Total and Free Hydrogen Cyanide Content and Profile of Bioactive Amines in Commercial Tucupi, a Traditionally Derived Cassava Product Widely Consumed in Northern Brazil
Abstract
:1. Introduction
2. Material and Methods
2.1. Material
2.2. Physicochemical Characterization
2.3. Determination of Total and Free Hydrogen Cyanide (HCN)
2.4. Determination of Bioactive Amines
2.5. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Characteristics of the Tucupi Samples
3.2. Total and Free HCN Levels in the Tucupi Samples
3.3. Profiles of Free Bioactive Amines in the Tucupi Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bellotti, A.; Campo, B.V.H.; Hyman, G. Cassava production and pest management: Present and potential threats in a changing environment. Trop. Plant Biol. 2012, 5, 39–72. [Google Scholar] [CrossRef]
- FAO—Food and Agriculture Organizations of the United Nations. FAOSTAT Statistical Database; FAO: Rome, Italy, 2021. [Google Scholar]
- Brito, B.N.C.; Chisté, R.C.; Lopes, A.S.; Glória, M.B.A.; Pena, R.S. Influence of spontaneous fermentation of manipueira on bioactive amine and carotenoid profiles during tucupi production. Food Res. Int. 2019, 120, 209–216. [Google Scholar] [CrossRef]
- Campos, A.P.R.; Mattietto, R.A.; Carvalho, A.V. Optimization of parameters technological to process tucupi and study of product stability. Food Sci. Technol. 2019, 39, 365–371. [Google Scholar] [CrossRef]
- Lima, T.T.M.; Hosken, B.O.; Venturim, B.C.; Lopes, I.L.; Martin, J.G.P. Traditional Brazilian fermented foods: Cultural and technological aspects. J. Ethn. Foods 2022, 9, 35. [Google Scholar] [CrossRef]
- Silva, A.P.R.; Pantoja, G.V.; Crispino, A.C.S.; Braga, Y.P.; Lima, M.F.T.; Silva, L.F.; Rodrigues, E.A.L.; de Oliveira, J.A.R. Tucupi: A review of uses, physical-chemical, nutritional properties and technologies. Braz. J. Dev. 2023, 9, 17467–17487. [Google Scholar] [CrossRef]
- Mante, E.S.; Sakyi-Dawson, E.; Amoa-Awua, W.K. Antimicrobial interactions of microbial species involved in the fermentation of cassava dough into agbelima with particular reference to the inhibitory effect of lactic acid bacteria on enteric pathogens. Int. J. Food Microbiol. 2003, 89, 41–50. [Google Scholar] [CrossRef]
- Anyogu, A.; Awamaria, B.; Sutherland, J.P.; Ouoba, L.I.I. Molecular characterisation and antimicrobial activity of bacteria associated with submerged lactic acid cassava fermentation. Food Control 2014, 39, 119–127. [Google Scholar] [CrossRef]
- Freire, A.L.; Ramos, C.L.; Schwan, R.F. Microbiological and chemical parameters during cassava based-substrate fermentation using potential starter cultures of lactic acid bacteria and yeast. Food Res. Int. 2015, 76, 787–795. [Google Scholar] [CrossRef]
- Brito, B.N.C.; Chisté, R.C.; Lopes, A.S.; Gloria, M.B.A.; Chagas Junior, G.C.A.; Pena, R.S. Lactic acid bacteria and bioactive amines identified during manipueira fermentation for tucupi production. Microorganisms 2022, 10, 840. [Google Scholar] [CrossRef]
