Effects of Near-Freezing Temperature Combined with Jujube Polysaccharides Treatment on Proteomic Analysis of ‘Diaogan’ Apricot (Prunus armeniaca L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fruit Materials and Treatment
2.2. Cell Wall Metabolism Enzyme-Related Enzymes
2.3. Proteins Extraction
2.4. Protein Enzymatic Hydrolysis and TMT Labeling
2.5. LC-MS/MS Analysis
2.6. Data and Bio Informatics Analysis
2.7. Statistic Analysis
3. Results
3.1. Cell-Wall-Modifying Enzyme Activities
3.2. Principal Component Analysis (PCA)
3.3. Identification of Differentially Abundant Proteins
3.4. Bioinformatics Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yuan, Z.X.; Shi, Y.Q.; Cai, F.H.; Zhao, J.R.; Xiong, Q.P.; Wang, Y.P.; Wang, X.L.; Zheng, Y.H. Isolation and identification of polysaccharides from pythium archenemies and application to strawberry fruit (Fragaria ananassa Duch.) preservation. Food Chem. 2020, 309, 125604. [Google Scholar] [CrossRef] [PubMed]
- Ghaouth, A.E.; Wilson, C.; Wisniewski, M. Biologically-based alternatives to synthetic fungicides for the control of postharvest diseases of fruit and vegetables. Dis. Fruits Veg. 2004, 2, 511–535. [Google Scholar]
- Li, Y.L.; Zhao, Y.T.; Zhang, Z.C.; He, H.; Shi, L.; Zhu, X.; Cui, K.B. Near-freezing temperature storage improves shelf-life and suppresses chilling injury in postharvest apricot fruit (Prunus armeniaca L.) by regulating cell wall metabolism. Food Chem. 2022, 387, 132921. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.S.; Li, H.L.; Grierson, D.; Fu, D.Q. NAC Transcription Factor Family Regulation of Fruit Ripening and Quality: A Review. Cells 2022, 11, 525. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.G.; Yu, X.; Zhao, H.D.; Liu, B.D.; Cao, J.K.; Jiang, W.B. Improving fresh apricot (Prunus armeniaca L.) quality and antioxidant capacity by storage at near freezing temperature. Sci. Hortic. 2018, 231, 1–10. [Google Scholar] [CrossRef]
- Chen, Y.; Hung, Y.C.; Chen, M.; Lin, H. Effects of acidic electrolyzed oxidizing water on retarding cell wall degradation and delaying softening of blueberries during postharvest storage. LWT-Food Sci. Technol. 2017, 84, 650–657. [Google Scholar] [CrossRef]
- Cheng, D.W.; Ma, Q.Y.; Zhang, J.H.; Jiang, K.L.; Cai, S.J.; Wang, W.X.; Wang, J.; Sun, J.F. Cactus polysaccharides enhance preservative effects of ultrasound treatment on fresh-cut potatoes. Ultrason. Sonochemistry 2022, 90, 106205. [Google Scholar] [CrossRef] [PubMed]
- Ranjith, F.H.; Adhikari, B.; Muhialdin, B.J.; Yusof, N.L.; Mohammed, N.K.; Ariffin, S.H.; Hussin, A.S.M. Peptide-based edible coatings to control postharvest fungal spoilage of mango (Mangifera indica L.) fruit. Food Control 2022, 135, 108789. [Google Scholar] [CrossRef]
- Huang, J.; Wu, W.J.; Niu, B.; Fang, X.J.; Chen, H.J.; Wang, Y.H.; Gao, H.Y. Characterization of Zizania latifolia polysaccharide-corn starch composite films and their application in the postharvest preservation of strawberries. LWT-Food Sci. Technol. 2023, 173, 114332. [Google Scholar] [CrossRef]
