Free and Bound Phenolic Profiles and Antioxidant Activities in Melon (Cucumis melo L.) Pulp: Comparative Study on Six Widely Consumed Varieties Planted in Hainan Province
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Extraction of Free Phenolic Compounds from Melon Pulp
2.3. Extraction of Bound Phenolic Compounds from Melon Pulp
2.4. TPC Determination
2.5. Phenolic Compound Identification and Quantification by UHPLC-QQQ-MS
2.6. Antioxidant Capacity
2.7. Statistical Analysis
3. Results and Discussion
3.1. TPC
3.2. Phenolic Compounds Identification
3.3. Quantification of Individual Phenolic Compounds
3.4. Antioxidant Activity
3.5. Correlations among Free, Bound, Total TPC and Antioxidant Activity
3.6. Correlations among Individual Phenolic Compound Content, TPC, and Antioxidant Activity
3.7. Principal Component Analysis and Hierarchical Cluster Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO. FAO Statistical Database. Available online: https://www.fao.org/faostat/zh/#data/QCL/visualize (accessed on 30 May 2023).
- Ezzat, S.M.; Raslan, M.; Salama, M.M.; Menze, E.T.; El Hawary, S.S. In vivo anti-inflammatory activity and UPLC-MS/MS profiling of the peels and pulps of Cucumis melo var. cantalupensis and Cucumis melo var. reticulatus. J. Ethnopharmacol. 2019, 237, 245–254. [Google Scholar] [CrossRef]
- Maietti, A.; Tedeschi, P.; Stagno, C.; Bordiga, M.; Travaglia, F.; Locatelli, M.; Arlorio, M.; Brandolini, V. Analytical Traceability of Melon (Cucumis Melo Var Reticulatus): Proximate Composition, Bioactive Compounds, and Antioxidant Capacity in Relation to Cultivar, Plant Physiology State, and Seasonal Variability. J. Food Sci. 2012, 77, C646–C652. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Garcia, R.; Campos, D.A.; Aguilar, C.N.; Madureira, A.R.; Pintado, M. Valorization of melon fruit (Cucumis melo L.) by-products: Phytochemical and Biofunctional properties with Emphasis on Recent Trends and Advances. Trends Food Sci. Technol. 2020, 99, 507–519. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, Y.; Li, H.; Deng, Z.; Tsao, R. A review on insoluble-bound phenolics in plant-based food matrix and their contribution to human health with future perspectives. Trends Food Sci. Technol. 2020, 105, 347–362. [Google Scholar] [CrossRef]
- Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P.E.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (Poly)phenolics in Human Health: Structures, Bioavailability, and Evidence of Protective Effects Against Chronic Diseases. Antioxid. Redox Signal. 2013, 18, 1818–1892. [Google Scholar] [CrossRef] [PubMed]
- Shivapriya, M.; Chidambara Murthy, K.N.; Vishnuvardana; Bhimanagouda, S.P. Nutritional composition and health benefits of various botanical types of melon (Cucumis melo L.). Plants 2021, 10, 1755. [Google Scholar] [CrossRef]
- Kolayli, S.; Kara, M.; Tezcan, F.; Erim, F.B.; Sahin, H.; Ulusoy, E.; Aliyazicioglu, R. Comparative Study of Chemical and Biochemical Properties of Different Melon Cultivars: Standard, Hybrid, and Grafted Melons. J. Agric. Food Chem. 2010, 58, 9764–9769. [Google Scholar] [CrossRef]
