Quality Evaluation of Bread Prepared from Wheat–Chufa Tuber Composite Flour
Abstract
:1. Introduction
2. Material and Methods
2.1. Material
2.2. Methods
Preparation of Breads
2.3. Moisture Content
2.4. Color Value
2.5. Oil Content
2.6. Extraction Procedure
2.7. Total Phenolic Content
2.8. Total Flavonoid Content
2.9. Antioxidant Activity
2.10. Phenolic Compounds
2.11. Fatty Acid Composition
2.12. Sensorial Properties
2.13. Statistical Analyses
3. Results and Discussion
3.1. The Physico-Chemical Properties and Bioactive Properties of Breads Enriched with Chufa
3.2. The Phenolic Constituents of the Breads Enriched with Chufa
3.3. The Fatty Acid Composition of the Oils of the Wheat Breads Enriched with Chufa Tuber
3.4. The Sensory Properties and Their Points of the Breads
4. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Consent to Participate
Consent for Publication
References
- Akhtar, S.; Anjum, F.M.; Anjum, M.A.A. Micronutrient fortification of wheat flour: Recent development and strategies. Food Res. Int. 2011, 44, 652–659. [Google Scholar] [CrossRef]
- Anderson, J.W.; Smith, B.M.; Gustafson, N.J. Health benefits and practical aspects of high fibre diets. Am. J. Clin. Nutr. 1994, 59, 1242–1247. [Google Scholar] [CrossRef] [Green Version]
- Ajila, C.M.; Aalami, M.; Leelavathi, K.; Rao, U.J.S.P. Mango peel powder: A potential source of antioxidant and dietary fiber in macaroni preparations. Innov. Food Sci. Emerg. Technol. 2010, 11, 219–224. [Google Scholar] [CrossRef]
- Villarino, C.B.; Jayasena, V.; Coorey, R.; Chakrabarti-Bell, S.; Johnson, S. The effects of bread-making process factors on Australian sweet lupin-wheat bread quality characteristics. Int. J. Food Sci. Technol. 2014, 49, 2373–2381. [Google Scholar] [CrossRef]
- Irakli, M.; Katsantonis, D.; Kleisiaris, F. Evaluation of quality attributes, nutraceutical components and antioxidant potential of wheat bread substituted with rice bran. J. Cereal Sci. 2015, 65, 74–80. [Google Scholar] [CrossRef]
- Sayed-Ahmad, B.; Talou, T.; Straumite, E.; Sabovics, M.; Kruma, Z.; Saad, Z.; Hijaziü, A.; Merah, O. Protein bread fortification with cumin and caraway seeds and by- product flour. Foods 2018, 7, 28. [Google Scholar] [CrossRef] [Green Version]
- Stepankova, G.; Oliinyk, S.; Mykhaylov, V.; Neklesa, O. Influence of maize germ oilcake on processes of wheat dough ripening and bread quality and nutritional value. Ukr. Food J. 2017, 6, 28–37. [Google Scholar] [CrossRef]
- Kurel, O.A.; Bahago, E.J.; Daniel, E.A. Studies on the proximate composition and effect of flour particle size of acceptability of biscuits produced from blends of soybeans and plantain flours. J. Namoda Technol. 1998, 3, 17–22. [Google Scholar]
- Dhingra, S.; Jood, S. Physico-chemical and nutritional properties of cereal-pulse blends for bread making. Nutr. Health 2002, 16, 183–194. [Google Scholar] [CrossRef]
- Basman, A.; Koksel, H. Utilization of transgluranase use to increase the level of barley and soy flour incorporation in wheat flour breads. J. Food Sci. 2003, 68, 2453–2460. [Google Scholar] [CrossRef]