- Molassiotis, A.; Tanou, G.; Filippou, P.; Fotopoulos, V. Proteomics in the fruit treescience arena: New insights into fruit defense, development, and ripening. Proteomics 2013, 13, 1871–1884. [Google Scholar] [CrossRef]
- Liu, R.L.; Wang, Y.Y.; Qin, G.Z.; Tian, S.P. iTRAQ-based quantitative proteomic analysis reveals the role of the tonoplast in fruit senescence. J. Proteom. 2016, 146, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Fang, J.; Qi, X.; Li, Y.K.; Chen, J.Y.; Sun, L.M.; Zhong, Y.P. iTRAQ-based quantitative proteomic analysis reveals alterations in the metabolism of Actinidia arguta. Sci. Rep. 2017, 7, 5670. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Huo, L.; Zhao, K.; Li, Y.; Zhao, X.; Wang, H.; Wang, W.; Shi, H. Salicylic acid delays pear fruit senescence by playing an antagonistic role toward ethylene, auxin, and glucose in regulating the expression of PpEIN3a. Front. Plant Sci. 2023, 13, 1096645. [Google Scholar] [CrossRef] [PubMed]
- Pedreschi, R.; Hertog, M.; Robben, J.; Lilley, K.S.; Karp, N.A.; Baggerman, G.; Vanderleyden, J.; Nicolaï, B. Gel-based proteomics approach to the study of metabolic changes in pear tissue during storage. J. Agric. Food Chem. 2009, 57, 6997–7004. [Google Scholar] [CrossRef] [PubMed]
- Yun, Z.; Jin, S.; Ding, Y.; Wang, Z.; Gao, H.; Pan, Z.; Xu, J.; Cheng, Y.; Deng, X. Comparative transcriptomics and proteomics analysis of citrus fruit, to improve understanding of the effect of low temperature on maintaining fruit quality during lengthy post-harvest storage. J. Exp. Bot. 2012, 63, 2873–2893. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.L.; Peng, Q.; Yuan, Y.P.; Shen, J.; Xie, X.Y.; Wang, M. Isolation, structures and bioactivities of the polysaccharides from jujube fruit (Ziziphus jujuba Mill.): A review. Food Chem. 2017, 227, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.T.; Liu, Y.X.; Sang, Y.Y.; Ma, Y.Y.; Guo, M.R.; Bai, G.R.; Cheng, S.B.; Chen, G.G. Influences of ice-temperature storage on cell wall metabolism and reactive oxygen metabolism in Xinjiang (Diaogan) apricot. Postharvest Biol. Technol. 2021, 180, 111614. [Google Scholar] [CrossRef]
- Win, N.M.; Yoo, J.; Kwon, S.; Watkins, C.B.; Kang, I. Characterization of fruit quality attributes and cell wall metabolism in 1-methylcyclopropene (1-MCP)-treated ‘Summer King ‘and ‘Green Ball’apples during cold storage. Front. Plant Sci. 2019, 10, 1513. [Google Scholar] [CrossRef]
- Hagerman, A.E.; Austin, P.J. Continuous spectrophotometric assay for plant pectin methyl esterase. J. Agric. Food Chem. 1986, 34, 440–444. [Google Scholar] [CrossRef]
- Liu, B.D.; Zhao, H.D.; Fan, X.G.; Jiao, W.X.; Cao, J.K.; Jiang, W.B. Near freezing point temperature storage inhibits chilling injury and enhances the shelf-life quality of apricots following long-time cold storage. J. Food Process. Preserv. 2019, 43, e13958. [Google Scholar] [CrossRef]
- Jia, C.; Lu, X.; Gao, J.; Wang, R.; Sun, Q.; Huan, J. TMT-labeled quantitative proteomic analysis to identify proteins associated with the stability of peanut milk. J. Sci. Food Agric. 2021, 101, 6424–6433. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Hu, W.Z.; Liao, J.; Xiu, Z.L.; Jiang, A.L.; Guan, Y.G.; Yang, X.Z.; Feng, K. Ethanol vapor delays softening of postharvest blueberry by retarding cell wall degradation during cold storage and shelf life. Postharvest Biol. Technol. 2021, 177, 111538. [Google Scholar] [CrossRef]