- Chisté, R.C.; Cohen, K.O.; Oliveira, S.S. Study of tucupi physicochemical properties. Ciência Tecnol. Aliment. 2007, 27, 437–440. [Google Scholar] [CrossRef]
- Kashala-Abotnes, E.; Okitundu, D.; Mumba, D.; Boivin, M.J.; Tylleskär, T.; Tshala-Katumbay, D. Konzo: A distinct neurological disease associated with food (cassava) cyanogenic poisoning. Brain Res. Bull. 2019, 145, 87–91. [Google Scholar] [CrossRef]
- Ndam, Y.N.; Mounjouenpou, P.; Kansci, G.; Kenfack, M.J.; Meguia, M.P.F.; Eyenga, N.S.N.N.; Akhobakoh, M.M.; Nyegue, A. Influence of cultivars and processing methods on the cyanide contents of cassava (Manihot esculenta Crantz) and its traditional food products. Sci. Afr. 2019, 5, e00119. [Google Scholar] [CrossRef]
- Alvarez, M.A.; Moreno-Arribas, M.V. The problem of biogenic amines in fermented foods and the use of potential biogenic amine-degrading microorganisms as a solution. Trends Food Sci. Technol. 2014, 39, 146–155. [Google Scholar] [CrossRef]
- Mah, J.-H.; Park, Y.K.; Jin, Y.H.; Lee, J.-H.; Hwang, H.-J. Bacterial production and control of biogenic amines in Asian fermented soybean foods. Foods 2019, 8, 85. [Google Scholar] [CrossRef]
- EFSA—European Food Safety Authority. Scientific opinion on risk-based control of biogenic amines formation in fermented foods. Eur. Food Saf. Auth. J. 2011, 9, 2392. [Google Scholar]
- Dala-Paula, B.M.; Custódio, F.B.; Gloria, M.B.A. Health concerns associated with biogenic amines in food and interaction with amine oxidase drugs. Curr. Opin. Food Sci. 2023, 54, 101090. [Google Scholar] [CrossRef]
- Rocha, F.L.; Hara, C.; Gloria, M.B.A. Tiramina. Depressões Resistentes e o uso de IMAO: Orientações para Profissionais, Pacientes e Seus Familiares: Dados Inéditos SOBRE Interação com Alimentos; Coopmed: Belo Horizonte, MG, Brazil, 2023. [Google Scholar]
- Chisté, R.C.; Cohen, K.O. Teor de cianeto total e livre nas etapas de processamento do tucupi. Rev. Inst. Adolfo Lutz 2011, 70, 41–46. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists, 21st ed.; AOAC: Gaithersburg, MD, USA, 2019. [Google Scholar]
- Essers, A.J.A.; Bosveld, M.; Van Der Grift, R.M.; Voragen, A.G.J. Studies on the quantification of specific cyanogenes in cassava products and introduction of a new chromogen. J. Sci. Food Agric. 1993, 63, 287–296. [Google Scholar] [CrossRef]
- ADEPARÁ. Agência de Defesa Agropecuária do Estado do Pará. Padrão de Identidade e Qualidade do Tucupi para Comercialização no Estado do Pará. 2008. Available online: https://www.normasbrasil.com.br/norma/instrucao-normativa-1-2008-pa_147065.html (accessed on 26 March 2021).
- Campos, A.P.R.; Carmo, J.R.; Carvalho, A.V.; Mattietto, R.A. Avaliação das Características Físico-Químicas e Microbiológicas de Tucupi Comercial; Embrapa Amazônia Oriental: Belém, PA, Brazil, 2016. [Google Scholar]
