The Improved Quality of Gluten-Free Bread Due to the Use of Flaxseed Oil Cake: A Comprehensive Study Evaluating Nutritional Value, Technological Properties, and Sensory Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Flaxseed Oil Cake
2.2. Composition of Experimental Gluten-Free Breads
2.3. Preparation of Experimental Gluten-Free Breads
2.4. Sample Preparation for Further Analysis
2.5. Characteristics of Experimental Gluten-Free Breads
2.5.1. Analysis of Nutritional Composition and Energy Value
2.5.2. Determination of Acrylamide Content
2.5.3. Determination of Physical Parameters
2.5.4. Instrumental Colour Determination
2.5.5. Instrumental Textural Profile Analysis (TPA)
2.5.6. Sensory Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. The Proximal Chemical Composition and Energy Value
3.2. The Content of Acrylamide in GFBs
3.3. Physical Parameters and Crumb Colour
3.4. Evaluation of Texture Profile
3.5. Sensory Analysis
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Malenica, D.; Kass, M.; Bhat, R. Sustainable Management and Valorization of Agri-Food Industrial Wastes and By-Products as Animal Feed: For Ruminants, Non-Ruminants and as Poultry Feed. Sustainability 2023, 15, 117. [Google Scholar] [CrossRef]
- Smeu, I.; Dobre, A.A.; Cucu, E.M.; Mustățea, G.; Belc, N.; Ungureanu, E.L. Byproducts from the Vegetable Oil Industry: The Challenges of Safety and Sustainability. Sustainability 2022, 14, 2039. [Google Scholar] [CrossRef]
- Bacenetti, J.; Restuccia, A.; Schillaci, G.; Failla, S. Biodiesel production from unconventional oilseed crops (Linum usitatissimum L. and Camelina sativa L.) in Mediterranean conditions: Environmental sustainability assessment. Renew. Energy 2017, 112, 444–456. [Google Scholar] [CrossRef]
- Girotto, F.; Alibardi, L.; Cossu, R. Food waste generation and industrial uses: A review. Waste Manag. 2015, 45, 32–41. [Google Scholar] [CrossRef]
- Oomah, B.D. Flaxseed By-products. In Food Wastes and By-Products; Wiley: Hoboken, NJ, USA, 2019; pp. 267–289. [Google Scholar]
- Rakita, S.; Kokić, B.; Manoni, M.; Mazzoleni, S.; Lin, P.; Luciano, A.; Ottoboni, M.; Cheli, F.; Pinotti, L. Cold-Pressed Oilseed Cakes as Alternative and Sustainable Feed Ingredients: A Review. Foods 2023, 12, 432. [Google Scholar] [CrossRef] [PubMed]
- Kajla, P.; Sharma, A.; Sood, D.R. Flaxseed—A potential functional food source. J. Food Sci. Technol. 2015, 52, 1857–1871. [Google Scholar] [CrossRef] [PubMed]
- Cunnane, S.C.; Ganguli, S.; Menard, C.; Liede, A.C.; Hamadeh, M.J.; Chen, Z.Y.; Wolever, T.M.; Jenkins, D.J. High linolenic acid flaxseed (Linum usitatissimum): Some nutritional properties in humans. Br. J. Nutr. 1993, 69, 443–453. [Google Scholar] [CrossRef]
- Morris, D.H. Flax: A Health and Nutrition Primer, 4th ed.; Flax Council of Canada: Winnipeg, MB, Canada, 2007; ISBN 9780969607366. [Google Scholar]
- Dzuvor, C.; Taylor, J.; Acquah, C.; Pan, S.; Agyei, D. Bioprocessing of Functional Ingredients from Flaxseed. Molecules 2018, 23, 2444. [Google Scholar] [CrossRef]
- Hamel, J. A review of acute cyanide poisoning with a treatment update. Crit. Care Nurse 2011, 31, 72–81. [Google Scholar] [CrossRef]
