Intelligent Electrochemical Point-of-Care Test Method with Interface Control Based on DNA Pyramids: Aflatoxin B1 Detection in Food and the Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation and Characterization of DNP
2.3. Construction and Characterization of Ec iPOCT
2.4. Determination of AFB1
2.5. Optimization of mAbs, pH, Incubation Temperature, and Time
2.6. Evaluation of the Ec iPOCT
2.7. Validation of Ec iPOCT Results by Comparing with HPLC-MS/MS Using Real Samples
2.8. Sample Preparation
3. Results and Discussion
3.1. Preparation and Characterization of DTNs
3.2. Construction of the Pyramid DNA Nanostructure
3.3. Optimization Ec iPOCT
3.4. Evaluation of Ec iPOCT
3.5. Selectivity, Stability, and Reproducibility of the Ec iPOCT Biosensor
3.6. Validation and Comparison with HPLC-MS/MS in Real Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, X.H.; Wei, L.Y.; Nie, R.B.; Wang, Z.L.; Huang, W.; Liu, J.W.; Zhang, X.Y.; Chen, Y.P. Integrating magnetic metal-organic frameworks-based sample preparation with microchannel resistance biosensor for rapid and quantitative detection of aflatoxin B1. J. Hazard. Mater. 2022, 438, 129425. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.C.; Qiu, C.C.; Huang, L.T.; Gao, Y.; Tang, D.P. Microelectromechanical Microsystems-Supported Photothermal Immunoassay for Point-of-Care Testing of Aflatoxin B1 in Foodstuff. Anal. Chem. 2023, 95, 4212. [Google Scholar] [CrossRef] [PubMed]
- Pei, F.B.; Feng, S.S.; Zhang, Y.H.; Wu, Y.; Chen, C.L.; Sun, Y.; Xie, Z.H.; Hao, Q.L.; Cao, Y.; Tong, Z.Y.; et al. A photoelectrochemical immunosensor based on Z-scheme CdS composite heterojunction for aflatoxin B1. Biosens. Bioelectron. 2022, 214, 114500. [Google Scholar] [CrossRef]
- Chen, X.R.; Zhang, J.Y.; Xie, J.H.; Huang, Z.B. Development of two immunochromatographic test strips based on gold nanospheres and gold nanoflowers for the rapid and simultaneous detection of aflatoxin B1 and aristolochic acid a in dual-use medicinal and food ingredients. Microchem. J. 2023, 186, 108307. [Google Scholar] [CrossRef]
- Akgönüllü, S.; Yavuz, H.D.; Denizli, A.; Akgönüllü, S.; Yavuz, H.D.; Denizli, A. SPR nanosensor based on molecularly imprinted polymer film with gold nanoparticles for sensitive detection of aflatoxin B1. Talanta 2020, 219, 121219. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Lu, Y.; Yang, C.N.; Guo, Q.F.; Nie, G.M. Simple “signal-on” photoelectrochemical aptasensor for ultrasensitive detecting AFB1 based on electrochemically reduced graphene oxide/poly(5-formylindole)/Au nanocomposites. Biosens. Bioelectron. 2019, 134, 42. [Google Scholar] [CrossRef]
- Chilaka, C.A.; Boevre, M.D.; Atanda, O.O.; Saeger, S.D. Quantification of fusarium mycotoxins in nigerian traditional beers and spices using a multi-mycotoxin LC-MS/MS method. Food Control 2018, 87, 203–210. [Google Scholar] [CrossRef]
- Dzuman, Z.; Zachariasova, M.; Veprikova, Z.; Godula, M.; Hajslova, J. Multi-analyte high performance liquid chromatography coupled to high resolution tandem mass spectrometry method for control of pesticide residues, mycotoxins, and pyrrolizidine alkaloids. Anal. Chim. Acta 2015, 863, 29–40. [Google Scholar] [CrossRef]
- Liu, X.; Tang, Z.W.; Duan, Z.H.; He, Z.Y.; Shu, M.; Wang, X.X.; Gee, S.J.; Hammock, B.D.; Xu, Y. Nanobody-based enzyme immunoassay for ochratoxin A in cereal with high resistance to matrix interference. Talanta 2017, 164, 154–158. [Google Scholar] [CrossRef]