- Motomura, Y.; Sugawara, J.; Aikawa, T.; Nara, K.; Nishizawa, T. Changes in free and bound phenolic contents and antioxidant activities of melon flesh dried at different stages of fruit growth. In Proceedings of the 3rd Asia Pacific Symposium on Postharvest Research, Education and Extension (APS), Ho Chi Minh City, Vietnam, 8–11 December 2018; pp. 505–510. [Google Scholar]
- Morais, D.R.; Rotta, E.M.; Sargi, S.C.; Schmidt, E.M.; Bonafe, E.G.; Eberlin, M.N.; Sawaya, A.C.H.F.; Visentainer, J.V. Antioxidant activity, phenolics and UPLC-ESI(-)-MS of extracts from different tropical fruits parts and processed peels. Food Res. Int. 2015, 77, 392–399. [Google Scholar] [CrossRef]
- Rolim, P.M.; Juca Seabra, L.M.A.; de Macedo, G.R. Melon By-Products: Biopotential in Human Health and Food Processing. Food Rev. Int. 2020, 36, 15–38. [Google Scholar] [CrossRef]
- Wu, Y.; Gao, H.; Wang, Y.; Peng, Z.; Guo, Z.; Ma, Y.; Zhang, R.; Zhang, M.; Wu, Q.; Xiao, J.; et al. Effects of different extraction methods on contents, profiles, and antioxidant abilities of free and bound phenolics of Sargassum polycystum from the South China Sea. J. Food Sci. 2022, 87, 968–981. [Google Scholar] [CrossRef]
- Yan, Y.; Pico, J.; Sun, B.; Pratap-Singh, A.; Gerbrandt, E.; Castellarin, S.D. Phenolic profiles and their responses to pre- and post-harvest factors in small fruits: A review. Crit. Rev. Food Sci. Nutr. 2021, 63, 3574–3601. [Google Scholar] [CrossRef]
- Shofian, N.M.; Hamid, A.A.; Osman, A.; Saari, N.; Anwar, F.; Dek, M.S.P.; Hairuddin, M.R. Effect of Freeze-Drying on the Antioxidant Compounds and Antioxidant Activity of Selected Tropical Fruits. Int. J. Mol. Sci. 2011, 12, 4678–4692. [Google Scholar] [CrossRef]
- Fundo, J.F.; Miller, F.A.; Garcia, E.; Santos, J.R.; Silva, C.L.M.; Brando, T.R.S. Physicochemical characteristics, bioactive compounds and antioxidant activity in juice, pulp, peel and seeds of Cantaloupe melon. J. Food Meas. Charact. 2018, 12, 292–300. [Google Scholar] [CrossRef]
- Zhang, R.; Zeng, Q.; Deng, Y.; Zhang, M.; Wei, Z.; Zhang, Y.; Tang, X. Phenolic profiles and antioxidant activity of litchi pulp of different cultivars cultivated in Southern China. Food Chem. 2013, 136, 1169–1176. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Chu, Y.F.; Wu, X.; Liu, R.H. Antioxidant and antiproliferative activities of common fruits. J. Agric. Food Chem. 2002, 50, 7449–7454. [Google Scholar] [CrossRef] [PubMed]
- Ayoub, M.; de Camargo, A.C.; Shahidi, F. Antioxidants and bioactivities of free, esterified and insoluble-bound phenolics from berry seed meals. Food Chem. 2016, 197, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Prakash, O.; Baskaran, R.; Kudachikar, V.B. Characterization, quantification of free, esterified and bound phenolics in Kainth (Pyrus pashia Buch.-Ham. Ex D.Don) fruit pulp by UPLC-ESI-HRMS/MS and evaluation of their antioxidant activity. Food Chem. 2019, 299, 125114. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Xu, T.; Zheng, W.; Gao, B.; Zhu, H.; Xu, R.; Deng, H.; Wang, B.; Wu, Y.; Sun, X.; et al. Triacylglycerols compositions, soluble and bound phenolics of red sorghums, and their radical scavenging and anti-inflammatory activities. Food Chem. 2021, 340, 128123. [Google Scholar] [CrossRef]