- Darko, K. The Role of Street Food Vendors in the Transmission of Enteric-547. pathogens. Ghana Med. J. Bull. World Health Organiz. 2002, 80, 546. [Google Scholar]
- Edema, M.O.; Sanni, L.O.; Sanni, A.I. Evaluation of maizesoybean flour blends for sour maize bread production in Nigeria. Afr. J. Biotechnol. 2005, 4, 911–918. [Google Scholar]
- Olaoye, O.A.; Onilude, A.A.; Idowu, O.A. Quality characteristics of bread produced from composite flours of wheat, plantain and soybeans. Afr. J. Biotechnol. 2006, 5, 1102–1106. [Google Scholar]
- Adebayo-Oyetoro, A.O.; Ogundipe, O.O.; Lofinmakin, F.K.; Akinwande, F.F.; Aina, D.O.; Adeyeye, S.A.O. Production and acceptability of chinchin snack made from wheat and tigernut (Cyperus esculentus) flour. Cogent Food Agric. 2017, 3, 1282185. [Google Scholar] [CrossRef]
- Cantalejo, M.J. Analysis of volatile components derived from raw and roasted earth-almond (Cyperus esculentus L.). J. Agric. Food Chem. 1997, 45, 1853–1860. [Google Scholar] [CrossRef]
- Adejuyitan, J.A.; Otumola, E.A.; Akande, I.E.; Otadokun, F.M. Some physicochemical properties of flour obtained from fermentation of Tigernut (Cyperus esculentus) sourced from a market in Ogbomoso, Nigeria. Afr. J. Food Sci. 2009, 3, 51–55. [Google Scholar]
- Salau, R.B.; Ndamitso, M.M.; Paiko, Y.B.; Jacob, J.O.; Jolayemi, O.O.; Mustapha, S. Assessment of the proximate composition, food functionality and oil characterization of mixed varieties of Cyperus esculentus (tiger nut) rhizome flour. Cont. J. Food Sci. Technol. 2012, 6, 13–19. [Google Scholar]
- Aguilar, N.; Albanell, E.; Minarro, B.; Guamis, B.; Marta Capellas, M. Effect of tiger nut-derived products in gluten-free batter and bread. Food Sci. Technol. Int. 2014, 1, 323–331. [Google Scholar] [CrossRef]
- Kwaghsende, G.S.; Ikala, G.U.; Ochelle, P.O. Quality evaluation of biscuit from wheat-tigernut composite flour. Int. J. Agric. Plant Sci. 2019, 1, 25–30. [Google Scholar]
- Aljuhaimi, F.; Ghafoor, K.; Özcan, M.M.; Miseckaite, O.; Babiker, E.E.; Hussain, S. The Effect of Solvent Type and Roasting Processes on Physico-Chemical Properties of Tigernut (Cyperus esculentus L.) Tuber Oil. J. Oleo Sci. 2018, 67, 823–828. [Google Scholar] [CrossRef] [Green Version]
- Özcan, M.M.; Gümüşçü, A.; Er, F.; Arslan, D.; Özkalp, B. Chemical and fatty acid composition of Cyperus esculentus. Chem. Nat. Comp. 2010, 46, 276–277. [Google Scholar] [CrossRef]
- Akajiaku, L.O.; Kabuo, N.O.; Alagbaoso, S.O.; Orji, I.G.; Nwogu, A.S. Proximate, mineral and sensory properties of cookies made from Tiger-Nut Flour. J. Nutr. Diet. Pract. 2018, 2, 1–5. [Google Scholar]
- Coşkuner, Y.; Ercan, R.; Karababa, E.; Nedim-Nazlican, A. Physical and chemical properties of chufa (Cyperus esculentus L) tubers grown in the Çukurova region of Turkey. J. Sci. Food Agric. 2002, 82, 625–631. [Google Scholar] [CrossRef]
- Abaejoh, R.; Djomdi, I.; Ndjouenkou, R. Characteristics of tigernut (Cyperusesculentus) tubers and their performance in the production of a milky drink. J. Food Process. Preserv. 2006, 30, 145–163. [Google Scholar] [CrossRef]