- Feizollahi, E.; Mirmahdi, R.S.; Zoghi, A.; Zijlstra, R.T.; Roopesh, M.S.; Vasanthan, T. Review of the beneficial and anti-nutritional qualities of phytic acid, and procedures for removing it from food products. Food Res. Int. 2021, 143, 110284. [Google Scholar] [CrossRef]
- Kiewlicz, J.; Rybicka, I. Minerals and their bioavailability in relation to dietary fiber, phytates and tannins from gluten and gluten-free flakes. Food Chem. 2020, 305, 125452. [Google Scholar] [CrossRef]
- Baca, E.; Skibniewska, K.; Baranowski, K.; Zakrzewski, J.; Słowik, E.; Meller, D.; Karaś, M.; Mielcarz, M. The Influence of Technological Conditions of Bread Production on A Degree of Phytic Acids’ Decomposition. ZYWN.-Nauk Technol. Jakosc 2009, 4, 122–132. [Google Scholar]
- Imran, M.; Anjum, F.M.; Butt, M.S.; Siddiq, M.; Sheikh, M.A. Reduction of cyanogenic compounds in flaxseed (Linum usitatissimum L.) meal using thermal treatment. Int. J. Food Prop. 2013, 16, 1809–1818. [Google Scholar] [CrossRef]
- Yamashita, T.; Sano, T.; Hashimoto, T.; Kanazawa, K. Development of a method to re-move cyanogen glycosides from flaxseed meal. Int. J. Food Sci. Technol. 2007, 42, 70–75. [Google Scholar] [CrossRef]
- Łopusiewicz, Ł.; Drozłowska, E.; Siedlecka, P.; Mężyńska, M.; Bartkowiak, A.; Sienkiewicz, M.; Zielińska-Bliźniewska, H.; Kwiatkowski, P. Development, Characterization, and Bioactivity of Non-Dairy Kefir-Like Fermented Beverage Based on Flaxseed Oil Cake. Foods 2019, 8, 544. [Google Scholar] [CrossRef]
- Khattab, R.; Zeitoun, M.; Barbary, O.M. Evaluation of pita bread fortified with defatted flaxseed flour. Cur. Nutr. Food Sci. 2012, 8, 91–101. [Google Scholar] [CrossRef]
- Zarzycki, P.; Sykut-Domańska, E.; Sobota, A.; Teterycz, D.; Krawęcka, A.; Blicharz-Kania, A.; Andrejko, D.; Zdybel, B. Flaxseed Enriched Pasta—Chemical Composition and Cooking Quality. Foods 2020, 9, 404. [Google Scholar] [CrossRef]
- Taglieri, I.; Sanmartin, C.; Venturi, F.; Macaluso, M.; Zinnai, A.; Tavarini, S.; Serra, A.; Conte, G.; Flamini, G.; Angelini, L.G. Effect of the Leavening Agent on the Compositional and Sensorial Characteristics of Bread Fortified with Flaxseed Cake. Appl. Sci. 2020, 10, 5235. [Google Scholar] [CrossRef]
- Sanmartin, C.; Taglieri, I.; Venturi, F.; Macaluso, M.; Zinnai, A.; Tavarini, S.; Botto, A.; Serra, A.; Conte, G.; Flamini, G.; et al. Flaxseed Cake as a Tool for the Improvement of Nutraceutical and Sensorial Features of Sourdough Bread. Foods 2020, 9, 204. [Google Scholar] [CrossRef] [PubMed]
- EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain); Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; Del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.R.; Le-blanc, J.C.; et al. Scientific opinion on the evaluation of the health risks related to the presence of cyanogenic glycosides in foods other than raw apricot kernels. EFSA J. 2019, 17, 5662. [Google Scholar] [CrossRef]
- Krupa-Kozak, U.; Bączek, N.; Capriles, V.D.; Łopusiewicz, Ł. Novel Gluten-Free Bread with an Extract from Flaxseed By-Product: The Relationship between Water Replacement Level and Nutritional Value, Antioxidant Properties, and Sensory Quality. Molecules 2022, 27, 2690. [Google Scholar] [CrossRef] [PubMed]
