An LC–MS/MS Method for the Simultaneous Analysis of 380 Pesticides in Soybeans, Kidney Beans, Black Soybeans, and Mung Beans: The Effect of Bean Grinding on Incurred Residues and Partitioning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Stock Solution Mixture and Matrix-Matched Standard Solutions
2.3. Instrument Conditions
2.4. Contamination of Soybeans and Particle Size Distribution
2.5. Sample Preparation Methods
2.5.1. Sample Preparation Method 1
2.5.2. Sample Preparation Method 2
2.5.3. Sample Preparation Method 3 (Proposed in This Study)
2.6. Method Validation
3. Results and Discussion
3.1. Method Development Strategy
3.2. Effect of Particle Size on the Efficiency of Incurred Residue Extraction from Soybeans
3.3. Effect of Particle Size of All Beans on Partitioning
3.4. Simple Sample Preparation
3.5. Method Validation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Parven, A.; Khan, M.S.; Prodhan, M.D. Human health risk assessment through quantitative screening of insecticide residues in two green beans to ensure food safety. J. Food Compost. Anal. 2021, 103, 104121. [Google Scholar] [CrossRef]
- Reichert, B.; PereiraNunes, M.G.; Pizzutti, I.R.; Costabeber, I.H.; Fontana, M.Z.; Jänich, B.D.; Panciera, M.P.; Arbusti, D.; Cardoso, C.D.; Chim, J.F. Pesticide residues determination in common bean using an optimized QuEChERS approach followed by solvent exchange and GC–MS/MS analysis. J. Sci. Food Agric. 2020, 100, 2425–2434. [Google Scholar] [CrossRef] [PubMed]
- Hou, B.; Wu, L. Safety impact and farmer awareness of pesticide residues. Food Agric. Immunol. 2010, 21, 191–200. [Google Scholar] [CrossRef]
- Dewi, Y.A.; Yulianti, A.; Hanifah, V.W.; Jamal, E.; Sarwani, M.; Mardiharini, M.; Anugrah, I.S.; Darwis, V.; Suib, E.; Herteddy, D.; et al. Farmers’ knowledge and practice regarding good agricultural practices (GAP) on safe pesticide usage in Indonesia. Heliyon 2022, 8, e08708. [Google Scholar] [CrossRef]
- Kang, H.S.; Kim, M.; Kim, E.J. High-throughput simultaneous analysis of multiple pesticides in grain, fruit, and vegetables by GC-MS/MS. Food Addit. Contam. Part A 2020, 37, 963–972. [Google Scholar] [CrossRef]
- Shin, Y.; Lee, J.; Kim, J.H. A simultaneous multiresidue analysis for 203 pesticides in soybean using florisil solid-phase extraction and gas chromatography–tandem mass spectrometry. Appl. Biol. Chem. 2018, 61, 543–548. [Google Scholar] [CrossRef]
- Anastassiades, M.; Lehotay, S.J.; Stajnbaher, D.; Schenck, F.J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and ‘‘dispersive solid-phase extraction’’ for the determination of pesticide residues in produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef]
- Diez, C.; Traag, W.A.; Zommer, P.; Marinero, P.; Atienza, J. Comparison of an acetonitrile extraction/partitioning and “dispersive solid-phase extraction” method with classical multi-residue methods for the extraction of herbicide residues in barley samples. J. Chromatogr. A 2006, 1131, 11–23. [Google Scholar] [CrossRef]
- Herrero Martín, S.; García Pinto, C.; Pérez Pavón, J.L.; Cordero, B.M. Determination of trihalomethanes in soil matrices by simplified quick, easy, cheap, effective, rugged and safe extraction and fast gas chromatography with electron capture detection. J. Chromatogr. A 2010, 1217, 4883–4889. [Google Scholar] [CrossRef]
- Lee, Y.J.; Rahman, M.M.; Abd El-Aty, A.M.; Choi, J.H.; Chung, H.S.; Kim, S.W.; AbdelAty, A.M.; Shin, H.C.; Shim, J.H. Detection of three herbicide, and one metabolite, residues in brown rice and rice straw using various versions of the QuEChERS method and liquid chromatography-tandem mass spectrometry. Food Chem. 2016, 210, 442–450. [Google Scholar] [CrossRef]