- Yuan, L.; Giovanni, M.; Xie, J.P.; Fan, C.H.; Leong, D.T. Ultrasensitive IgG quantification using DNA nano-pyramids. NPG Asia Mater. 2014, 6, 12. [Google Scholar] [CrossRef]
- Li, G.H.; Xu, L.; Wu, W.Q.; Wang, D.; Jiang, J.; Chen, X.M.; Zhang, W.; Poapolathep, S.; Poapolathep, A.; Zhang, Z.W.; et al. On-Site Ultrasensitive Detection Paper for Multiclass Chemical Contaminants via Universal Bridge-Antibody Labeling: Mycotoxin and Illegal Additives in Milk as an Example. Anal. Chem. 2019, 91, 1968–1973. [Google Scholar] [CrossRef] [PubMed]
- Soleymani, L.; Fang, Z.C.; Lam, B.; Bin, X.M.; Vasilyeva, E.; Ross, A.J.; Sargent, E.H.; Kelley, S.O. Hierarchical nanotextured microelectrodes overcome the molecular transport barrier to achieve rapid, direct bacterial detection. ACS Nano 2011, 5, 3360–3366. [Google Scholar] [CrossRef]
- Bin, X.M.; Sargent, E.H.; Kelley, S.O. Nanostructuring of Sensors Determines the Efficiency of Biomolecular Capture. Anal. Chem. 2010, 82, 5928–5931. [Google Scholar] [CrossRef] [PubMed]
- Xia, R.P.; Chai, H.; Jiao, J.; Miao, P. Assembly of DNA triangular pyramid frustum for ultrasensitive quantification of exosomal miRNA. Biosens. Bioelectron. 2023, 231, 115297. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.H.; Song, P.; Zhou, G.B.; Zuo, X.L.; Aldalbahi, A.; Lou, X.D.; Shi, J.Y.; Fan, C.H. Electrochemical detection of nucleic acids, proteins, small molecules and cells using a DNA-nanostructure-based universal biosensing platform. Nat. Protoc. 2016, 4, 1244–1263. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.J.; Pang, J.R.; Ma, R.R.; Liang, X.J.; Wei, M.; Suo, Z.G.; He, B.S.; Liu, Y. A signal on-off fluorescence sensor based on the self-assembly DNA tetrahedron for simultaneous detection of ochratoxin A and aflatoxin B1. Anal. Chim. Acta 2022, 1198, 339566. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.H.; Wang, J.J.; Zhou, G.B.; Wang, J.B.; Wu, N.; Lu, J.X.; Gao, J.M.; Chen, X.Q.; Shi, J.Y.; Zuo, X.L.; et al. Programmable engineering of a biosensing interface with tetrahedral DNA nanostructures for ultrasensitive DNA detection. Angew. Chem. 2015, 127, 2179–2183. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, X.X.; Zhang, C.X.; Xu, Y.; Su, J.; Lu, X.L.; Shi, J.Y.; Wang, L.H.; Landry, M.P.; Zhu, Y.; et al. A DNA tetrahedral structure-mediated ultrasensitive fluorescent microarray platform for nucleic acid test. Sens. Actuators B 2020, 321, 128538. [Google Scholar] [CrossRef]
- Guan, J.H.; He, K.Y.; Gunasekaran, S. Self-assembled tetrahedral DNA nanostructures-based ultrasensitive label-free detection of ampicillin. Talanta 2022, 243, 123292. [Google Scholar] [CrossRef]
- Tian, T.R.; Zhang, T.; Shi, S.R.; Gao, Y.; Cai, X.X.; Lin, Y.F. A dynamic DNA pyramid framework for active targeting. Nat. Protoc. 2023, 18, 1028–1055. [Google Scholar] [CrossRef]
- Chen, W.H.; Yao, Y.; Chen, T.Y.; Shen, W.; Tang, S.; Lee, H.K. Application of smartphone-based spectroscopy to biosample analysis: A review. Biosens. Bioelectron. 2021, 172, 112788. [Google Scholar] [CrossRef]
- Tian, Y.Y.; Che, H.C.; Wang, J.H.; Wang, D.; Yang, L.Z.; Wang, L.Y.; Nie, Y.L.; Tian, X.K. Smartphone as a simple device for visual and on-site detection of fluoride in groundwater. J. Hazard. Mater. 2021, 411, 125182. [Google Scholar] [CrossRef] [PubMed]