- Łopusiewicz, Ł.; Kowalczewski, P.Ł.; Baranowska, H.M.; Masewicz, Ł.; Amarowicz, R.; Krupa-Kozak, U. Effect of Flaxseed Oil Cake Extract on the Microbial Quality, Texture and Shelf Life of Gluten-Free Bread. Foods 2023, 12, 595. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, E.V.; Santos, F.G.; Krupa-Kozak, U.; Capriles, V.D. Nutritional facts regarding commercially available gluten-free bread worldwide: Recent advances and future challenges. Crit. Rev. Food Sci. Nutr. 2021, 63, 693–705. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.P.T.; Tran, T.T.T.; Ton, N.M.N.; Le, V.V.M. Use of Cashew Apple Pomace Powder in Pasta Making: Effects of Powder Ratio on the Product Quality. Pol. J. Food Nutr. Sci. 2023, 73, 50–58. [Google Scholar] [CrossRef]
- Muñoz-Tebar, N.; Viuda-Martos, M.; Lorenzo, J.M.; Fernandez-Lopez, J.; Perez-Alvarez, J.A. Strategies for the Valorization of Date Fruit and Its Co-Products: A New Ingredient in the Development of Value-Added Foods. Foods 2023, 12, 1456. [Google Scholar] [CrossRef] [PubMed]
- Krupa-Kozak, U.; Troszyńska, A.; Bączek, N.; Soral-Śmietana, M. Influence of organic calcium additives on technological and sensory properties of gluten-free bread. Eur. Food Res. Technol. 2011, 232, 497–508. [Google Scholar] [CrossRef]
- Method 925.10: Solids (Total) and Loss on Drying (Moisture) in Flour. Air Oven Method. Official Methods of Analysis of AOAC International. In Official Methods of Analysis of AOAC International, 18th ed.; William Horwitz, W.; Latimer, G., Jr. (Eds.) Current through Revision 4; Association of Official Analytical Chemists: Gaithersburg, MA, USA, 2011; ISBN 0-935584-82-X. [Google Scholar]
- Method 984.13: Protein (crude) determination. Cooper catalyst Kjeldahl Method. In Official Methods of Analysis of AOAC International, 18th ed.; William Horwitz, W.; Latimer, G., Jr. (Eds.) Current through Revision 4; Association of Official Analytical Chemists: Gaithersburg, MA, USA, 2011; ISBN 0-935584-82-X. [Google Scholar]
- PN-ISO 6492:2005; Feeds: Determination of Fat Content. ISO: Geneva, Switzerland, 2005.
- Method 923.03: Ash of Flour. Direct Method. In Official Methods of Analysis of AOAC International, 18th ed.; William Horwitz, W.; Latimer, G., Jr. (Eds.) Current through Revision 4; Association of Official Analytical Chemists: Gaithersburg, MA, USA, 2011; ISBN 0-935584-82-X. [Google Scholar]
- ISO 6865:2002; Feeds: Determination of Crude Fibre Content. Indirect Filtration Method. ISO: Geneva, Switzerland, 2002.
- Maclean, W.C.; Harnly, J.M.; Chen, J.; Chevassus-Agnes, S.; Gilani, G.; Livesey, G.; Mathioudakis, B.; Munoz De Chavez, M.; Devasconcellos, M.T.; Warwick, P. Food energy—Methods of analysis and conversion factors. In Food and Nutrition Paper #77, Proceedings of the Food and Agriculture Organization of the United Nations Technical Workshop Report, Rome, Italy, 3–6 December 2002; Agricultural Research Service, US Department of Agriculture: Beltsville, MD, USA, 2003; ISSN 02543-4725. [Google Scholar]
- Ciesarová, Z.; Kukurová, K.; Bednáriková, A.; Moráles, F.J. Effect of heat treatment and dough formulation on the formation of Maillard reaction products in fine bakery products-benefits and weak points. J. Food Nutr. Res. 2009, 48, 20–30. [Google Scholar]
- AACC Approved Methods of Analysis. Method 10-05.01; Guidelines for Measurement of Volume by Rapeseed Displacement; Cereals & Grains Association: St Paul, MN, USA, 2010.