- Bernardi, G.; Kemmerich, M.; Ribeiro, L.C.; Adaime, M.B.; Zanella, R.; Prestes, O.D. An effective method for pesticide residues determination in tobacco by GC-MS/MS and UHPLC-MS/MS employing acetonitrile extraction with low-temperature precipitation and d-SPE clean-up. Talanta 2016, 161, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Dankyi, E.; Carboo, D.; Gordon, C.; Fomsgaard, I.S. Application of the QuEChERS procedure and LC–MS/MS for the assessment of neonicotinoid insecticide residues in cocoa beans and shells. J. Food Compos. Anal. 2015, 44, 149–157. [Google Scholar] [CrossRef]
- Chen, G.; Cao, P.; Liu, R. A multi-residue method for fast determination of pesticides in tea by ultra performance liquid chromatography–electrospray tandem mass spectrometry combined with modified QuEChERS sample preparation procedure. Food Chem. 2011, 125, 1406–1411. [Google Scholar] [CrossRef]
- Madureira, F.D.; da Silva Oliveira, F.A.; de Souza, W.R.; Pontelo, A.P.; de Oliveira, M.L.G.; Silva, G. A multi-residue method for the determination of 90 pesticides in matrices with a high water content by LC–MS/MS without clean-up. Food Addit. Contam. 2012, 29, 665–667. [Google Scholar] [CrossRef]
- BS EN 15662:2018; Foods of Plant Origin—Multimethod for the Determination of Pesticide Residues Using GC- and LC-Based Analysis following Acetonitrile Extraction/Partitioning and Clean-Up by Dispersive SPE—Modular QuEChERS-Method. European Committee for Standardization: Brussels, Belgium, 2018. [CrossRef]
- Lehotay, S.J. AOAC Official Method 2007.01 Pesticide Residues in Foods by Acetonitrile Extraction and Partitioning with Magnesium Sulfate. Gas Chromatography/Mass Spectrometry and Liquid Chromatography/Tandem Mass Spectrometry; Official Methods of Analysis; International Atomic Energy Agency: Vienna, Austria, 2007. [Google Scholar]
- Anastassiades, M.; Kolberg, D.I.; Benkenstein, A.; Eichhorn, E.; Zechmann, S.; Mack, D.; Wildgrube, C.; Sigalov, I.; Dörk, D.; Barth, A. Quick Method for the Analysis of Numerous Highly Polar Pesticides in Foods of Plant Origin via LC-MS/MS Involving Simultaneous Extraction with Methanol EU Reference Laboratory for Pesticides Requiring Single Residue Methods (EURL-SRM); CVUA: Stuttgart, Germany, 2015. [Google Scholar] [CrossRef]
- Lehotay, S.J.; Cook, J.M. Sampling and sample processing in pesticide residue analysis. J. Agric. Food Chem. 2015, 63, 4395–4404. [Google Scholar] [CrossRef]
- Holland, P.T. Pesticides report 36. Glossary of terms relating to pesticides (IUPAC Recommendations 1996). Pure Appl. Chem. 1996, 68, 1167–1193. [Google Scholar] [CrossRef]
- Herrmann, S.S. Effects of milling on the extraction efficiency of incurred pesticides in cereals. Food Addit. Contam. Part A 2017, 34, 1948–1958. [Google Scholar] [CrossRef]
- Hepperle, J.; Dörk, D.; Barth, A.; Taşdelen, B.; Anastassiades, M. Studies to improve the extraction yields of incurred pesticide residues from crops using the QuEChERS method. J. AOAC Int. 2015, 98, 450–463. [Google Scholar] [CrossRef]
- European Commission Directorate-General for Health and Food Safety, Technical Guideline on the Evaluation of Extraction Efficiency of Residue Analytical Methods, Food Safety, Sustainability and Innovation Pesticides and Biocides, SANTE/2017/10632, 2023, Rev. 5. Available online: https://food.ec.europa.eu/system/files/2023-05/pesticides_mrl_guidelines_wrkdoc_2017-10632.pdf (accessed on 11 May 2023).
