Interaction between a Sulfated Polysaccharide from Sea Cucumber and Gut Microbiota Influences the Fat Metabolism in Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Animals
2.3. Quantification of SCSP in Plasma, Feces, and Urine
2.4. Sequencing Analysis of the Gut Microbiota
2.5. Analysis of Metabolites by UPLC-Q-TOF MS
2.6. Statistical Analysis
3. Results and Discussion
3.1. Absorption and Exertion of SCSP in Rats
3.2. Relationship between Intestinal Flora and SCSP Utilization
3.3. Regulation of SCSP on Metabolite Profile of Feces
3.4. Regulation of SCSP on Metabolite Profiles of Serum and Urine
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, H.; Zhou, Q.; Liu, B.; Chen, F.; Wang, M. Holothurian fucosylated chondroitin sulfates and their potential benefits for human health: Structures and biological activities. Carbohydr. Polym. 2022, 275, 118691. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Zhu, B.; Ai, C.; Lu, J.; Wu, S.; Liu, Y.; Wang, L.; Yang, J.; Song, S.; Liu, X. Development and application of a HPLC-MS/MS method for quantitation of fucosylated chondroitin sulfate and fucoidan in sea cucumbers. Carbohydr. Res. 2018, 466, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Lin, F.; Huang, Y.; Ye, J.; Xiao, M. Separation, purification, structural analysis and immune-enhancing activity of sulfated polysaccharide isolated from sea cucumber viscera. Int. J. Biol. Macromol. 2020, 155, 1003–1018. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liu, Y.; Hao, J.; Zhao, X.; Lang, Y.; Fan, F.; Cai, C.; Li, G.; Zhang, L.; Yu, G. In vivo Anti-Cancer Mechanism of Low-Molecular-Weight Fucosylated Chondroitin Sulfate (LFCS) from Sea Cucumber Cucumaria frondosa. Molecules 2016, 21, 625. [Google Scholar] [CrossRef]
- Shakouri, A.; Nematpour, F.; Adibpour, N.; Ameri, A. The Investigation of Anti-bacterial Activity of Holothuria Leucospilota Sea Cucumber Extracts (Body Wall, Guts and White Strings) at Chabahar Bay in Oman Sea. Environ. Stud. Persian Gulf 2014, 135–140. Available online: https://api.semanticscholar.org/CorpusID:53412840 (accessed on 14 November 2023).
- Li, S.; Li, J.; Zhi, Z.; Wei, C.; Wang, W.; Ding, T.; Ye, X.; Hu, Y.; Linhardt, R.J.; Chen, S. Macromolecular properties and hypolipidemic effects of four sulfated polysaccharides from sea cucumbers. Carbohydr. Polym. 2017, 173, 330–337. [Google Scholar] [CrossRef]
- Janakiram, N.B.; Mohammed, A.; Bryant, T.; Lightfoot, S.; Collin, P.D.; Steele, V.E.; Rao, C.V. Improved Innate Immune Responses by Frondanol A5, a Sea Cucumber Extract, Prevent Intestinal Tumorigenesis. Cancer Prev. Res. 2015, 8, 327. [Google Scholar] [CrossRef]
- Wang, J.; Hu, S.; Jiang, W.; Song, W.; Cai, L.; Wang, J. Fucoidan from sea cucumber may improve hepatic inflammatory response and insulin resistance in mice. Int. Immunopharmacol. 2016, 31, 15–23. [Google Scholar] [CrossRef]