- Hsu, C.L.; Chen, W.; Weng, Y.M.; Tseng, C.Y. Chemical composition, physical properties, and antioxidant activities of yam flours as affected by different drying methods. Food Chem. 2003, 83, 85–89. [Google Scholar] [CrossRef]
- Mokrzycki, W.S.; Tatol, M. Colour difference ΔE-A survey Mokrzycki. Mach. Graph. Vis. 2011, 20, 383–411. [Google Scholar]
- Krupa-Kozak, U.; Drabińska, N.; Bączek, N.; Šimková, K.; Starowicz, M.; Jeliński, T. Application of Broccoli Leaf Powder in Gluten-Free Bread: An Innovative Approach to Improve Its Bioactive Potential and Technological Quality. Foods 2021, 10, 819. [Google Scholar] [CrossRef]
- ISO 8586-1:1993; Sensory Analysis—General Guidance for the Selection, Training and Monitoring of Assessors—Part 1: Selected Assessors. ISO: Geneva, Switzerland, 1993.
- Lawless, H.T.; Heymann, H. Sensory Evaluation of Food–Principles and Practices; Springer: New York, NY, USA, 2010; pp. 473–478. [Google Scholar]
- ISO/DIS 13299; Sensory Analysis—Methodology—General Guidance for Establishing a Sensory Profile. ISO: Geneva, Switzerland, 1998.
- ISO 8589:1998; Sensory Analysis—General Guidance for the Design of Test Rooms. ISO: Geneva, Switzerland, 1998.
- Mueed, A.; Shibli, S.; Korma, S.A.; Madjirebaye, P.; Esatbeyoglu, T.; Deng, Z. Flaxseed Bioactive Compounds: Chemical Composition, Functional Properties, Food Applications and Health Benefits-Related Gut Microbes. Foods 2022, 11, 3307. [Google Scholar] [CrossRef] [PubMed]
- Chung, M.; Lei, B.; Li-Chan, E. Isolation and structural characterization of the major protein fraction from Nor Man flaxseed (Linum usitatissimum L.). Food Chem. 2005, 90, 271–279. [Google Scholar] [CrossRef]
- Schober, T.; Bean, S.; Boyle, D. Gluten-Free Sorghum Bread Improved by Sourdough Fermentation: Biochemical, Rheological, and Microstructural Background. J. Agric. Food Chem. 2007, 55, 5137–5146. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.L. The Gluten-Free Diet: Fad or Necessity? Diabetes Spectr. 2017, 30, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Barber, T.M.; Kabisch, S.; Pfeiffer, A.F.H.; Weickert, M.O. The Health Benefits of Dietary Fibre. Nutrients 2020, 12, 3209. [Google Scholar] [CrossRef]
- Bachir, N.; Haddarah, A.; Sepulcre, F.; Pujola, M. Formation, Mitigation, and Detection of Acrylamide in Foods. Food Anal. Methods 2022, 15, 1736–1747. [Google Scholar] [CrossRef]
- Bekhit, A.E.D.A.; Shavandi, A.; Jodjaja, T.; Birch, J.; The, S.; Ahmed, I.A.M.; Al-Juhaimi, F.Y.; Pouya, S.; Bekhit, A.A. Flaxseed: Composition, detoxification, utilization, and opportunities. Biocatal. Agric. Biotechnol. 2018, 13, 129–152. [Google Scholar] [CrossRef]
- European Commission. EU European Commission Regulation of 20 November 2017 Establishing Mitigation Measures and Benchmark Levels for the Reduction of the Presence of Acrylamide in Food (2017/2158). 2017. Available online: https://eur-lex.europa.eu/eli/reg/2017/2158/oj (accessed on 8 November 2023).