- Beduk, T.; Beduk, D.; de Oliveira Filho, J.; Zihnioglu, F.; Cicek, C.; Sertoz, R.; Arda, B.; Goksel, T.; Turhan, K.; Salama, K.; et al. Rapid point-of-care COVID-19 diagnosis with a gold-nanoarchitecture-assisted laser-scribed graphene biosensor. Anal. Chem. 2021, 93, 8585–8594. [Google Scholar] [CrossRef] [PubMed]
- Campuzano, S.; Pedrero, M.; Yáñez-Sedeño, P.; Pingarrón, J.M. New challenges in point of care electrochemical detection of clinical biomarkers. Sens. Actuators B 2021, 345, 130349. [Google Scholar] [CrossRef]
- Li, X.; Li, P.W.; Zhang, Q.; Li, Y.Y.; Zhang, W.; Ding, X.X. Molecular Characterization of Monoclonal Antibodies against Aflatoxins: A Possible Explanation for the Highest Sensitivity. Anal. Chem. 2012, 84, 5229–5235. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.H.; Li, X.; He, G.L.; Zhang, Z.W.; Zheng, X.T.; Li, P.W.; Li, C.M. Sensitive competitive immunoassay of multiple mycotoxins with non-fouling antigen microarray. Biosens. Bioelectron. 2013, 50, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Long, G.; Voigtman, E.; Kosinski, M.; Winefordner, J. Reduction of electronic noise in inductively coupled plasma atomic emission and fluorescence spectrometric measurements. Anal. Chem. 1983, 55, 1432–1434. [Google Scholar] [CrossRef]
- Wu, W.Q.; Zhou, D.; Chen, X.M.; Tang, X.Q.; Jiang, J.; Yu, L.; Li, H.; Zhang, Q.; Zhang, Z.W.; Li, P.W. Intelligent point-of-care test via smartphone-enabled microarray for multiple targets: Mycotoxins in food. Sens. Actuators B 2022, 360, 131648. [Google Scholar] [CrossRef]
- Zhang, J.; Song, S.P.; Wang, L.H.; Pan, D.; Fan, C.H. A gold nanoparticle-based chronocoulometric DNA sensor for amplified detection of DNA. Nat. Protoc. 2007, 2, 2888–2895. [Google Scholar] [CrossRef]
- Peng, G.; Li, X.Y.; Cui, F.; Qiu, Q.Y.; Chen, X.J.; Huang, H. Aflatoxin B1 electrochemical aptasensor based on tetrahedral DNA nanostructures functionalized three dimensionally ordered macroporous MoS2-AuNPs film. ACS Appl. Mater. Interfaces 2018, 10, 17551–17559. [Google Scholar] [CrossRef]
- Li, Y.P.; Sun, L.L.; Zhao, Q. Aptamer-Structure Switch Coupled with Horseradish Peroxidase Labeling on a Microplate for the Sensitive Detection of Small Molecules. Anal. Chem. 2019, 91, 2615. [Google Scholar] [CrossRef] [PubMed]
- Masoomi, L.L.; Sadeghi, O.; Banitaba, M.H.; Shahrjerdi, A.; Davarani, S.S.H. A non-enzymatic nanomagnetic electro-immunosensor for determination of Aflatoxin B1 as a model antigen. Sens. Actuators B 2013, 177, 1122–1127. [Google Scholar] [CrossRef]
- Yu, L.L.; Zhang, Y.; Hu, C.Y.; Wu, H.; Yang, Y.Y.; Huang, C.S.; Jia, N.Q. Highly sensitive electrochemical impedance spectroscopy immunosensor for the detection of AFB1 in olive oil. Food Chem. 2015, 176, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.H.; Sun, J.Z.; Zhang, Y.; Bian, C.; Xia, S.H.; Zhen, T. Label-free immunosensor based on one-step electrodeposition of chitosan-gold nanoparticles biocompatible film on Au microelectrode for determination of aflatoxin B1 in maize. Biosens. Bioelectron. 2016, 80, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.B.; Shen, Y.M.; Shen, G.Y.; Wang, S.; Shen, G.L.; Yu, R.Q. Electrochemical immunosensor based on Pd–Au nanoparticles supported on functionalized PDDA-MWCNT nanocomposites for aflatoxin B1 detection. Anal. Biochem. 2016, 494, 10–15. [Google Scholar] [CrossRef]