- Imanari, T.; Washio, Y.; Huang, Y.; Toyoda, H.; Suzuki, A.; Toida, T. Oral absorption and clearance of partially depolymerized fucosyl chondroitin sulfate from sea cucumber. Thromb. Res. 1999, 93, 129–135. [Google Scholar] [CrossRef]
- Zhao, L.; Qin, Y.; Guan, R.; Zheng, W.; Liu, J.; Zhao, J. Digestibility of fucosylated glycosaminoglycan from sea cucumber and its effects on digestive enzymes under simulated salivary and gastrointestinal conditions. Carbohydr. Polym. 2018, 186, 217–225. [Google Scholar] [CrossRef]
- Ai, C.; Ma, N.; Sun, X.; Duan, M.; Wu, S.; Yang, J.; Wen, C.; Song, S. Absorption and degradation of sulfated polysaccharide from pacific abalone in in vitro and in vivo models. J. Funct. Foods 2017, 35, 127–133. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhu, B.; Sun, Y.; Ai, C.; Wu, S.; Wang, L.; Song, S.; Liu, X. Sulfated polysaccharide from sea cucumber modulates the gut microbiota and its metabolites in normal mice. Int. J. Biol. Macromol. 2018, 120, 502–512. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhu, B.; Sun, Y.; Ai, C.; Wang, L.; Wen, C.; Yang, J.; Song, S.; Liu, X. Sulfated Polysaccharide from Sea Cucumber and its Depolymerized Derivative Prevent Obesity in Association with Modification of Gut Microbiota in High-Fat Diet-Fed Mice. Mol. Nutr. Food Res. 2018, 62, e1800446. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Yao, H.; Li, X.; Zhang, Q.; Wu, X.; Wong, T.; Zheng, H.; Fung, H.; Yang, B.; Ma, D.; et al. Destiny of Dendrobium officinale Polysaccharide after Oral Administration: Indigestible and Nonabsorbing, Ends in Modulating Gut Microbiota. J. Agric. Food Chem. 2019, 67, 5968–5977. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Wu, S.; Ai, C.; Wen, C.; Liu, Z.; Wang, L.; Jiang, L.; Shen, P.; Zhang, G.; Song, S. Galactofucan from Laminaria japonica is not degraded by the human digestive system but inhibits pancreatic lipase and modifies the intestinal microbiota. Int. J. Biol. Macromol. 2021, 166, 611–620. [Google Scholar] [CrossRef] [PubMed]
- Cartmell, A.; Lowe, E.C.; Baslé, A.; Firbank, S.J.; Ndeh, D.A.; Murray, H.; Terrapon, N.; Lombard, V.; Henrissat, B.; Turnbull, J.E.; et al. How members of the human gut microbiota overcome the sulfation problem posed by glycosaminoglycans. Proc. Natl. Acad. Sci. USA 2017, 114, 7037. [Google Scholar] [CrossRef] [PubMed]
- McGarrah, R.W.; Crown, S.B.; Zhang, G.-F.; Shah, S.H.; Newgard, C.B. Cardiovascular Metabolomics. Circ. Res. 2018, 122, 1238–1258. [Google Scholar] [CrossRef]
- Chávez-Talavera, O.; Tailleux, A.; Lefebvre, P.; Staels, B. Bile Acid Control of Metabolism and Inflammation in Obesity, Type 2 Diabetes, Dyslipidemia, and Nonalcoholic Fatty Liver Disease. Gastroenterology 2017, 152, 1679–1694.e3. [Google Scholar] [CrossRef]