- Gallagher, E.; Gormley, T.R.; Arendt, E.K. Crust and crumb characteristics of gluten-free breads. J. Food Eng. 2003, 56, 153–161. [Google Scholar] [CrossRef]
- Gallagher, E.; Gormley, T.R.; Arendt, E.K. Recent advances in the formulation of gluten-free cereal-based products. Trends Food Sci. Technol. 2004, 15, 143–152. [Google Scholar] [CrossRef]
- Krishna, K.R.; Bejkar, M.; Du, S.; Serventi, L. Flax and wattle seed powders enhance volume and softness of gluten-free bread. Food Sci. Technol. Int. 2018, 25, 66–75. [Google Scholar] [CrossRef]
- Maggio, A.; Orecchio, S. Fatty Acid Composition of Gluten-Free Food (Bakery Products) for Celiac People. Foods 2018, 7, 95. [Google Scholar] [CrossRef]
- Marpalle, P.; Sonawane, S.K.; Arya, S.S. Effect of flaxseed flour addition on physicochemical and sensory properties of functional bread. LWT Food Sci. Technol. 2014, 58, 614–619. [Google Scholar] [CrossRef]
- Spence, C. On the psychological impact of food colour. Flavour 2015, 4, 21. [Google Scholar] [CrossRef]
Ingredient (%) | Control | FOC5% | FOC15% | FOC30% |
---|---|---|---|---|
Corn starch | 36.7 | 34.8 | 31.2 | 25.7 |
Potato starch | 8.9 | 8.5 | 7.6 | 6.2 |
Pectin | 2.2 | 2.2 | 2.2 | 2.2 |
Sugar | 2.8 | 2.8 | 2.8 | 2.8 |
Salt | 0.8 | 0.8 | 0.8 | 0.8 |
Rapeseed oil | 1.4 | 1.4 | 1.4 | 1.4 |
Fresh yeast | 2.8 | 2.8 | 2.8 | 2.8 |
Flaxseed oil cake | - | 2.3 | 6.8 | 13.7 |
Deionised water | 44.4 | 44.4 | 44.4 | 44.4 |
Attribute | Definition | Scale Edges |
---|---|---|
Aroma | ||
Oily | Typical sunflower oil aroma | None–Very intensive |
Sweet | Typical aroma of sweet baked products from wheat flour | None–Very intensive |
Wheat bread | Typical aroma of wheat-baked products | None–Very intensive |
Acid | Typical aroma of organic acids | None–Very intensive |
Seed-like | Typical flaxseed aroma | None–Very intensive |
Appearance | ||
Creamy colour | Colour intensity according to colour pattern RAL 085 90 10—scale value 3 | Light–Dark |
Brown colour | Colour intensity according to colour pattern RAL 060 30 20—scale value 10 | Light–Dark |
Pore collocation | Visual impression of bread crumb pore arrangement | Irregular–Regular |
Pore dimension | Visual impression of bread crumb pore size | Small–Big |
Texture (manual) | ||
Elasticity | The extent to which a piece of product returns to its original shape when pushed by a finger | Small–Big |
Texture (in the mouth) | ||
Chewiness | Multiplicity of chewing the product to prepare it to swallow | Low–High |
Adhesiveness | Degree of adhesiveness perceived when chewing the sample 10 times | Low–High |
Moisture | Degree of amount of water in the product perceived when chewing the sample 10 times | Low–High |
Taste | ||
Seed-like | Typical flaxseed taste | None–Very intensive |
Sweet | Basic taste illustrated by sucrose dissolved in water | None–Very intensive |
Salty | Basic taste illustrated by sodium chloride dissolved in water | None–Very intensive |