- Huang, P.; Ding, K.; Liu, C.Y.; Li, H.J.; Wang, C.L.; Lin, Y.Z.; Sameen, D.E.; Hossen, M.A.; Chen, M.R.; Yan, J.; et al. Konjac glucomannan/low-acyl gellant gum edible coating containing thymol microcapsule regulates cell wall polysaccharides disassembly and delays postharvest softening of blueberries. Postharvest Biol. Technol. 2023, 204, 112449. [Google Scholar] [CrossRef]
- Wang, H.B.; Cheng, X.; Wu, C.; Fan, G.J.; Li, T.T.; Dong, C. Retardation of postharvest softening of blueberry fruit by methyl jasmone is correlated with altered cell wall modification and energy metabolism. Sci. Hortic. 2021, 276, 109752. [Google Scholar] [CrossRef]
- Kosova, A.A.; Khodyreva, S.N.; Lavrik, O.I. Role of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in DNA repair. Biochemistry 2017, 82, 643–654. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.H.; Wang, C.Z.; Jia, R.P.; Yang, N.X.; Jin, L.; Zhu, L.C.; Ma, B.Q.; Yao, Y.X.; Ma, F.W.; Li, M.J. Malate metabolism mediated by the cytoplasmic malate dehydrogenase gene Mdcy-MDH affects sucrose synthesis in apple fruit. Hortic. Res. 2022, 9, 194. [Google Scholar] [CrossRef]
- Clara, I.M.; Jezrel, M.; Maarten, L.A.T.M.; Hertog, B.V.D.P.; Bart, M.N. Expression and protein levels of ethylene receptors, CTRs and EIN2 during tomato fruit ripening as affected by 1-MCP. Postharvest Biol. Technol. 2021, 179, 111573. [Google Scholar]
- Reyes, J.S.; Fuentes-Lemus, E.; Figueroa, J.D.; Rojas, J.; Fierro, A.; Arenas, F.; Hägglund, P.M.; Davies, M.J.; López-Alarcón, C. Implications of differential peroxyl radical-induced inactivation of glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase for the pentose phosphate pathway. Sci. Rep. 2022, 12, 21191. [Google Scholar] [CrossRef]
- Yuan, X.Z.; Wu, Z.M.; Li, H.; Wang, Y.D.; Liu, F.; Cai, H.; Newlove, A.A.; Wang, Y. Biochemical and proteomic analysis of ‘Kyoho’ grape (Vitis labruscana) berries during cold storage. Postharvest Biol. Technol. 2014, 88, 79–87. [Google Scholar] [CrossRef]
- Giovannoni, J.J. Genetic regulation of fruit development and ripening. Plant Cell 2004, 16, 170–180. [Google Scholar] [CrossRef]
- Li, T.T.; Yun, Z.; Zang, D.D.; Yang, C.W.; Zhu, H.; Jiang, Y.M.; Duan, X.W. Proteomic analysis of differentially expressed proteins involved in ethylene-induced chilling tolerance in harvested banana fruit. Front. Plant Sci. 2015, 6, 00845. [Google Scholar] [CrossRef]
- Long, L.; Gao, W.; Xu, L.; He, X.; Yang, X.Y.; Zhang, X.L.; Zhu, L.F. GbMPK3, a mitogen-activated protein kinase from cotton, enhances drought and oxidative stress tolerance in tobacco. Plant Cell 2014, 116, 153–162. [Google Scholar] [CrossRef]
- D’ambrosio, C.; Arena, S.; Rocco, M.; Verrillo, F.; Novi, G.; Viscosi, V.; Marra, M.; Scaloni, A. Proteomic analysis of apricot fruit during ripening. J. Proteom. 2013, 78, 39–57. [Google Scholar] [CrossRef]