- McNabney, S.M.; Henagan, T.M. Short Chain Fatty Acids in the Colon and Peripheral Tissues: A Focus on Butyrate, Colon Cancer, Obesity and Insulin Resistance. Nutrients 2017, 9, 1348. [Google Scholar] [CrossRef]
- Zeng, W.; Huang, K.-E.; Luo, Y.; Li, D.-X.; Chen, W.; Yu, X.-Q.; Ke, X.-H. Nontargeted urine metabolomics analysis of the protective and therapeutic effects of Citri Reticulatae Chachiensis Pericarpium on high-fat feed-induced hyperlipidemia in rats. Biomed. Chromatogr. 2020, 34, e4795. [Google Scholar] [CrossRef]
- Ablat, N.; Ablimit, M.; Abudoukadier, A.; Kadeer, B.; Yang, L. Investigating the hemostatic effect of medicinal plant Arnebia euchroma (Royle) I.M.Johnst extract in a mouse model. J Ethnopharmacol. 2021, 5, 114306. [Google Scholar] [CrossRef]
- Carvalho, W.A.; Maruyama, S.R.; Franzin, A.M.; Abatepaulo, A.R.; Anderson, J.M.; Ferreira, B.R.; Ribeiro, J.M.; Moré, D.D.; Augusto Mendes Maia, A.; Valenzuela, J.G.; et al. Rhipicephalus (Boophilus) microplus: Clotting time in tick-infested skin varies according to local inflammation and gene expression patterns in tick salivary glands. Exp Parasitol. 2010, 124, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Pang, H.-H.; Jiang, M.-F.; Wang, Q.-H.; Wang, X.-Y.; Gao, W.; Tian, Z.-H.; Huang, J.-M. Metabolic profile of danshen in rats by HPLC-LTQ-Orbitrap mass spectrometry. J. Zhejiang Univ.-Sci. B 2018, 19, 227–244. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, M.A.M.; Mourão, P.A.S. Urinary excretion of sulfated polysaccharides administered to Wistar rats suggests a renal permselectivity to these polymers based on molecular size. Biochim. Et Biophys. Acta (BBA)-Gen. Subj. 1997, 1335, 161–172. [Google Scholar] [CrossRef]
- Porter, N.T.; Martens, E.C. The Critical Roles of Polysaccharides in Gut Microbial Ecology and Physiology. Annu. Rev. Microbiol. 2017, 71, 349–369. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Zhang, L.; Cao, J.; Xiang, G.; Cong, P.; Dong, P.; Li, Z.; Xue, C.; Xue, Y.; Wang, Y. Characterization of Metabolic Pathways and Absorption of Sea Cucumber Saponins, Holothurin A and Echinoside A, in vitro and in vivo. J. Food Sci. 2017, 82, 1961–1967. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhang, Y.; Ai, C.; Wen, C.; Dong, X.; Sun, X.; Cao, C.; Zhang, X.; Zhu, B.; Song, S. Gut microbiota response to sulfated sea cucumber polysaccharides in a differential manner using an in vitro fermentation model. Food Res. Int. 2021, 148, 110562. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Han, Y.; Ding, Y.; Zhu, B.; Song, S.; Xiao, H. Health effects of dietary sulfated polysaccharides from seafoods and their interaction with gut microbiota. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2882–2913. [Google Scholar] [CrossRef]