Oily | Typical sunflower oil taste | None–Very intensive |
Bitter | Basic taste illustrated by caffeine solution dissolved in water | None–Very intensive |
Aftertaste | Lingering sensation after swallowing the sample | None–Very intensive |
Overall quality | ||
Overall quality contains the sum of all attributes and their harmonisation | Low–High |
FOC | Control | FOC5% | FOC15% | FOC30% | |
---|---|---|---|---|---|
Moisture (%) | 8.98 ± 0.14 | 46.37 a ± 0.13 | 46.98 a ± 0.41 | 47.19 ab ± 0.42 | 48.01 b ± 0.45 |
Protein (g/100 g DM) | 30.46 ± 0.15 | 1.16 a ± 0.06 | 2.50 b ± 0.01 | 5.21 c ± 0.01 | 9.55 d ± 0.01 |
Ash (g/100 g DM) | 4.79 ± 0.07 | 1.18 a ± 0.03 | 1.50 b ± 0.08 | 1.88 c ± 0.14 | 2.45 d ± 0.01 |
Fat (g/100 g DM) | 15.89 ± 0.11 | 1.71 a ± 0.02 | 1.51 a ± 0.09 | 3.08 b ± 0.08 | 4.75 c ± 0.29 |
Dietary fibre (g/100 g DM) | 7.88 ± 0.15 | 0.49 a ± 0.11 | 0.61 a ± 0.11 | 1.38 b ± 0.17 | 1.86 c ± 0.03 |
Carbohydrates (g/100 g DM) | 32.00 ± 0.04 | 49.09 d ± 0.21 | 46.90 c ± 0.04 | 41.27 b ± 0.10 | 33.38 a ± 0.31 |
Energy value (kJ) | 918 c ± 3 | 896 a ± 6 | 904 b ± 2 | 906 b ± 5 | |
Energy value (kCal) | 220 c ± 1 | 214 a ± 2 | 216 b ± 1 | 216 b ± 2 |
Control | FOC5% | FOC15% | FOC30% | |
---|---|---|---|---|
Specific volume (mL/g) | 2.09 a ± 0.14 | 2.80 b ± 0.02 | 3.01 b ± 0.10 | 2.11 a ± 0.06 |
Bake loss (%) | 10.99 a ± 0.10 | 13.05 b ± 0.36 | 13.72 b ± 0.41 | 11.03 a ± 0.34 |
Density (g/mL) | 0.48 b ± 0.03 | 0.36 a ± 0.00 | 0.33 a ± 0.01 | 0.47 b ± 0.01 |
H/W ratio | 0.95 a ± 0.09 | 1.10 b ± 0.05 | 1.27 c ± 0.03 | 0.95 a ± 0.10 |
Crumb colour | ||||
L | 71.78 d ± 0.92 | 68.07 c ± 0.49 | 57.27 b ± 0.59 | 47.98 a ± 0.20 |
a | −1.61 a ± 0.03 | 3.19 b ± 0.11 | 5.29 c ± 0.09 | 6.32 d ± 0.09 |
b | 9.09 a ± 0.18 | 11.91 b ± 0.37 | 14.42 c ± 0.22 | 14.39 c ± 0.20 |
W index | 70.31 d ± 0.91 | 65.77 c ± 0.38 | 54.59 b ± 0.50 | 45.65 a ± 0.21 |
ΔE | Served as control | 6.69 | 16.93 | 25.65 |
Control | FOC5% | FOC15% | FOC30% | |
---|---|---|---|---|
Hardness (N) | 17.09 c ± 0.98 | 13.43 b ± 0.73 | 8.79 a ± 0.75 | 33.40 d ± 2.32 |
Springiness | 0.98 a ± 0.01 | 0.98 a ± 0.02 | 0.95 a ± 0.04 | 0.97 a ± 0.03 |
Cohesiveness | 0.34 a ± 0.01 | 0.39 b ± 0.02 | 0.40 bc ± 0.01 | 0.42 c ± 0.02 |
Gumminess | 5.87 b ± 0.56 | 5.17 b ± 0.19 | 3.50 a ± 0.26 | 14.12 c ± 1.55 |
Chewiness | 5.73 b ± 0.52 | 5.05 b ± 0.15 | 3.34 a ± 0.28 | 13.65 c ± 1.82 |
Resilience | 0.14 a ± 0.01 | 0.17 bc ± 0.01 | 0.16 bc ± 0.01 | 0.18 c ± 0.02 |
Control | FOC5% | FOC15% | FOC30% | p-Value | |
---|---|---|---|---|---|
Aroma | |||||
Oily | 1.98 a ± 0.99 | 1.62 ab ± 1.09 | 1.18 ab ± 1.10 | 0.85 b ± 0.79 | 0.0441 |
Sweet | 2.79 a ± 0.75 | 1.95 b ± 0.43 | 1.44 b ± 0.93 | 1.45 b ± 1.25 | 0.0014 |
Wheat bread | 2.93 a ± 0.79 | 1.65 ab ± 0.87 | 0.93 b ± 0.92 | 0.87 b ± 0.90 | <0.0001 |
Acid | 0.13 b ± 0.20 | 0.71 ab ± 0.58 | 1.02 a ± 0.56 | 1.29 a ± 0.50 | <0.0001 |