- Luo, D.; Mu, T.; Sun, H. Profiling of phenolic acids and flavonoids in sweet potato (Ipomoea batatas L.) leaves and evaluation of their anti-oxidant and hypoglycemic activities. Food Biosci. 2021, 39, 100801. [Google Scholar] [CrossRef]
- Lambert, M.; Meudec, E.; Verbaere, A.; Mazerolles, G.; Wirth, J.; Masson, G.; Cheynier, V.; Sommerer, N. A High-Throughput UHPLC-QqQ-MS Method for Polyphenol Profiling in Rose Wines. Molecules 2015, 20, 7890–7914. [Google Scholar] [CrossRef]
- Jager, L.S.d.; Perfetti, G.A.; Diachenko, G.W. Determination of coumarin, vanillin, and ethyl vanillin in vanilla extract products: Liquid chromatography mass spectrometry method development and validation studies. J. Chromatogr. A 2007, 1145, 83–88. [Google Scholar] [CrossRef]
- Flamini, R.; Vedova, A.D.; Cancian, D.; Panighel, A.; De Rosso, M. GC/MS-positive ion chemical ionization and MS/MS study of volatile benzene compounds in five different woods used in barrel making. J. Mass Spectrom. 2007, 42, 641–646. [Google Scholar] [CrossRef]
- Arivalagan, M.; Roy, T.K.; Yasmeen, A.M.; Pavithra, K.C.; Jwala, P.N.; Shivasankara, K.S.; Manikantan, M.R.; Hebbar, K.B.; Kanade, S.R. Extraction of phenolic compounds with antioxidant potential from coconut (Cocos nucifera L.) testa and identification of phenolic acids and flavonoids using UPLC coupled with TQD-MS/MS. LWT Food Sci. 2018, 92, 116–126. [Google Scholar] [CrossRef]
- Mattonai, M.; Parri, E.; Querci, D.; Degano, I.; Ribechini, E. Development and validation of an HPLC-DAD and HPLC/ESI-MS2 method for the determination of polyphenols in monofloral honeys from Tuscany (Italy). Microchem. J. 2016, 126, 220–229. [Google Scholar] [CrossRef]
- Ren, M.; Xu, W.; Zhang, Y.; Ni, L.; Lin, Y.; Zhang, X.; Huang, M. Qualitative and quantitative analysis of phenolic compounds by UPLC-MS/MS and biological activities of Pholidota chinensis Lindl. J. Pharm. Biomed. Anal. 2020, 187, 113350. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, N.; Thadhani, V.M.; Ul Haq, F.; Khan, M.N.; Ali, S.; Musharraf, S.G. Rapid identification and quantification of bioactive metabolites in processed Camellia sinensis samples by UHPLC-ESI-MS/MS and evaluation of their antioxidant activity. J. Ind. Eng. Chem. 2020, 90, 419–426. [Google Scholar] [CrossRef]
- Olate-Gallegos, C.; Barriga, A.; Vergara, C.; Fredes, C.; Garcia, P.; Gimenez, B.; Robert, P. Identification of Polyphenols from Chilean Brown Seaweeds Extracts by LC-DAD-ESI-MS/MS. J. Aquat. Food Prod. Technol. 2019, 28, 375–391. [Google Scholar] [CrossRef]
- Chen, P.X.; Tang, Y.; Marcone, M.F.; Pauls, P.K.; Zhang, B.; Liu, R.; Tsao, R. Characterization of free, conjugated and bound phenolics and lipophilic antioxidants in regular- and non-darkening cranberry beans (Phaseolus vulgaris L.). Food Chem. 2015, 185, 298–308. [Google Scholar] [CrossRef]