- Ustyuzhanina, N.E.; Bilan, M.I.; Dmitrenok, A.S.; Silchenko, A.S.; Grebnev, B.B.; Stonik, V.A.; Nifantiev, N.E.; Usov, A.I. Fucosylated Chondroitin Sulfates from the Sea Cucumbers Paracaudina chilensis and Holothuria hilla: Structures and Anticoagulant Activity. Mar. Drugs 2020, 18, 540. [Google Scholar] [CrossRef]
- Fonseca, R.; Mouro, P.A.S.J.T. Fucosylated chondroitin sulfate as a new oral antithrombotic agent. Thromb. Haemost. 2006, 96, 822–829. [Google Scholar] [CrossRef]
- Fang, Q.; Hu, J.; Nie, Q.; Nie, S. Effects of polysaccharides on glycometabolism based on gut microbiota alteration. Trends Food Sci. Technol. 2019, 92, 65–70. [Google Scholar] [CrossRef]
- Hao, Z.; Wang, X.; Yang, H.; Tu, T.; Zhang, J.; Luo, H.; Huang, H.; Su, X. PUL-Mediated Plant Cell Wall Polysaccharide Utilization in the Gut Bacteroidetes. Int. J. Mol. Sci. 2021, 22, 3077. [Google Scholar] [CrossRef] [PubMed]
- McKee, L.S.; La Rosa, S.L.; Westereng, B.; Eijsink, V.G.; Pope, P.B.; Larsbrink, J. Polysaccharide degradation by the Bacteroidetes: Mechanisms and nomenclature. Environ. Microbiol. Rep. 2021, 13, 559–581. [Google Scholar] [CrossRef] [PubMed]
- Lagkouvardos, I.; Lesker, T.R.; Hitch, T.C.A.; Gálvez, E.J.C.; Smit, N.; Neuhaus, K.; Wang, J.; Baines, J.F.; Abt, B.; Stecher, B.; et al. Sequence and cultivation study of Muribaculaceae reveals novel species, host preference, and functional potential of this yet undescribed family. Microbiome 2019, 7, 28. [Google Scholar] [CrossRef] [PubMed]
- Jose, V.L.; Appoothy, T.; More, R.P.; Arun, A.S. Metagenomic insights into the rumen microbial fibrolytic enzymes in Indian crossbred cattle fed finger millet straw. AMB Express 2017, 7, 13. [Google Scholar] [CrossRef]
- Gong, G.; Zhou, S.; Luo, R.; Gesang, Z.; Suolang, S. Metagenomic insights into the diversity of carbohydrate-degrading enzymes in the yak fecal microbial community. BMC Microbiol. 2020, 20, 302. [Google Scholar] [CrossRef]
- Zhao, F.; Liu, Q.; Cao, J.; Xu, Y.; Pei, Z.; Fan, H.; Yuan, Y.; Shen, X.; Li, C. A sea cucumber (Holothuria leucospilota) polysaccharide improves the gut microbiome to alleviate the symptoms of type 2 diabetes mellitus in Goto-Kakizaki rats. Food Chem. Toxicol. 2020, 135, 110886. [Google Scholar] [CrossRef]
- Phan, C.T.; Tso, P. Intestinal lipid absorption and transport. Front. Mol. Biosci. 2001, 6, D299–D319. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, K.; Jia, Y.; Shi, J.; Tong, Z.; Fang, D.; Yang, B.; Su, C.; Li, R.; Xiao, X.; et al. Gut microbiome alterations in high-fat-diet-fed mice are associated with antibiotic tolerance. Nat. Microbiol. 2021, 6, 874–884. [Google Scholar] [CrossRef]
- Nestel, P.; Clifton, P.; Noakes, M. Effects of increasing dietary palmitoleic acid compared with palmitic and oleic acids on plasma lipids of hypercholesterolemic men. J. Lipid Res. 1994, 35, 656–662. [Google Scholar] [CrossRef]