- Kortste, A.J.; Appeldoorn, N.J.G.; Ooetwijn, M.E.P.; Visser, R.G.F. Differences in regulation of carbohydrate metabolism during early fruit development between domesticated tomato and two wild relatives. Planta 2007, 226, 929–939. [Google Scholar] [CrossRef]
- Ma, Y.Y.; Zhang, X.L.; Li, L.L.; Yang, W.T.; Zhang, W.D.; Cheng, S.B.; Guo, M.R.; Chen, G.G. Delaying fruit softening of ‘France’ prune (Prunus domestica L.) using near-freezing temperature storage. LWT-Food Sci. Technol. 2022, 172, 114165. [Google Scholar] [CrossRef]
- Yu, F.; Shao, X.F.; Yu, L.; Xu, F.; Wang, H.F. Proteomic analysis of postharvest peach fruit subjected to chilling stress or non-chilling stress temperatures during storage. Sci. Hortic. 2015, 197, 72–89. [Google Scholar] [CrossRef]
- Lorenzo, G.D.; D’Ovidio, R.; Cervone, F. The role of polygalacturonate inhibiting proteins (PGIPS) in defense against pathogenic fungi. Annu. Rev. Phytopathol. 2001, 39, 313–335. [Google Scholar] [CrossRef]
- Kalunke, R.M.; Tundo, S.; Benedetti, M.; Cervone, F.; Lorenzo, G.D.; D’Ovidio, R. An update on polygalacturonate-inhibiting protein (PGIP), a leucine-rich repeat protein that protects crop plants against pathogens. Front. Plant Sci. 2015, 6, 146. [Google Scholar] [CrossRef]
- Li, H.Y.; Smigocki, A.C. Wound induced Beta vulgaris polygalacturonate-inhibiting protein genes encode a longer leucine-rich repeat domain and inhibit fungal polygalacturonates. Physio. Mol. Plant. 2016, 96, 8–18. [Google Scholar] [CrossRef]
- Li, R.J.; Yang, S.X.; Wang, D.; Liang, J.; Huang, T.Z.; Zhan, L.; Luo, A.W. Electron-beam irradiation delayed the postharvest senescence of kiwifruit during cold storage through regulating the reactive oxygen species metabolism. Radiat. Phys. Chem. 2021, 189, 109717. [Google Scholar] [CrossRef]
- Soh, C.; Ali, Z.M.; Lazan, H. Characterization of an α-galactosidase with potential relevance to ripening related texture changes. Phytochemistry 2006, 67, 242–254. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Wang, W.; Li, W.; Yang, R.; Li, Y.; Zhang, L.; Zhang, M.; Li, X. Effects of Near-Freezing Temperature Combined with Jujube Polysaccharides Treatment on Proteomic Analysis of ‘Diaogan’ Apricot (Prunus armeniaca L.). Foods 2023, 12, 4504. https://doi.org/10.3390/foods12244504
Wang Z, Wang W, Li W, Yang R, Li Y, Zhang L, Zhang M, Li X. Effects of Near-Freezing Temperature Combined with Jujube Polysaccharides Treatment on Proteomic Analysis of ‘Diaogan’ Apricot (Prunus armeniaca L.). Foods. 2023; 12(24):4504. https://doi.org/10.3390/foods12244504
Chicago/Turabian StyleWang, Zhipeng, Wei Wang, Wei Li, Rui Yang, Yanbo Li, Lusi Zhang, Mengying Zhang, and Xuewen Li. 2023. "Effects of Near-Freezing Temperature Combined with Jujube Polysaccharides Treatment on Proteomic Analysis of ‘Diaogan’ Apricot (Prunus armeniaca L.)" Foods 12, no. 24: 4504. https://doi.org/10.3390/foods12244504
APA StyleWang, Z., Wang, W., Li, W., Yang, R., Li, Y., Zhang, L., Zhang, M., & Li, X. (2023). Effects of Near-Freezing Temperature Combined with Jujube Polysaccharides Treatment on Proteomic Analysis of ‘Diaogan’ Apricot (Prunus armeniaca L.). Foods, 12(24), 4504. https://doi.org/10.3390/foods12244504