- Ma, H.H.; Sun, J.Z.; Zhang, Y.; Xia, S.H. Disposable amperometric immunosensor for simple and sensitive determination of aflatoxin B1 in wheat. Biochem. Eng. J. 2016, 115, 38–46. [Google Scholar] [CrossRef]
- Xiong, X.H.; Yuan, W.; Li, Y.F.; Lu, Y.C.; Xiong, X.; Li, Y.; Liu, Y.J.; Lu, L.X. Sensitive electrochemical detection of aflatoxin B1 using DNA pyramidnanostructure as substrate of antibody ordered assembly and template of aniline polymerization. Food Chem. 2020, 331, 127368. [Google Scholar] [CrossRef]
Immunoelectron | Sensitivity (μA/ng/mL) | Linear Range (ng/mL) | LOD (ng/mL) | Detection Method | Ref. |
---|---|---|---|---|---|
BSA/anti-AFB1/AuNPs/CHI/GCE | 0.02 | 0.6–110 | 0.2 | DPV | [32] |
MWCNTs/RTILs/Ab/AFB1 | / | 0.1–10 | 0.03 | EIS | [33] |
BSA/anti-AFB1/CHI-AuNPs/Au microelectrode | 1.20 0.03 | 0.1–1.0 1–30 | 0.06 | DPV | [34] |
CNTs/PDDA/Pd–Au | / | 0.05–25 | 0.03 | DPV | [35] |
CS-AuNPs/gold microelectrode | 0.72 0.06 | 0.2–2 2–30 | 0.12 | CV | [36] |
HRP/DTP/PANI/gold electrode | / | 0.05–20 | 0.033 | DPV | [37] |
Ec iPOCT biosensor | / | 0.006–30 | 0.003 | DPV | This Work |
Sample | Original (µg/kg) | Spiked (µg/kg) | Ec iPOCT Biosensor | HPLC-MS/MS b (µg/kg) | ||
---|---|---|---|---|---|---|
Found b (µg/kg) | Recovery (%) | RSD (%) | ||||
Peanut | ND a | 0 | ND | / | 2.09 | ND |
2 | 1.81 ± 0.26 | 90.50 | 2.98 | 1.79 ± 0.73 | ||
20 | 16.43 ± 0.89 | 82.15 | 5.12 | 17.20 ± 1.32 | ||
Soybean | ND | 0 | ND | / | 2.06 | ND |
2 | 1.73 ± 0.13 | 86.50 | 1.15 | 1.82 ± 0.04 | ||
20 | 19.59 ± 1.26 | 97.95 | 1.81 | 19.42 ± 1.02 | ||
Corn | 15.43 ± 0.23 c | 0 | 15.12 ± 0.86 | / | 3.47 | 15.43 ± 0.96 |
2 | 17.24 ± 0.92 | 90.5 | 2.62 | 17.37 ± 1.24 | ||
Lake water | ND | 0 | ND | / | 3.50 | ND |
2 | 1.88 ± 0.06 | 94.00 | 4.33 | 1.86 ± 0.09 | ||
15 | 15.08 ± 0.79 | 100.53 | 5.42 | 14.96 ± 0.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, W.; Bai, Y.; Zhao, T.; Liang, M.; Hu, X.; Wang, D.; Tang, X.; Yu, L.; Zhang, Q.; Li, P.; et al. Intelligent Electrochemical Point-of-Care Test Method with Interface Control Based on DNA Pyramids: Aflatoxin B1 Detection in Food and the Environment. Foods 2023, 12, 4447. https://doi.org/10.3390/foods12244447
Wu W, Bai Y, Zhao T, Liang M, Hu X, Wang D, Tang X, Yu L, Zhang Q, Li P, et al. Intelligent Electrochemical Point-of-Care Test Method with Interface Control Based on DNA Pyramids: Aflatoxin B1 Detection in Food and the Environment. Foods. 2023; 12(24):4447. https://doi.org/10.3390/foods12244447
Chicago/Turabian StyleWu, Wenqin, Yizhen Bai, Tiantian Zhao, Meijuan Liang, Xiaofeng Hu, Du Wang, Xiaoqian Tang, Li Yu, Qi Zhang, Peiwu Li, and et al. 2023. "Intelligent Electrochemical Point-of-Care Test Method with Interface Control Based on DNA Pyramids: Aflatoxin B1 Detection in Food and the Environment" Foods 12, no. 24: 4447. https://doi.org/10.3390/foods12244447
APA StyleWu, W., Bai, Y., Zhao, T., Liang, M., Hu, X., Wang, D., Tang, X., Yu, L., Zhang, Q., Li, P., & Zhang, Z. (2023). Intelligent Electrochemical Point-of-Care Test Method with Interface Control Based on DNA Pyramids: Aflatoxin B1 Detection in Food and the Environment. Foods, 12(24), 4447. https://doi.org/10.3390/foods12244447