- Cereda, M.P. Caracterização dos subprodutos da industrialização da mandioca. In Manejo, Uso e Tratamento de Subprodutos da Industrialização da Mandioca; Cereda, M.P., Ed.; Fundação Cargill: São Paulo, SP, Brazil, 2002; Volume 4, pp. 13–37. [Google Scholar]
- Penido, F.C.L.; Goulart, C.O.; Galvão, Y.C.F.; Teixeira, C.V.; Oliveira, R.B.P.; Borelli, B.M.; Guimarães, G.M.; Neumann, E.; Sande, D.; Araújo, R.L.B.; et al. Antagonistic lactic acid bacteria in association with Saccharomyces cerevisiae as starter cultures for standardization of sour cassava starch production. J. Food Sci. Technol. 2019, 56, 3969–3979. [Google Scholar] [CrossRef]
- Campos, A.P.R.; Carvalho, A.V.; Mattietto, R.A. Efeito da Fermentação e Cocção nas Características Físico-Químicas e Teor de Cianeto Durante o Processamento de Tucupi; Embrapa Amazônia Oriental: Belém, PA, Brazil, 2016. [Google Scholar]
- Ngiki, Y.U.; Igwebuike, J.U.; Moruppa, S.M. Utilization of cassava products for poultry feeding: A review. Int. J. Sci. Technol. 2014, 2, 48–59. [Google Scholar]
- Shigaki, T. Cassava: The nature and uses. In Encyclopedia of Food and Health; Caballero, B., Finglas, P.M., Toldrá, F., Eds.; Academic Press: New York, NY, USA, 2016; pp. 687–693. [Google Scholar]
- Charles, A.L.; Sriroth, K.; Huang, T.C. Proximate composition, mineral contents, hydrogen cyanide and phytic acid of five cassava genotypes. Food Chem. 2005, 92, 615–620. [Google Scholar] [CrossRef]
- Cereda, M.P.; Vasconcelos, S.P. Cassava cyanogenic glycosides: Importance, toxicity, and dosage methods. In Varieties and Landraces. Cultural Practices and Traditional Uses; Cereda, M.P., Vilpoux, O.F., Eds.; Underground Starchy Crops of South American Origin; Academic Press: Cambridge, MA, USA; Elservier: Amsterdam, The Netherlands, 2003; Volume 2, pp. 179–209. [Google Scholar] [CrossRef]
- Codex Alimentarius Commission. Report of Eighth Session of the Codex Coordinating Committee for Africa, Cairo, Egypt, 29 November–3 December 1988; Food and Agricultural Organization: Rome, Italy, 1988. [Google Scholar]
- Tapingkae, W.; Tanasupawat, S.; Parkin, K.L.; Benjakul, S.; Visessanguan, W. Degradation of histamine by extremely halophilic archaea isolated from high salt fermented fishery products. Enzym. Microb. Technol. 2010, 46, 92–99. [Google Scholar] [CrossRef]
- Feddern, V.; Mazzuco, H.; Fonseca, F.N.; De Lima, G.J.M.M. A review on biogenic amines in food and feed: Toxicological aspects, impact on health and control measures. Anim. Prod. Sci. 2019, 59, 608–618. [Google Scholar] [CrossRef]
- Oguntoyinbo, F.A.; Dodd, C.E.R. Bacterial dynamics during the spontaneous fermentation of cassava dough in gari production. Food Control 2010, 21, 306–312. [Google Scholar] [CrossRef]
- Barbieri, F.; Montanari, C.; Gardini, F.; Tabanelli, G. Biogenic amine production by lactic acid bacteria: A review. Foods 2019, 8, 17. [Google Scholar] [CrossRef]