- Yang, J.; Qian, D.; Jiang, S.; Shang, E.-x.; Guo, J.; Duan, J.-a. Identification of rutin deglycosylated metabolites produced by human intestinal bacteria using UPLC-Q-TOF/MS. J. Chromatogr. B-Anal. Technol. Biomed. Life Sci. 2012, 898, 95–100. [Google Scholar] [CrossRef]
- Mohamed Ahmed, I.A.; Al Juhaimi, F.; Musa Ozcan, M.; Nurhan, U.; Elfadil, E.B.; Kashif, G.; Magdi, A.O.; Hesham, A.A.S. A comparative study of bioactive compounds, antioxidant activity and phenolic compounds of melon (Cucumis melo L.) slices dehydrated by oven, microwave and infrared systems. J. Food Process. Preserv. 2021, 45, e15605. [Google Scholar] [CrossRef]
- Ganji, S.M.; Singh, H.; Friedman, M. Phenolic Content and Antioxidant Activity of Extracts of 12 Melon (Cucumis melo) Peel Powders Prepared from Commercial Melons. J. Food Sci. 2019, 84, 1943–1948. [Google Scholar] [CrossRef]
- Mallek-Ayadi, S.; Bahloul, N.; Baklouti, S.; Kechaou, N. Bioactive compounds from Cucumis melo L. fruits as potential nutraceutical food ingredients and juice processing using membrane technology. Food Sci. Nutr. 2022, 10, 2922–2934. [Google Scholar] [CrossRef] [PubMed]
- Ravindranath, V.; Singh, J.; Jayaprakasha, G.K.; Patil, B.S. Optimization of Extraction Solvent and Fast Blue BB Assay for Comparative Analysis of Antioxidant Phenolics from Cucumis melo L. Plants 2021, 10, 1379. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Perez, C.; Quirantes-Pine, R.; Fernandez-Gutierrez, A.; Segura-Carretero, A. Comparative characterization of phenolic and other polar compounds in Spanish melon cultivars by using high-performance liquid chromatography coupled to electrospray ionization quadrupole-time of flight mass spectrometry. Food Res. Int. 2013, 54, 1519–1527. [Google Scholar] [CrossRef]
- Serni, E.; Tomada, S.; Haas, F.; Robatscher, P. Characterization of phenolic profile in dried grape skin of Vitis vinifera L. cv. Pinot Blanc with UHPLC-MS/MS and its development during ripening. J. Food Compos. Anal. 2022, 114, 104731. [Google Scholar] [CrossRef]
- Mallek-Ayadi, S.; Bahloul, N.; Kechaou, N. Characterization, phenolic compounds and functional properties of Cucumis melo L. peels. Food Chem. 2017, 221, 1691–1697. [Google Scholar] [CrossRef]
- Perez-Esteve, E.; Jesus Lerma-Garcia, M.; Fuentes, A.; Palomares, C.; Barat, J.M. Control of undeclared flavoring of cocoa powders by the determination of vanillin and ethyl vanillin by HPLC. Food Control 2016, 67, 171–176. [Google Scholar] [CrossRef]
- Suo, H.; Peng, Z.; Guo, Z.; Wu, C.; Liu, J.; Wang, L.; Xiao, J.; Li, X. Deep eutectic solvent-based ultrasonic-assisted extraction of phenolic compounds from different potato genotypes: Comparison of free and bound phenolic profiles and antioxidant activity. Food Chem. 2022, 388, 133058. [Google Scholar] [CrossRef]
- Selale, H.; Sigva, H.O.; Celik, I.; Doganlar, S.; Frary, A. water-soluble antioxidant potential of melon lines grown in Turkey. Int. J. Food Prop. 2012, 15, 145–156. [Google Scholar] [CrossRef]
Phenolic Compounds Classes | Peak No. | Tentative Compounds | λmax (nm) | ESI Mode | Parent Ion | Fragment Ion | Reference | Form |