- Hu, X.Q.; Xu, J.; Xue, Y.; Li, Z.J.; Wang, J.F.; Wang, J.H.; Xue, C.H.; Wang, Y.M. Effects of bioactive components of sea cucumber on the serum, liver lipid profile and lipid absorption. Biosci. Biotechnol. Biochem. 2012, 76, 2214–2218. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J.H. Nutritional implications of dietary fiber. Am. J. Clin. Nutr. 1978, 31, 521–529. [Google Scholar] [CrossRef] [PubMed]
Sample | Collecting Time (h) | 0~24 | 24~48 |
---|---|---|---|
Feces (n = 9) | SCSP amount (mg) | 27.267 ± 14.662 | 0.0604 ± 0.083 a |
Excretion ratio (%) | 55.42 ± 29.80 | 0.15 ± 0.17 | |
Urine (n = 3) | SCSP amount (mg) | <0.1 a | <0.1 a |
Excretion ratio (%) | <0.2 | <0.2 |
No. | Name | Formula | VIP | SCSP vs. Control |
---|---|---|---|---|
1 | 3-Amino-1,2,4-triazole | C2H4N4 | 1.37074 | ↑ (***) |
2 | Morpholine | C4H9NO | 6.33961 | ↓ |
3 | Diethanolamine | C4H11NO2 | 1.32672 | ↓ (**) |
4 | Dihydrouracil | C4H6N2O2 | 1.14054 | ↑ (*) |
5 | L-proline | C5H9NO2 | 2.47750 | ↑ (***) |
6 | Valine | C5H11NO2 | 1.17142 | ↑ (*) |
7 | Cinnamaldehyde | C9H8O | 1.89465 | ↓ (**) |
8 | 2-Aminobenzimidazole | C7H7N3 | 1.41216 | ↑ (***) |
9 | Hypoxanthine | C5H4N4O | 1.58532 | ↓ (**) |
10 | Guanine | C5H5N5O | 1.22418 | ↓ (**) |
11 | His | C6H9N3O2 | 1.14781 | ↑ (**) |
12 | 2,8-Quinolinediol | C9H7NO2 | 2.45795 | ↑ (**) |
13 | Metronidazole | C6H9N3O3 | 3.82603 | ↑ (*) |
14 | 7,8-Dihydroxycoumarin | C9H6O4 | 1.67340 | ↑ (*) |
15 | 5-Butylpyridine-2-carboxylic acid | C10H13NO2 | 1.14137 | ↓ |
16 | Metamitron-desamino | C10H9N3O | 1.49271 | ↓ |
17 | Levodopa | C9H11NO4 | 1.56546 | ↑ |
18 | 2-(4-Isobutylphenyl) propionic acid | C13H18O2 | 1.45771 | ↓ (*) |
19 | Pilocarpine | C11H16N2O2 | 2.66077 | ↓ (***) |
20 | Terbumeton | C10H19N5O | 1.10183 | ↓ (*) |
21 | Flonicamid | C9H6F3N3O | 3.03765 | ↓ (**) |
22 | Lumichrome | C12H10N4O2 | 2.85914 | ↑ (**) |
23 | (2Z)-2-Benzylidene-6-methoxy-1-benzofuran-3(2H)-one | C16H12O3 | 1.40162 | ↓ (*) |
24 | Dehydroepiandrosterone | C19H28O2 | 2.13486 | ↓ |
25 | Daidzein | C15H10O4 | 1.41342 | ↑ (**) |
26 | Epiandrosterone | C19H30O2 | 1.03079 | ↑ |
27 | Jaeschkeanadiol | C15H26O2 | 1.06159 | ↓ |
28 | Huperzine A | C15H18N2O | 2.14980 | ↑ |
29 | Graveolide | C15H20O3 | 1.38494 | ↑ (**) |
30 | Baicalein | C15H10O5 | 1.68694 | ↓ (**) |
31 | Galaxolidone | C18H24O2 | 1.03394 | ↑ (*) |
32 | (-)-Eburnamonine | C19H22N2O | 1.93955 | ↑ (***) |
33 | All-trans-retinoic acid | C20H28O2 | 1.40410 | ↑ (*) |
34 | Methyl 3-(3,4-dihydroxy-5-phenyloxolan-2-yl)-3-hydroxypropanoate | C14H18O6 | 1.82178 | ↑ |
35 | 5-(4-Hydroxybenzyl)-4-(2-hydroxy-4-methoxyphenyl)-2(5H)-furanone | C18H16O5 | 1.05768 | ↓ (**) |
36 | 5-(1,2,4a,5-Tetramethyl-7-oxo-3,4,8,8a-tetrahydro-2H-naphthalen-1-yl)-3-methylpentanoic acid | C20H32O3 | 1.23648 | ↓ (***) |
37 | Hydroquinidine | C20H26N2O2 | 1.19523 | ↑ (***) |