- Liang, Y.; Wang, W.; Shen, Y.; Liu, Y.; Liu, X.J. Effects of home preparation on organophosphorus pesticide residues in raw cucumber. Food Chem. 2012, 133, 636–640. [Google Scholar] [CrossRef]
- Kmellár, B.; Abrankó, L.; Fodor, P.; Lehotay, S.J. Routine approach to qualitatively screening 3000 pesticides and quantification of those frequently detected in fruit and vegetables using liquid chromatography tandem mass spectrometry (LC-MS/MS). Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2010, 27, 1415–1430. [Google Scholar] [CrossRef]
- Tang, B.; Zhang, J.E.; Zang, L.G.; Zhang, Y.Z.; Li, X.Y.; Zhou, L. Determination of nine organophosphorus pesticides in cereals and kidney beans by capillary gas chromatography with flame photometric detection. J. Chromatogr. Sci. 2005, 43, 337–341. [Google Scholar] [CrossRef]
- Takatori, S.; Okihashi, M.; Okamoto, Y.; Kitagawa, Y.; Kakimoto, S.; Murata, H.; Sumimoto, T.; Tanaka, Y. A rapid and easy multiresidue method for the determination of pesticide residues in vegetables, fruits, and cereals using liquid chromatography/tandem mass spectrometry. J. AOAC Int. 2008, 91, 871–883. [Google Scholar] [CrossRef]
- Lehotay, S.J.; Mastovska, K.; Lightfield, A.R.; Gates, R.A. Multi-analyst, multi-matrix performance of the QuEChERS approach for pesticide residues in foods and feeds using HPLC/MS/MS analysis with different calibration techniques. J. AOAC Int. 2010, 93, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Prasad, R.; Upadhyay, N.; Kumar, V. Simultaneous determination of seven carbamate pesticide residues in gram, wheat, lentil, soybean, fenugreek leaves and apple matrices. Microchem. J. 2013, 111, 91–96. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, J.; Dong, F.; Liu, X.; Zhu, G.; Zheng, Y. A multiresidue analytical method for the detection of seven triazolopyrimidine sulfonamide herbicides in cereals, soybean and soil using the modified QuEChERS method and UHPLC-MS/MS. Anal. Methods 2015, 7, 9791–9799. [Google Scholar] [CrossRef]
- Uczay, F.; Bandeira, N.M.; Floriano, L.; Prestes, O.D.; Adaime, M.B.; Zanella, R. Determination of avermectins residues in soybean, bean, and maize using a QuEChERS-based method and ultra-high-performance liquid chromatography coupled to tandem mass spectrometry. Separations 2021, 8, 214. [Google Scholar] [CrossRef]
- Galani, J.H.Y.; Houbraken, M.; Wumbei, A.; Djeugap, J.F.; Fotio, D.; Spanoghe, P. Evaluation of 99 pesticide residues in major agricultural products from the Western Highlands Zone of Cameroon using QuEChERS method extraction and LC-MS/MS and GC-ECD analyses. Foods 2018, 7, 184. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.; Guo, Y.; Hu, X.; Yu, Y.; Chen, J.; Su, J.; Lian, W.; Wu, X.; Meng, X. Simultaneous detection of four pesticides in agricultural products by a modified QuEChERS method and LC-MS/MS. J. Environ. Sci. Health B 2023, 58, 150–157. [Google Scholar] [CrossRef]
- Goon, A.; Kundu, C.; Ganguly, P. Development of a modified QuEChERS method coupled with LC-MS/MS for determination of spinetoram residue in soybean (Glycine max) and cotton (Gossypium hirsutum). J. Xenobiot. 2022, 13, 2–15. [Google Scholar] [CrossRef]
- Narenderan, S.T.; Meyyanathan, S.N. Sample treatment and determination of pesticide residues in potato matrices: A review. Potato Res. 2019, 62, 47–67. [Google Scholar] [CrossRef]