---|---|---|---|---|---|---|---|---|
benzoic acid and derivative | 1 | protocatechualdehyde | 274, 308 | − | 136.89 | 108.04 | [21], standard | B |
2 | protocatechuic acid | 260, 295 | − | 153.10 | 109.30 | [22], standard | B | |
3 | ethyl vanillin | 280, 310 | − | 165.00 | 136.21, 92.05 | [23], standard | F, B | |
4 | vanillic acid | 259, 291 | + | 169.00 | 125.00 | [22], standard | F, B | |
5 | vanillin | 275 | + | 153.00 | 125.00 | [24], standard | B | |
6 | syringic acid | 275 | + | 199.10 | 155.10 | [22], standard | F, B | |
hydroxycinnamic acid and derivative | 7 | trans-cinnamic acid | 278, 306 | − | 146.95 | 118.90, 77.00, 40.10 | [25], standard | B |
8 | p-coumaric acid | 270, 307 | − | 163.10 | 119.00, 91.00 | [26], standard | F, B | |
9 | ferulic acid | 299, 323 | − | 193.00 | 177.90, 149.00, | [26], standard | B | |
10 | sinapic acid | 244, 323 | − | 223.00 | 193.00, 149.00, 121.00 | [26], standard | B | |
11 | caffeic acid | 299, 323 | − | 179.10 | 135.00, 79.00 | [26], standard | B | |
12 | cynarin | 242, 304 | − | 515.30 | 353.00, 191.01 | [27], standard | F | |
13 | chlorogenic acid | 241, 322 | − | 353.20 | 191.00, 182.90, 179.20 | [26], standard | F, B | |
flavan-3-ol | 14 | epicatechin | 278 | − | 289.10 | 244.90, 137.10 | [28], standard | F |
15 | gallocatechin | 270 | − | 305.10 | 179.00, 124.98 | [28], standard | F, B | |
16 | epigallocatechin | 270 | − | 305.10 | 179.00, 124.98 | [28], standard | B | |
17 | epigallocatechin gallate | 274 | − | 457.00 | 331.00, 169.00, 125.00 | [28], standard | F, B | |
18 | procyanidin B1 | 280 | − | 577.30 | 407.10, 288.99 | [29], standard | B | |
flavonol | 19 | myricetin | 251, 375 | − | 317.00 | 179.00, 151.00, 136.90 | [26], standard | F, B |
20 | kaempferol-3-O-rutinoside | 266, 348 | − | 592.91 | 284.80, 254.91 | [29], standard | F, B | |
21 | isorhamnetin-3-O-glucoside | 254, 343 | − | 477.00 | 313.90, 284.90, 242.80 | [29], standard | F, B | |
dihydroflavonol | 22 | taxifolin | 288 | − | 302.83 | 285.00, 176.90, 124.98 | [29], standard | F, B |
23 | taxifolin-7-O-rhamnoside | 286 | − | 449.00 | 303.00, 284.90, 124.98 | [29], standard | B | |
flavanone | 24 | hesperidin | 283, 327 | − | 609.30 | 301.10 | [26], standard | F, B |
flavone | 25 | baicalein | 276 | + | 271.00 | 122.90 | [29], standard | B |
26 | hinokiflavone | 272, 330 | − | 537.00 | 417.00, 284.00 | [12], standard | F, B | |
27 | cosemetin | 270, 334 | − | 430.90 | 268.90 | [29], standard | F, B | |
anthocyanidin | 28 | cyanidin | 276, 530 | + | 286.90 | 137.00, 109.10 | [30], standard | F, B |
29 | leucocyanidin | 280 | + | 306.92 | 126.99, 155.07 | [31], standard | B | |
stilbene | 30 | trans-resveratrol | 280, 306 | + | 229.00 | 135.00, 107.10 | [22], standard | F, B |
31 | unknown1 | 256 | − | 1083.50 | 1083.50 | F, B | ||
32 | unknown2 | 257, 356 | − | 463.00 | 270.99 | F | ||
33 | unknown3 | 286 | − | 717.50 | 321.00 | B | ||
34 | unknown4 | 299,323 | + | 181.00 | 103.00 | B |
Individual Phenolic Compounds | Form | Content (μg/g DW) | |||||