Seed-like | 0.01 c ± 0.01 | 2.08 b ± 1.39 | 3.55 ab ± 1.13 | 4.87 a ± 1.64 | <0.0001 |
Appearance | |||||
Creamy colour | 3.43 a ± 0.97 | 0.01 b ± 0.01 | 0.01 b ± 0.01 | 0.01 b ± 0.01 | <0.0001 |
Brown colour | 0.01 c ± 0.01 | 1.93 bc ± 1.88 | 3.93 b ± 1.53 | 6.32 a ± 0.99 | <0.0001 |
Pore collocation | 7.88 a ± 0.92 | 5.94 ab ± 2.23 | 4.37 b ± 1.22 | 4.41 b ± 1.36 | <0.0001 |
Pore dimension | 1.13 b ± 0.48 | 1.76 b ± 0.85 | 3.71 a ± 1.23 | 3.35 a ± 0.68 | <0.0001 |
Texture (manual) | |||||
Elasticity | 0.58 c ± 0.53 | 2.10 b ± 0.96 | 3.67 a ± 1.13 | 3.78 a ± 1.12 | <0.0001 |
Texture (in the mouth) | |||||
Chewiness | 1.05 b ± 0.54 | 2.16 ab ± 0.73 | 3.04 a ± 0.85 | 3.33 a ± 0.99 | <0.0001 |
Adhesiveness | 0.78 c ± 0.23 | 1.71 b ± 0.44 | 2.64 a ± 0.42 | 2.94 a ± 0.74 | <0.0001 |
Moisture | 0.98 b ± 0.48 | 1.82 b ± 0.61 | 2.78 a ± 0.47 | 3.09 a ± 0.81 | <0.0001 |
Taste | |||||
Seed-like | 0.01 d ± 0.01 | 1.91 c ± 0.65 | 3.68 b ± 0.74 | 5.07 a ± 1.02 | <0.0001 |
Sweet | 2.98 a ± 1.55 | 2.53 a ± 1.15 | 2.50 a ± 1.20 | 2.55 a ± 1.18 | 0.7725 |
Salty | 0.29 a ± 0.22 | 0.34 a ± 0.26 | 0.38 a ± 0.24 | 0.33 a ± 0.23 | 0.8249 |
Oily | 1.56 a ± 0.59 | 0.92 a ± 0.54 | 0.88 a ± 0.88 | 0.95 a ± 1.16 | 0.1577 |
Bitter | 0.01 c ± 0.01 | 0.44 bc ± 0.56 | 0.63 ab ± 0.61 | 0.93 a ± 0.83 | 0.0031 |
Aftertaste | 2.35 a ± 1.36 | 2.65 a ± 1.33 | 2.98 a ± 1.21 | 3.53 a ± 1.02 | 0.1303 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, D.; Starowicz, M.; Ostaszyk, A.; Łopusiewicz, Ł.; Ferreira, I.M.P.L.V.O.; Pinto, E.; Krupa-Kozak, U. The Improved Quality of Gluten-Free Bread Due to the Use of Flaxseed Oil Cake: A Comprehensive Study Evaluating Nutritional Value, Technological Properties, and Sensory Quality. Foods 2023, 12, 4320. https://doi.org/10.3390/foods12234320
Oliveira D, Starowicz M, Ostaszyk A, Łopusiewicz Ł, Ferreira IMPLVO, Pinto E, Krupa-Kozak U. The Improved Quality of Gluten-Free Bread Due to the Use of Flaxseed Oil Cake: A Comprehensive Study Evaluating Nutritional Value, Technological Properties, and Sensory Quality. Foods. 2023; 12(23):4320. https://doi.org/10.3390/foods12234320
Chicago/Turabian StyleOliveira, Daniela, Małgorzata Starowicz, Anita Ostaszyk, Łukasz Łopusiewicz, Isabel M. P. L. V. O. Ferreira, Edgar Pinto, and Urszula Krupa-Kozak. 2023. "The Improved Quality of Gluten-Free Bread Due to the Use of Flaxseed Oil Cake: A Comprehensive Study Evaluating Nutritional Value, Technological Properties, and Sensory Quality" Foods 12, no. 23: 4320. https://doi.org/10.3390/foods12234320
APA StyleOliveira, D., Starowicz, M., Ostaszyk, A., Łopusiewicz, Ł., Ferreira, I. M. P. L. V. O., Pinto, E., & Krupa-Kozak, U. (2023). The Improved Quality of Gluten-Free Bread Due to the Use of Flaxseed Oil Cake: A Comprehensive Study Evaluating Nutritional Value, Technological Properties, and Sensory Quality. Foods, 12(23), 4320. https://doi.org/10.3390/foods12234320