 2.92 | 61.59 ± 1.02 | 67.07 ± 3.34 |
F3 | 4-Ethylphenol | 2160 | 40.72 ± 3.57 | 220.94 ± 38.81 | 243.99 ± 23.08 | 234.85 ± 5.91 | 283.27 ± 21.11 |
F4 | 2,4-Di-tert-butylphenol | 2299 | 538.04 ± 28.05 | 108.16 ± 12.78 | 116.04 ± 25.11 | 167.73 ± 5.30 | 198.28 ± 5.34 |
F5 | Azulene | 1753 | 20.53 ± 0.18 | — | — | — | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Zhang, Y.; Zhang, B.; Tian, H.; Liang, Y.; Dang, H.; Zhao, Y. Dynamic Changes in Microbial Communities, Physicochemical Properties, and Flavor of Kombucha Made from Fu-Brick Tea. Foods 2023, 12, 4242. https://doi.org/10.3390/foods12234242
Wu X, Zhang Y, Zhang B, Tian H, Liang Y, Dang H, Zhao Y. Dynamic Changes in Microbial Communities, Physicochemical Properties, and Flavor of Kombucha Made from Fu-Brick Tea. Foods. 2023; 12(23):4242. https://doi.org/10.3390/foods12234242
Chicago/Turabian StyleWu, Xiaoya, Yue Zhang, Baoshan Zhang, Honglei Tian, Yan Liang, Hui Dang, and Yu Zhao. 2023. "Dynamic Changes in Microbial Communities, Physicochemical Properties, and Flavor of Kombucha Made from Fu-Brick Tea" Foods 12, no. 23: 4242. https://doi.org/10.3390/foods12234242
APA StyleWu, X., Zhang, Y., Zhang, B., Tian, H., Liang, Y., Dang, H., & Zhao, Y. (2023). Dynamic Changes in Microbial Communities, Physicochemical Properties, and Flavor of Kombucha Made from Fu-Brick Tea. Foods, 12(23), 4242. https://doi.org/10.3390/foods12234242