38 | Raclopride | C15H20Cl2N2O3 | 1.19604 | ↓ (*) |
39 | Eicosanoids–bicycloPGE1 | C20H32O4 | 2.81380 | ↓ (***) |
40 | Aphidicolin | C20H34O4 | 1.36684 | ↓ (*) |
41 | Melibiose | C12H22O11 | 2.25455 | ↓ |
42 | (2E,4E)-12-Hydroxy-13-(hydroxymethyl)-3,5,7-trimethyltetradeca-2,4-dienedioic acid | C18H30O6 | 1.02162 | ↓ |
43 | Hirsutine | C22H28N2O3 | 1.12443 | ↓ (**) |
44 | 4-(Hydroxymethyl)-1-isopropyl-3-cyclohexen-1-yl beta-d-glucopyranoside | C16H28O7 | 1.00738 | ↓ |
45 | 3-Methyl-5-(5,5,8a-trimethyl-2-methylene-7-oxodecahydro-1-naphthalenyl) pentyl acetate | C22H36O3 | 1.69849 | ↓ |
46 | Deoxycholic acid | C24H40O4 | 1.00172 | ↑ (**) |
47 | (-)-Riboflavin | C17H20N4O6 | 1.38226 | ↓ (*) |
48 | Methyl robustone | C22H18O6 | 3.32767 | ↑ (*) |
49 | Lagochilin | C20H36O5 | 1.12443 | ↓ (*) |
50 | Colladonine | C26H32O5 | 1.28344 | ↓ (**) |
51 | Voacristine | C22H28N2O4 | 1.24153 | ↓ (**) |
52 | Cholic acid | C24H40O5 | 1.03719 | ↓ |
53 | Monolinolein | C21H38O4 | 1.69026 | ↑ (**) |
54 | 11,12-Methylenedioxykopsinaline | C22H26N2O5 | 1.80736 | ↓ |
55 | 6-Hydroxy-2,4,4-trimethyl-3-(3-oxobutyl)-2-cyclohexen-1-yl beta-d-glucopyranoside | C19H32O8 | 1.74942 | ↓ (***) |
56 | 2-Acetoxy-4-pentadecylbenzoic acid | C24H38O4 | 1.32797 | ↓ |
57 | 4,6′,7′-Trihydroxy-6-(hydroxymethyl)-2′,5′,5′,8a′-tetramethyl-3′,4′,4a′,5′,6′,7′,8′,8a′-octahydro-2′H,3H-spiro[1-benzofuran-2,1′-naphthalene]-7-carbaldehyde | C23H32O6 | 4.20631 | ↑ |
58 | Lovastatin M + Na | C24H36O5 | 1.20112 | ↓ |
59 | Irbesartan | C25H28N6O | 1.00854 | ↓ |
60 | Hyocholic acid | C24H40O5 | 2.79818 | ↓ |
61 | Beta-peltatin | C22H22O8 | 3.54980 | ↑ |
62 | 3-[5-Hydroxy-7-methoxy-2,3-dimethyl-6-(3-methylbut-2-enyl)-4-oxo-2,3-dihydrochromen-8-yl] hexanoic acid | C23H32O6 | 4.08549 | ↑ (**) |
63 | 5-Hydroxy-5-(2-hydroxy-2-propanyl)-3,8-dimethyl-2-oxo-1,2,4,5,6,7,8,8a-octahydro-6-azulenyl β-d-glucopyranoside | C21H34O9 | 1.03474 | ↑ |
64 | 6-[3-[(3,4-Dimethoxyphenyl) methyl]-4-methoxy-2-(methoxymethyl) butyl]-4-methoxy-1,3-benzodioxole | C24H32O7 | 1.05174 | ↓ |
65 | Prednisolone_tebutate | C27H38O6 | 1.53337 | ↓ (*) |
66 | Lunarine | C25H31N3O4 | 1.10489 | ↓ |
67 | Lycoctonine | C25H41NO7 | 1.02154 | ↓ (*) |
68 | NCGC00385237-01-C30H48O4 | C30H48O4 | 1.03038 | ↓ (*) |
69 | Petunidin-3-O-beta-glucoside | C22H23O12 | 1.63603 | ↑ (*) |
70 | Emetine | C29H40N2O4 | 1.08634 | ↓ |
71 | (2R)-2-Hydroxy-3-(palmitoyloxy) propyl 2-(trimethylammonio)ethyl phosphate | C24H50NO7P | 1.13281 | ↓ (**) |
72 | 1-Linoleoyl-2-hydroxy-sn-glycero-3-PC | C26H50NO7P | 1.45727 | ↓ |
73 | Plasma ID-2759 | C26H52NO7P | 1.05955 | ↓ (**) |
74 | Rhusflavone | C30H22O10 | 1.18525 | ↑ |
75 | (1R,2R,3R,3aS,5aS,6R,7R,10R,10aR,10cR)-1,2,6,7-Tetrahydroxy-10a,10c-tetramethyl-4-oxo-6a,7,10,10a,10b,10c-dodecahydro-1H-phenanthro[10,1-bc] furan-10-yl beta-d-glucopyranoside | C25H38O12 | 2.23274 | ↓ (*) |