- Durak-Dados, A.; Michalski, M.; Osek, J. Histamine and other biogenic amines in food. J. Vet. Res. 2020, 64, 281–288. [Google Scholar] [CrossRef]
- Doeun, D.; Davaatseren, M.; Chung, M.S. Biogenic amines in food. Food Sci. Biotechnol. 2017, 26, 1463–1474. [Google Scholar] [CrossRef] [PubMed]
- Del Rio, B.; Redruello, B.; Linares, D.M.; Ladero, V.; Ruas-Madiedo, P.; Fernandez, M.; Martin, C.; Alvarez, M.A. The biogenic amines putrescine and cadaverine show in vitro cytotoxicity at concentrations that can be found in foods. Sci. Rep. 2019, 9, 120. [Google Scholar] [CrossRef]
- Muñoz-Esparza, N.C.; Latorre-Moratalla, M.K.; Comas-Basté, O.; Toro-Funes, N.; Veciana-Nogués, M.T.; Vidal-Carou, M. Polyamines in food. Front. Nutr. 2019, 6, 108. [Google Scholar] [CrossRef]
- Dala-Paula, B.M.; Starling, M.F.V.; Glória, M.B.A. Vegetables consumed in Brazilian cuisine as sources of bioactive amines. Food Biosci. 2021, 40, 100856. [Google Scholar] [CrossRef]
- Kalač, P. Health effects and occurrence of dietary polyamines: A review for the period 2005–mid 2013. Food Chem. 2014, 161, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Cipolla, B.J.; Havouis, R.; Moulinoux, J.P. Polyamine reduced diet (PRD) nutrition therapy in hormone refractory prostate cancer patients. Biomed. Pharmacother. 2010, 64, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Handa, A.K.; Fatima, T.; Mattoo, A.K. Polyamines: Biomolecules with diverse functions in plant and human health and disease. Front. Chem. 2018, 6, 10. [Google Scholar] [CrossRef] [PubMed]
- Kalač, P.; Krausová, P. A review of dietary polyamines: Formation, implications for growth and health and occurrence in foods. Food Chem. 2005, 90, 219–230. [Google Scholar] [CrossRef]
Source/Sample | pH | Total Acidity (g Lactic Acid/100 mL) | Total Sugars (g/100 mL) | Reducing Sugars (g/100 mL) |
---|---|---|---|---|
Agroindustry | ||||
1 | 3.39 ± 0.01 mn | 0.16 ± <0.01 mn | nd | nd |
2 | 3.40 ± 0.01 m | 0.19 ± <0.01 ljm | 0.44 ± 0.01 gh | nd |
3 | 3.27 ± 0.02 o | 0.40 ± <0.01 g | nd | nd |
4 | 3.66 ± 0.01 i | 0.56 ± 0.01 e | 0.50 ± 0.02 gh | 0.50 ± 0.01 def |
5 | 4.30 ± 0.01 d | 0.18 ± <0.01 lmn | 0.66 ± 0.02 fg | 0.64 ± 0.01 bcde |
6 | 3.26 ± 0.01 o | 0.24 ± <0.01 hi | 0.32 ± 0.01 h | 0.22 ± 0.01 f |
7 | 3.06 ± 0.02 p | 0.67 ± 0.01 c | 0.79 ± 0.01 ef | nd |
8 | 3.52 ± 0.01 j | 1.07 ± 0.02 b | 0.28 ± 0.01 h | 0.23 ± 0.01 f |
9 | 2.82 ± 0.04 q | 0.37 ± 0.01 g | nd | nd |
10 | 4.04 ± 0.01 f | 0.59 ± 0.01 de | nd | nd |
11 | 4.22 ± 0.02 e | 0.38 ± 0.02 g | 2.71 ± 0.14 b | 2.33 ± 0.47 a |
Mean | 3.54 ± 0.47 | 0.44 ± 0.27 | 0.81 ± 0.86 | 0.78 ± 0.88 |
Range | 2.82–4.30 | 0.16–1.07 | 0.00–2.71 | 0.00–2.33 |
Artisanal | ||||
12 | 3.93 ± 0.01 g | 0.17 ± 0.01 mn | 0.92 ± 0.03 de | 0.69 ± 0.22 bcd |
13 | 3.47 ± 0.01 l | 0.14 ± <0.01 n | 1.04 ± 0.04 d | 1.02 ± 0.05 b |