---|---|---|---|---|---|---|---|
Xizhoumi No. 25 | Xiaomi No. 25 | Naixiangmi | Hongguan | Yugu | Meilong | ||
protocatechualdehyde | B | 2.70 ± 0.017 d | nd | 1.99 ± 0.066 e | 10.64 ± 0.076 a | 8.54 ± 0.023 c | 9.87 ± 0.038 b |
protocatechuic acid | B | nd | nd | nd | 5.94 ± 0.046 a | 4.54 ± 0.15 c | 4.80 ± 0.234 b |
ethyl vanillin | F | 46.48 ± 1.271 c | 53.27 ± 2.171 b | 19.60 ± 2.242 d | nd | 123.90 ± 1.028 a | nd |
B | nd | nd | nd | nd | 12.88 ± 0.782 a | 12.88 ± 0.845 a | |
vanillic acid | F | 0.38 ± 0.073 a | nd | nd | nd | nd | nd |
B | nd | nd | nd | 2.24 ± 0.048 b | nd | 5.90 ± 0.021 a | |
vanillin | B | nd | nd | 0.20 ± 0.008 a | nd | nd | nd |
syringic acid | F | 2.94 ± 0.102 a | 1.14 ± 0.11 b | nd | nd | nd | nd |
B | nd | 1.94 ± 0.231 a | 1.53 ± 0.295 b | 2.26 ± 0.229 a | nd | 2.16 ± 0.119 a | |
trans-cinnamic acid | B | nd | nd | 3.97 ± 0.012 a | nd | nd | nd |
p-coumaric acid | F | 4.69 ± 0.035 b | nd | 6.27 ± 0.077 a | nd | nd | nd |
B | nd | nd | nd | 5.48 ± 0.031 a | nd | nd | |
ferulic acid | B | 0.051 ± 0.002 a | nd | nd | nd | nd | nd |
sinapic acid | B | nd | 0.27 ± 0.001 a | nd | nd | nd | nd |
caffeic acid | B | 0.67 ± 0.016 d | nd | nd | 19.53 ± 1.190 b | 16.24 ± 1.228 c | 47.81 ± 2.830 a |
cynarin | F | nd | nd | nd | 1.43 ± 0.021 a | nd | 1.43 ± 0.015 a |
chlorogenic acid | F | 147.70 ± 6.900 a | 44.28 ± 2.186 c | 49.22 ± 2.233 c | 34.94 ± 2.515 d | 1.14 ± 0.047 e | 70.00 ± 2.906 b |
B | nd | nd | nd | nd | 1.33 ± 0.068 a | nd | |
the number of phenolic acids | F | 5 | 3 | 3 | 2 | 2 | 2 |
B | 3 | 2 | 4 | 6 | 5 | 6 | |
the content of phenolic acids | F | 202.19 ± 8.208 a | 98.69 ± 3.370 c | 75.10 ± 3.100 d | 36.37 ± 1.140 e | 125.04 ± 1.700 b | 71.43 ± 1.310 d |
B | 3.42 ± 0.290 d | 2.21 ± 0.178 d | 7.69 ± 0.597 c | 46.09 ± 1.860 b | 43.53 ± 2.651 b | 83.43 ± 3.217 a | |
epicatechin | F | nd | 0.63 ± 0.015 b | 0.27 ± 0.011 d | 0.63 ± 0.014 b | 0.58 ± 0.05 c | 0.71 ± 0.016 a |
gallocatechin | F | 2.39 ± 0.042 a | nd | nd | nd | nd | nd |
B | 2.62 ± 0.037 d | nd | 2.49 ± 0.069 d | 2.95 ± 0.077 c | 4.64 ± 0.230 b | 4.99 ± 0.098 a | |
epigallocatechin | B | 2.62 ± 0.079 a | nd | 2.49 ± 0.069 b | nd | nd | nd |
epigallocatechin gallate | F | 3.47 ± 0.189 a | nd | 1.90 ± 0.120 b | nd | nd | 1.55 ± 0.118 c |
B | 1.56 ± 0.119 b | nd | nd | 1.55 ± 0.100 b | nd | 3.62 ± 0.198 a | |
procyanidin B1 | B | 1.32 ± 0.021 a | nd | nd | nd | 1.35 ± 0.077 a | 1.32 ± 0.048 a |
myricetin | F | 1.86 ± 0.120 c | nd | 4.31 ± 0.180 b | 6.04 ± 0.410 a | 1.80 ± 0.097 c | 5.87 ± 0.540 a |
B | 4.98 ± 0.202 a | nd | 4.31 ± 0.180 b | nd | nd | 4.43 ± 0.110 a | |
kaempferol-3-O-rutinoside | F | nd | 0.04 ± 0.001 b | nd | nd | nd | 0.13 ± 0.002 a |
B | 0.09 ± 0.001 a | nd | nd | nd | nd | nd | |
isorhamnetin-3-O-glucoside | F | 2.01 ± 0.010 a | 2.02 ± 0.015 a | nd | nd | 2.03 ± 0.023 a | nd |
B | 2.02 ± 0.160 a | 0.24 ± 0.002 b | nd | 2.04 ± 0.210 a | 2.03 ± 0.200 a | 2.04 ± 0.220 a | |
taxifolin | F | nd | 0.72 ± 0.006 a | nd | nd | nd | nd |
B | nd | nd | nd | 0.96 ± 0.016 a | 0.71 ± 0.017 b | nd | |
taxifolin-7-O-rhamnoside | B | nd | nd | nd | nd | nd | 0.28 ± 0.001 a |