76 | Pantethine | C22H42N4O8S2 | 1.16095 | ↓ |
77 | Cyanidin-3-O-sophoroside | C27H31O16 | 1.42677 | ↑ (*) |
78 | L-Glutathione | C20H32N6O12S2 | 1.06517 | ↑ (*) |
79 | Gitoxin | C41H64O14 | 3.23925 | ↑ (**) |
No. | Name | Formula | VIP | SCSP vs. Control |
---|---|---|---|---|
1 | Glyceraldehyde | C3H6O3 | 1.02494 | ↑ (**) |
2 | 4-Hydroxybenzaldehyde | C7H6O2 | 1.48141 | ↓ |
3 | Cis-Muconic acid | C6H6O4 | 1.90860 | ↓ (***) |
4 | Laurilsulfate | C12H26O4S | 1.70544 | ↓ |
5 | γ-Linolenic acid | C18H30O2 | 1.68250 | ↑ |
6 | Linoleic acid | C18H32O2 | 5.62134 | ↑ (***) |
7 | Stearic acid | C18H36O2 | 1.40114 | ↑ (*) |
8 | 9,10-DiHOME | C18H34O4 | 1.48835 | ↓ (*) |
9 | 7,15-Dihydroxyabieta-8,11,13-trien-18-oic acid | C20H28O4 | 1.11551 | ↓ (*) |
10 | 5-[2-(Furan-3-yl) ethyl]-8-hydroxy-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid | C20H28O4 | 1.29029 | ↓ |
11 | Lithochol-11-enic acid | C24H38O3 | 2.07634 | ↑ (**) |
12 | Lithocholic acid | C24H40O3 | 2.28879 | ↑ (**) |
13 | Deoxycholic acid | C24H40O4 | 4.56029 | ↓ |
14 | Chenodiol | C24H40O4 | 5.97657 | ↓ |
15 | Hyocholic acid | C24H40O5 | 6.87300 | ↓ |
16 | Irbesartan | C25H28N6O | 1.39312 | ↑ (*) |
No. | Name | Formula | VIP | SCSP vs. Control |
---|---|---|---|---|
1 | Glycocyamine | C3H7N3O2 | 1.84134 | ↓ (*) |
2 | 3-Formylindole | C9H7NO | 3.12390 | ↑ |
3 | Phosphocholine | C5H15NO4P | 2.46685 | ↓ (***) |
4 | Phytosphingosine | C18H39NO3 | 1.55859 | ↑ (***) |
5 | Iprovalicarb | C18H28N23 | 3.53042 | ↓ |
6 | LysoPC (18:3(9Z,12Z,15Z)) | C26H48NOP | 1.57622 | ↓ (***) |
7 | 1-Linoleoyl-2-hydroxy-sn-glycero-3-PC | C26H50NOP | 1.33664 | ↑ |
8 | Isohernandezine | C39H44N27 | 1.41083 | ↓ |
9 | (4R,9β,23E)-2-(β-d-Glucopyranosyloxy)-16,20-dihydroxy-9,10,14-trimethyl-1,11,22-trioxo-4,9-cyclo-9,10-secocholesta-2,5,23-trien-25-yl acetate | C38H54O13 | 1.02230 | ↑ (***) |
No. | Name | Formula | VIP | SCSP vs. Control |
---|---|---|---|---|
1 | Lactic acid | C3H6O3 | 1.89469 | ↑ (*) |
2 | Palmitic Acid | C16H32O2 | 2.12223 | ↑ (**) |
3 | Oleic acid | C18H34O2 | 1.05400 | ↑ |
4 | Stearic acid | C18H36O2 | 1.23960 | ↑ |
5 | Thymol-β-d-glucoside | C16H24O6 | 1.62896 | ↑ |
6 | 9,10-DiHOME | C18H34O4 | 1.19020 | ↑ (**) |
7 | Hydroquinidine | C20H26N2O2 | 1.72053 | ↑ (***) |
8 | 19S-Methoxytubotaiwine | C21H26N2O3 | 1.52218 | ↑ |
No. | Name | Formula | VIP | SCSP vs. Control |
---|---|---|---|---|
1 | Pyrrolidine | C4H9N | 1.22976 | ↑ (***) |
2 | 3-Amino-1,2,4-triazole | C2H4N4 | 3.94189 | ↑ (**) |
3 | D-Alanine | C3H7NO2 | 1.19995 | ↑ (*) |
4 | 5-Methylcytosine | C5H7N3O | 2.25112 | ↑ (***) |
5 | 2-Benzoxazolinone | C7H5NO2 | 1.82869 | ↑ |
6 | 3-Methyladenine | C6H7N5 | 1.69258 | ↑ (**) |
7 | 7-Methanesulfinylheptanenitrile | C8H15NOS | 1.57761 | ↑ (*) |
8 | Ethyl-4-dimethylaminobenzoate | C11H15NO2 | 2.53641 | ↑ (**) |