14 | 3.85 ± 0.01 h | 0.22 ± <0.01 ijl | 0.60 ± 0.02 fg | 0.57 ± 0.02 cdef |
15 | 4.67 ± 0.01 a | 0.24 ± <0.01 hi | 0.73 ± 0.02 ef | 0.60 ± 0.06 cdef |
16 | 3.45 ± 0.01 l | 0.48 ± 0.01 f | nd | nd |
17 | 4.51 ± 0.01 c | 0.23 ± <0.01 ij | 4.35 ± 0.29 a | 0.27 ± 0.01 ef |
18 | 4.59 ± 0.02 b | 0.27 ± <0.01 h | 0.94 ± 0.07 de | 0.91 ± 0.06 bc |
19 | 3.47 ± 0.01 l | 0.15 ± 0.01 n | 1.14 ± 0.06 d | 1.04 ± 0.10 b |
20 | 3.02 ± 0.02 p | 1.36 ± 0.03 a | nd | nd |
21 | 3.39 ± 0.02 m | 0.60 ± 0.03 d | 2.07 ± 0.06 c | 0.56 ± 0.02 cdef |
22 | 3.35 ± 0.02 n | 0.40 ± 0.03 g | nd | nd |
Mean | 3.79 ± 0.57 | 0.39 ± 0.35 | 1.47 ± 1.24 | 0.71 ± 0.27 |
Range | 3.02–4.67 | 0.14–1.36 | 0.00–4.35 | 0.00–1.04 |
Source/Sample | Cyanide (mg HCN/L) | % Free/Total | |
---|---|---|---|
Total | Free | ||
Agroindustry | |||
1 | 60.06 ± 0.31 d | 20.52 ± 0.06 d | 34.2 |
2 | 49.51 ± 0.38 e | 1.16 ± 0.01 o | 2.3 |
3 | 79.22 ± 2.45 c | 30.92 ± 0.05 c | 39.0 |
4 | 114.66 ± 3.29 a | 38.38 ± 0.61 a | 33.5 |
5 | 107.09 ± 4.06 ab | 34.27 ± 1.22 b | 32.0 |
6 | 32.03 ± 0.61 hij | 8.27 ± 0.14 jl | 25.8 |
7 | 43.13 ± 1.61 efg | 18.54 ± 0.20 e | 43.0 |
8 | 67.05 ± 1.15 d | 16.77 ± 0.20 f | 25.0 |
9 | 8.87 ± 0.77 l | 3.33 ± 0.01 n | 37.5 |
10 | 40.85 ± 2.83 efgh | 3.91 ± 0.09 n | 9.6 |
11 | 81.55 ± 0.69 c | 14.65 ± 0.20 g | 18.0 |
Mean | 62.18 ± 31.93 | 17.34 ± 12.86 | 27.26 ± 12.76 |
Range | 8.87–114.66 | 3.33–38.38 | 2.3–43.0 |
Artisanal | |||
12 | 103.19 ± 6.66 b | 17.97 ± 0.61 ef | 17.4 |
13 | 37.18 ± 2.53 fghi | 8.17 ± 0.33 l | 21.97 |
14 | 59.79 ± 3.29 d | 12.01 ± 0.51 h | 20.1 |
15 | 23.81 ± 1.34 j | 0.80 ± 0.06 o | 3.4 |
16 | 47.40 ± 1.22 e | 8.00 ± 0.04 lm | 16.9 |
17 | 64.45 ± 1.45 d | 10.04 ± 0.32 i | 15.6 |
18 | 12.72 ± 0.23 l | 0.84 ± 0.09 o | 6.6 |
19 | 27.87 ± 0.23 ij | 6.59 ± 0.11 m | 23.6 |
20 | 42.05 ± 1.45 efg | 9.75 ± 0.11 ij | 23.2 |
21 | 35.44 ± 2.83 ghi | 8.32 ± 0.14 jl | 23.5 |
22 | 46.21 ± 2.60 ef | 17.32 ± 0.20 ef | 37.5 |
Mean | 45.46 ± 24.36 | 9.07 ± 5.50 | 19.07 ± 9.09 |
Range | 12.72–103.19 | 0.84–17.97 | 3.4–37.5 |
Source/Sample | Bioactive Amines (mg/L) | |||||
---|---|---|---|---|---|---|
Tyramine | Putrescine | Histamine | Tryptamine | Spermidine | Total * | |
Agroindustry | ||||||
1 | nd | 31.79 ± 1.28 a | 1.55 ± 0.11 cd | nd | 0.44 ± 0.15 g | 33.34 ± 1.39 |
2 | nd | 6.24 ± 0.29 e | 1.56 ± 1.03 cd | nd | nd | 7.80 ± 1.32 |
3 | 4.21 ± 0.04 a | 7.01 ± 0.22 e | 1.00 ± 0.04 cd | nd | 0.80 ± 0.12 efg | 12.22 ± 0.30 |
4 | 0.83 ± 0.02 c | 10.54 ± 0.49 d | 66.85 ± 2.78 a | nd | 1.64 ± 0.06 bcd | 78.22 ± 3.29 |
5 | nd | 2.29 ± 0.05 hijl | nd | 2.94 ± 0.19 a | 0.92 ± 0.01 efg | 5.23 ± 0.24 |
6 | nd | 16.11 ± 0.34 c | 4.01 ± 0.19 c | 2.53 ± 0.14 ab | 0.67 ± 0.01 fg | 22.65 ± 0.67 |
7 | 3.66 ± 0.16 b | 2.49 ± 0.13 hijl | 13.62 ± 0.09 b | 0.81 ± 0.03 c | nd | 20.58 ± 0.41 |
8 | nd | 1.60 ± 0.08 ijl | 16.79 ± 1.59 b | nd | nd | 18.39 ± 1.67 |