- Kuang, Y.; Qiu, F.; Kong, W.; Luo, J.; Cheng, H.; Yang, M. Simultaneous quantification of mycotoxins and pesticides residues in ginseng with one-step extraction using ultrahigh performance liquid chromatography-electrospray ionization tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2013, 939, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Park, E.; Lee, J.; Lee, J.; Lee, J.; Lee, H.S.; Shin, Y.; Kim, J.H. Method for the simultaneous analysis of 300 pesticide residues in hair by LC-MS/MS and GC-MS/MS, and its application to biomonitoring of agricultural workers. Chemosphere 2021, 277, 130215. [Google Scholar] [CrossRef] [PubMed]
- Konatu, F.R.B.; Breitkreitz, M.C.; Jardim, I.C.S.F. Revisiting quick, easy, cheap, effective, rugged, and safe parameters for sample preparation in pesticide residue analysis of lettuce by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2017, 1482, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Shin, Y.; Lee, J.; Lee, J.; Kim, B.J.; Kim, J.H. Simultaneous analysis of 310 pesticide multiresidues using UHPLC-MS/MS in brown rice, orange, and spinach. Chemosphere 2018, 207, 519–526. [Google Scholar] [CrossRef] [PubMed]
- Pihlström, T.; Fernández-Alba, A.R.; Gamón, M.; Amate, C.; Poulsen, M.; Lippold, R.; Anastassiades, M. Analytical quality control and method validation procedures for pesticide residues analysis in food and feed. Sante 2017, 11813, 21–22. [Google Scholar]
- BS EN 15662:2008; Foods of Plant Origin—Determination of Pesticide Residues Using GC-MS and/or LC-MS/MS following Acetonitrile Extraction/Partitioning and Clean-Up by Dispersive SPE—QuEChERS-Method. European Committee for Standardization: Brussels, Belgium, 2019. [CrossRef]
- Delgado-Zamarreño, M.M.; Pérez-Martín, L.; Bustamante-Rangel, M.; Carabias-Martínez, R. A modified QuEChERS method as sample treatment before the determination of isoflavones in foods by ultra-performance liquid chromatography–triple quadrupole mass spectrometry. Talanta 2012, 100, 320–328. [Google Scholar] [CrossRef]
- Zhao, H. Determination of phthalanilic acid residue in bean, fruits and vegetables using a modified QuEChERS method and ultra-performance liquid chromatography/tandem mass spectrometry. Anal. Methods 2014, 6, 4336–4342. [Google Scholar] [CrossRef]
- Wang, M.; Wang, J.; Wang, K.; Zhang, L.; Cao, X.; Guo, C.; Wang, J.; Wu, B. Magnetic mesoporous material derived from MIL-88B modified by L-alanine as modified QuEChERS adsorbent for the determination of 6 pesticide residues in 4 vegetables by UPLC-MS/MS. Food Chem. 2022, 384, 132325. [Google Scholar] [CrossRef]
Author | Matrix | Pesticides | Sample | Soak | Extraction | Clean-Up |
---|---|---|---|---|---|---|
Bo Tang, 2005 [25] | Kidney bean | 9 Organophophorus pesticides | 50 g | 50 mL water | 100 mL acetone | Water dichloromethane partitioning |
Satoshi Takari, 2008 [26] | Soybean | 76 pesticides | 5 g | 5 mL water | 20 mL acetonitrile | C18 column (Supelclean ENVI-18) |
Steven J. Lehotay, 2010 [27] | Soybean | 14 pesticides | 15 g | 13 mL water | 15 mL acetonitrile containing 1% acetic acid | d-SPE (MgSO4, PSA, and C18) |
Rajendra Prasad, 2013 [28] | Soybean | 7 carbamate pesticides | 5 g | - | 10 mL acetonitrile, 5 times | - |
Jun Xu, 2015 [29] | Soybean | 7 herbicides | 10 g | 5 mL water | 10 mL acetonitrile containing 2% formic acid | d-SPE (MgSO4 and C18) |
Yongho Shin, 2018 [6] | Soybean | 203 pesticides | 10 g | 6 mL | 20 mL acetonitrile | SPE (florisil) |
Fernanda Uczay, 2021 [30] | Soybean | 5 avermectin pesticides | 5 g | 10 mL water | 10 mL acetonitrile and isopropanol mixture | d-SPE (MgSO4, PSA, and C18) |