9 | Monuron | C9H11ClN2O | 1.31887 | ↑ (*) |
10 | Thiabendazole | C10H7N3S | 1.43739 | ↓ |
11 | Cyclo(proline–leucine) | C11H18N2O2 | 1.25286 | ↑ (**) |
12 | Mefenamic acid | C15H15NO2 | 1.15207 | ↑ |
13 | Estriol | C18H24O3 | 1.84057 | ↑ (**) |
14 | Daidzein | C15H10O4 | 1.88659 | ↓ |
15 | Genistein | C15H10O5 | 1.82289 | ↑ (*) |
16 | Glycitein | C16H12O5 | 1.03938 | ↑ |
17 | 4′-Methylgenistein | C16H12O5 | 1.22976 | ↑ (*) |
18 | Adenosine 5′-monophosphate | C10H14N5O7P | 2.49862 | ↑ |
19 | Methyl (2E,4E,8E)-7,13-dihydroxy-4,8,12-trimethyltetradeca-2,4,8-trienoate | C18H30O4 | 1.03817 | ↑ (*) |
20 | 2-(2,6-Dihydroxy-4-methoxycarbonylbenzoyl)-3-hydroxybenzoic acid | C16H12O8 | 1.27008 | ↑ |
No. | Name | Formula | VIP | SCSP vs. Control |
---|---|---|---|---|
1 | Glycolic acid | C2H4O3 | 1.41701 | ↑ (***) |
2 | Catechol | C6H6O2 | 2.64152 | ↓ |
3 | 5-Methyl-1H-benzotriazole | C7H7N3 | 1.32223 | ↓ |
4 | Ortho-aminobenzoic acid | C7H7NO2 | 1.17925 | ↓ (*) |
5 | 4-Hydroxyquinoline | C9H7NO | 1.07799 | ↓ |
6 | 2-Hydroxyacetanilide | C8H9NO2 | 1.25584 | ↑ (*) |
7 | Divarinol | C9H12O2 | 1.62192 | ↑ (***) |
8 | Allantoin | C4H6N4O3 | 1.14447 | ↓ |
9 | Saccharin | C7H5NO3S | 1.13550 | ↑ |
10 | 4-Pyridoxic acid | C8H9NO4 | 2.62819 | ↓ |
11 | 3-Indoxyl sulfate | C8H7NO4S | 1.82190 | ↓ |
12 | Pantothenate | C9H17NO5 | 1.01748 | ↑ (*) |
13 | Daidzein | C15H10O4 | 2.82778 | ↑ (***) |
14 | 9-Trans-palmitelaidic acid | C16H30O2 | 1.01288 | ↓ (***) |
15 | Trans-vaccenic acid | C18H34O2 | 4.77431 | ↓ (***) |
16 | Oleic acid | C18H34O2 | 3.37721 | ↓ (***) |
17 | Stearic acid | C18H36O2 | 2.22722 | ↓ (***) |
18 | 8-(3-Octyl-2-oxiranyl) octanoic acid | C18H34O3 | 1.59172 | ↓ (***) |
19 | Arachidic acid | C20H40O2 | 1.36823 | ↓ (***) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Song, H.; Liu, Z.; Ai, C.; Yan, C.; Dong, X.; Song, S. Interaction between a Sulfated Polysaccharide from Sea Cucumber and Gut Microbiota Influences the Fat Metabolism in Rats. Foods 2023, 12, 4476. https://doi.org/10.3390/foods12244476
Zhang Y, Song H, Liu Z, Ai C, Yan C, Dong X, Song S. Interaction between a Sulfated Polysaccharide from Sea Cucumber and Gut Microbiota Influences the Fat Metabolism in Rats. Foods. 2023; 12(24):4476. https://doi.org/10.3390/foods12244476
Chicago/Turabian StyleZhang, Yujiao, Haoran Song, Zhengqi Liu, Chunqing Ai, Chunhong Yan, Xiuping Dong, and Shuang Song. 2023. "Interaction between a Sulfated Polysaccharide from Sea Cucumber and Gut Microbiota Influences the Fat Metabolism in Rats" Foods 12, no. 24: 4476. https://doi.org/10.3390/foods12244476
APA StyleZhang, Y., Song, H., Liu, Z., Ai, C., Yan, C., Dong, X., & Song, S. (2023). Interaction between a Sulfated Polysaccharide from Sea Cucumber and Gut Microbiota Influences the Fat Metabolism in Rats. Foods, 12(24), 4476. https://doi.org/10.3390/foods12244476