9 | nd | 23.07 ± 0.87 b | 1.95 ± 0.16 cd | 1.77 ± 0.12 d | nd | 26.79 ± 1.15 |
10 | nd | 2.86 ± 0.14 ghij | 15.98 ± 0.53 b | nd | 1.72 ± 0.35 bc | 18.84 ± 0.67 |
11 | nd | 2.77 ± 0.04 hijl | nd | 1.65 ± 0.05 d | 1.03 ± 0.02 efg | 4.42 ± 0.09 |
Mean | 2.90 ± 1.81 | 9.71 ± 9.98 | 13.70 ± 21.00 | 1.94 ± 0.83 | 1.03 ± 0.48 | 22.59 ± 20.55 |
Range | 0.83–4.21 | 1.60–31.79 | 1.00–66.85 | 0.81–2.94 | 0.44–1.72 | 5.23–78.22 |
Artisanal | ||||||
12 | nd | 1.77 ± 1.03 ijl | nd | nd | 2.20 ± 0.14 ab | 1.77 ± 1.03 |
13 | nd | 2.83 ± 0.07 ghij | nd | nd | 1.39 ± 0.16 cde | 2.83 ± 0.07 |
14 | nd | 1.23 ± 0.26 jl | 0.49 ± 0.09 d | nd | 1.08 ± 0.06 def | 1.72 ± 0.35 |
15 | nd | 3.22 ± 0.05 ghi | 1.14 ± 0.03 cd | nd | 1.68 ± 0.13 bcd | 4.36 ± 0.08 |
16 | nd | 1.00 ± 0.02 l | 2.21 ± 0.09 cd | nd | nd | 3.21 ± 0.11 |
17 | nd | 1.25 ± 0.03 jl | 1.64 ± 0.19 cd | nd | 2.48 ± 0.25 a | 2.89 ± 0.22 |
18 | nd | 5.29 ± 0.53 ef | 0.81 ± 0.06 cd | nd | 0.80 ± 0.11 efg | 6.10 ± 0.59 |
19 | nd | 4.65 ± 0.22 fg | 1.13 ± 0.51 cd | nd | 0.85 ± 0.18 efg | 5.78 ± 0.73 |
20 | nd | 5.21 ± 0.12 ef | nd | 0.62 ± 0.15 c | 0.66 ± 0.04 fg | 5.83 ± 0.27 |
21 | 0.49 ± 0.08 c | 3.94 ± 0.24 fgh | 1.51 ± 0.21 cd | nd | 0.56 ± 0.13 fg | 5.94 ± 0.53 |
22 | nd | 1.78 ± 0.03 ijl | nd | 2.10 ± 0.02 bd | 0.42 ± 0.01 g | 3.88 ± 0.05 |
Mean | 0.49 ± 0.00 | 2.92 ± 1.64 | 1.28 ± 0.57 | 1.36 ± 1.05 | 1.21 ± 0.71 | 4.03 ± 1.68 |
Range | 0.49 | 1.00–5.29 | 0.49–2.21 | 0.62–2.10 | 0.42–2.48 | 1.72–6.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brito, B.d.N.d.C.; Martins, M.G.; Chisté, R.C.; Lopes, A.S.; Gloria, M.B.A.; Pena, R.d.S. Total and Free Hydrogen Cyanide Content and Profile of Bioactive Amines in Commercial Tucupi, a Traditionally Derived Cassava Product Widely Consumed in Northern Brazil. Foods 2023, 12, 4333. https://doi.org/10.3390/foods12234333
Brito BdNdC, Martins MG, Chisté RC, Lopes AS, Gloria MBA, Pena RdS. Total and Free Hydrogen Cyanide Content and Profile of Bioactive Amines in Commercial Tucupi, a Traditionally Derived Cassava Product Widely Consumed in Northern Brazil. Foods. 2023; 12(23):4333. https://doi.org/10.3390/foods12234333
Chicago/Turabian StyleBrito, Brenda de Nazaré do Carmo, Mayara Galvão Martins, Renan Campos Chisté, Alessandra Santos Lopes, Maria Beatriz Abreu Gloria, and Rosinelson da Silva Pena. 2023. "Total and Free Hydrogen Cyanide Content and Profile of Bioactive Amines in Commercial Tucupi, a Traditionally Derived Cassava Product Widely Consumed in Northern Brazil" Foods 12, no. 23: 4333. https://doi.org/10.3390/foods12234333
APA StyleBrito, B. d. N. d. C., Martins, M. G., Chisté, R. C., Lopes, A. S., Gloria, M. B. A., & Pena, R. d. S. (2023). Total and Free Hydrogen Cyanide Content and Profile of Bioactive Amines in Commercial Tucupi, a Traditionally Derived Cassava Product Widely Consumed in Northern Brazil. Foods, 12(23), 4333. https://doi.org/10.3390/foods12234333