Joseph H. Y. Galani, 2022 [31] | Soybean Kidney bean | 99 pesticides | 5 g | 5 mL water | 15 mL acetonitrile | d-SPE (MgSO4, PSA, and C18) |
Kunming Zheng, 2023 [32] | Soybean | 4 pesticides | 2 g | 10 mL water | 10 mL acetonitrile containing 1% acetic acid | d-SPE (MgSO4, PSA, and C18) |
Arnab Goon, 2022 [33] | Soybean | Spinetoram and its metabolites | 10 g | 10 mL water | 10 mL ethyl acetate and cyclohexane mixture | d-SPE (MgSO4, PSA, C18, and GCB) |
Crop | Pesticide | Extracted Incurred Residue by Soybean Particle Size Using Method 2 (mg/kg, n = 3) | |||
---|---|---|---|---|---|
10–20 Mesh | 20–40 Mesh | 40–60 Mesh | >60 Mesh | ||
Soybean | Azoxystrobin | 4.53 b ± 0.26 | 7.33 a ± 0.38 | 7.40 a ± 0.65 | 8.10 a ± 0.53 |
Fludioxonil | 6.33 b ± 3.86 | 14.5 a ± 0.63 | 15.60 a ± 4.51 | 19.10 a ± 1.48 | |
Etofenprox | 0.87 c ± 0.37 | 2.30 b ± 0.48 | 3.17 ab ± 0.72 | 3.73 a ± 0.34 | |
Difenoconazole | 1.00 b ± 0.24 | 2.30 a ± 0.37 | 2.30 a ± 0.45 | 1.20 b ± 0.09 |
Validation | Criteria | The Numbers of Pesticides (Percentage, %) | |||
---|---|---|---|---|---|
Soybean | Kidney Bean | Black Soybean | Mung Bean | ||
LOQ | 1 μg/kg | 15 (5.3%) | 57 (17.2%) | 11 (3.7%) | 29 (9.7%) |
2.5 μg/kg | 59 (20.8%) | 122 (36.9%) | 46 (15.3%) | 108 (36.3%) | |
5 μg/kg | 120 (42.2%) | 87 (26.3%) | 97 (32.2%) | 93 (31.2%) | |
10 μg/kg | 90 (31.7%) | 65 (19.6%) | 147 (48.8%) | 68 (22.8%) | |
Linearity | 0.1–25 µg/L | 80 (28.2%) | 299 (90.3%) | 45 (48.8%) | 10 (3.4%) |
0.1–50 µg/L | 170 (59.9%) | 0 (0%) | 183 (15.0%) | 270 (90.6%) | |
0.25–25 µg/L | 3 (1.1%) | 4 (1.2%) | 14 (60.8%) | 0 (0%) | |
0.25–50 µg/L | 16 (5.6%) | 10 (3.0%) | 36 (4.7%) | 5 (1.7%) | |
0.5–25 µg/L | 3 (1.1%) | 9 (2.7%) | 6 (2.0%) | 0 (0%) | |
0.5–50 µg/L | 6 (2.1%) | 1 (0.3%) | 5 (1.7%) | 10 (3.4%) | |
1–25 µg/L | 2 (0.7%) | 4 (1.2%) | 0 (0%) | 0 (0%) | |
1–50 µg/L | 3 (1.1%) | 2 (0.6%) | 9 (3.0%) | 3 (1.0%) | |
2.5–50 µg/L | 1 (0.4%) | 2 (0.6%) | 3 (1.0%) | 0 (0%) | |
Matrix effect | <−50% | 7 (2.5%) | 0 (0%) | 1 (0.3%) | 0 (0%) |
−50% to −20% | 192 (67.6%) | 27 (8.2%) | 138 (45.8%) | 154 (51.7%) | |
−20% to 20% | 75 (26.4%) | 291 (87.9%) | 157 (52.2%) | 143 (48.0%) | |
20% to 50% | 8 (2.8%) | 12 (3.6%) | 3 (1.0%) | 0 (0%) | |
>50% | 2 (0.7%) | 1 (0.3%) | 2 (0.7%) | 1 (0.3%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, X.; Kim, C.J.; Noh, H.H. An LC–MS/MS Method for the Simultaneous Analysis of 380 Pesticides in Soybeans, Kidney Beans, Black Soybeans, and Mung Beans: The Effect of Bean Grinding on Incurred Residues and Partitioning. Foods 2023, 12, 4477. https://doi.org/10.3390/foods12244477
Yuan X, Kim CJ, Noh HH. An LC–MS/MS Method for the Simultaneous Analysis of 380 Pesticides in Soybeans, Kidney Beans, Black Soybeans, and Mung Beans: The Effect of Bean Grinding on Incurred Residues and Partitioning. Foods. 2023; 12(24):4477. https://doi.org/10.3390/foods12244477
Chicago/Turabian StyleYuan, Xiu, Chang Jo Kim, and Hyun Ho Noh. 2023. "An LC–MS/MS Method for the Simultaneous Analysis of 380 Pesticides in Soybeans, Kidney Beans, Black Soybeans, and Mung Beans: The Effect of Bean Grinding on Incurred Residues and Partitioning" Foods 12, no. 24: 4477. https://doi.org/10.3390/foods12244477
APA StyleYuan, X., Kim, C. J., & Noh, H. H. (2023). An LC–MS/MS Method for the Simultaneous Analysis of 380 Pesticides in Soybeans, Kidney Beans, Black Soybeans, and Mung Beans: The Effect of Bean Grinding on Incurred Residues and Partitioning. Foods, 12(24), 4477. https://doi.org/10.3390/foods12244477