hesperidin | F | nd | 2.91 ± 0.010 b | 2.95 ± 0.012 a | nd | nd | nd |
B | nd | 2.91 ± 0.009 a | nd | nd | nd | nd | |
baicalein | B | 7.84 ± 0.027 a | nd | nd | nd | nd | nd |
hinokiflavone | F | 119.70 ± 2.446 b | 77.00 ± 1.103 d | 118.30 ± 0.150 b | 66.64 ± 2.404 e | 152.60 ± 4.620 a | 104.30 ± 1.960 c |
B | 84.00 ± 1.205 e | 112.00 ± 1.740 d | 67.83 ± 1.121 f | 137.90 ± 2.146 c | 238.70 ± 3.023 a | 182.70 ± 2.754 b | |
cosemetin | F | nd | 11.20 ± 1.187 c | nd | 1719.90 ± 10.980 a | 585.90 ± 11.540 b | 18.06 ± 1.850 c |
cyanidin | F | nd | nd | nd | 0.54 ± 0.003 b | nd | 1.18 ± 0.005 a |
B | 1.12 ± 0.098 b | nd | nd | 6.64 ± 0.657 a | 6.87 ± 0.870 a | nd | |
leucocyanidin | B | nd | 3.07 ± 0.400 b | 3.07 ± 0.227 b | nd | 5.92 ± 0.790 a | 5.04 ± 0.920 a |
the number of flavonoids | F | 5 | 7 | 5 | 5 | 5 | 7 |
B | 10 | 4 | 5 | 6 | 7 | 8 | |
the content of flavonoids | F | 129.42 ± 3.100 c | 94.52 ± 1.644 d | 127.74 ± 2.415 c | 1793.75 ± 13.500 a | 742.91 ± 6.930 b | 131.80 ± 4.757 c |
B | 108.17 ± 2.530 e | 118.21 ± 2.886 d | 80.17 ± 1.847 f | 152.03 ± 2.240 c | 260.22 ± 3.980 a | 204.43 ± 1.340 b | |
trans-resveratrol | B | nd | 0.15 ± 0.001 a | nd | nd | nd | nd |
the number of phenolic compounds | F | 10 | 9 | 8 | 7 | 7 | 9 |
B | 13 | 7 | 9 | 12 | 12 | 14 | |
T | 23 | 16 | 17 | 19 | 19 | 23 | |
the content of phenolic compounds | F | 331.61 ± 3.580 c | 193.20 ± 1.824 e | 202.83 ± 2.095 d | 1830.11 ± 5.120 a | 867.95 ± 5.855 b | 203.23 ± 1.467 d |
B | 111.59 ± 2.158 e | 120.57 ± 2.006 d | 87.86 ± 1.428 f | 198.12 ± 2.753 c | 303.74 ± 3.616 a | 287.86 ± 2.536 b | |
T | 443.2 ± 1.254 d | 313.77 ± 1.476 e | 290.69 ± 1.897 f | 2028.23 ± 13.357 a | 1171.69 ± 8.755 b | 491.09 ± 6.097 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Gao, H.; Guo, Z.; Peng, Z.; Li, S.; Zhu, Z.; Grimi, N.; Xiao, J. Free and Bound Phenolic Profiles and Antioxidant Activities in Melon (Cucumis melo L.) Pulp: Comparative Study on Six Widely Consumed Varieties Planted in Hainan Province. Foods 2023, 12, 4446. https://doi.org/10.3390/foods12244446
Wang Y, Gao H, Guo Z, Peng Z, Li S, Zhu Z, Grimi N, Xiao J. Free and Bound Phenolic Profiles and Antioxidant Activities in Melon (Cucumis melo L.) Pulp: Comparative Study on Six Widely Consumed Varieties Planted in Hainan Province. Foods. 2023; 12(24):4446. https://doi.org/10.3390/foods12244446
Chicago/Turabian StyleWang, Yuxi, Heqi Gao, Zhiqiang Guo, Ziting Peng, Shuyi Li, Zhenzhou Zhu, Nabil Grimi, and Juan Xiao. 2023. "Free and Bound Phenolic Profiles and Antioxidant Activities in Melon (Cucumis melo L.) Pulp: Comparative Study on Six Widely Consumed Varieties Planted in Hainan Province" Foods 12, no. 24: 4446. https://doi.org/10.3390/foods12244446
APA StyleWang, Y., Gao, H., Guo, Z., Peng, Z., Li, S., Zhu, Z., Grimi, N., & Xiao, J. (2023). Free and Bound Phenolic Profiles and Antioxidant Activities in Melon (Cucumis melo L.) Pulp: Comparative Study on Six Widely Consumed Varieties Planted in Hainan Province. Foods, 12(24), 4446. https://doi.org/10.3390/foods12244446