- Oladele, A.K.; Aina, J.O. Chemical composition and functional properties of flour produced from two varieties of tiger nut (Cyperus esculentus). Afr. J. Biotechnol. 2007, 6, 2473–2476. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Zapata, E.; Fernandez-Lopez, J.; Sendra, E.; Perez-Alvarez, J.A. Tigernut (Cyperus esculentus) commercialization: Health aspects, composition, properties, and food applications. Compr. Rev. Food Sci. Food Saf. 2012, 11, 366–377. [Google Scholar] [CrossRef]
- Pagliarini, E.; Rastelli, C. Sensory and instrumental assessment of olive oil appearence. Grasas Y Aceites 1994, 45, 1–2. [Google Scholar]
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1990. [Google Scholar]
- Abreu, J.; Quintino, I.; Pascoal, B.; Postingher, B.; Cadena, R.; Teodoro, A. Antioxidant capacity, phenolic compound content and sensory properties of cookies produced from organic grape peel (Vitis labrusca) flour. Int. J. Food Sci. Technol. 2019, 54, 1215–1224. [Google Scholar] [CrossRef]
- Yoo, K.M.; Lee, K.W.; Park, J.B.; Lee, H.J.; Hwang, I.K. Variation in major antioxidants and total antioxidant activity of Yuzu (Citrusjunos SiebexTanaka) during maturation and between cultivars. J. Agric. Food Chem. 2004, 52, 5907–5913. [Google Scholar] [CrossRef]
- Hogan, S.; Zhang, L.; Li, J.; Zoecklein, B.; Zhou, K. Antioxidant properties and bioactive components of Norton (Vitis aestivalis) and Cabernet Franc (Vitis vinifera) wine grapes. LWT-Food Sci. Technol. 2009, 42, 1269–1274. [Google Scholar] [CrossRef]
- Lee, S.K.; Mbwambo, Z.H.; Chung, H.S.; Luyengi, L.; Games, E.J.C.; Mehta, R.G. Evaluation of the antioxidant potential of natural products. Comb. Chem. High Throughput Screen. 1998, 1, 35–46. [Google Scholar] [CrossRef] [PubMed]
- ISO-5509; Animal and Vegetable Fats and Oils Preperation of Methyl Esters of Fatty Acids (ISO 5509). ISO-International Organization for Standardization, vol Method ISO 5509; International Organization for Standardization: Geneve, Switzerland, 1978; pp. 1–6.
- Gallagher, E.; Gormley, T.R.; Arendt, E.K. Crust and crumb characteristics of gluten free breads. J. Food Eng. 2003, 56, 153–161. [Google Scholar] [CrossRef]
- Sanni, L.O.; Adebowale, A.A.; Tafa, S.O. Proximate, Functional, Pasting and Sensory Qualities of Instant Yam Flour. In Proceedings of the 14th ISTRC Symposium Central Tuber Crops the Research Institute, Trivandrum, India, 20–26 November 2006. [Google Scholar]
- Turkut, G.M.; Cakmak, H.; Kumcuoglu, S.; Tavman, Ş. Effect of quinoa flour on gluten-free bread batter rheology and bread quality. J. Cereal Sci. 2016, 69, 174–181. [Google Scholar] [CrossRef]
- Koca Anil, M. Using of hazelnut testa as a source of dietary fiber in breadmaking. J. Food Eng. 2007, 80, 61–67. [Google Scholar] [CrossRef]
- Sanz-Penella, J.M.; Wronkowska, M.; Soral-Smietana, M.; Haros, M. Effect of whole amaranth flour on bread properties and nutritive value. LWT-Food Sci. Technol. 2013, 50, 679–685. [Google Scholar] [CrossRef] [Green Version]
- Romankiewicz, D.; Hassoon, W.H.; Cacak-Pietrzak, G.; Sobczyk, M.; Wirkowska-WojdyBa, M.; Ceglinska, A.; Dzik, D. The effect of chia seeds (Salvia hispanica L.) addition on quality and nutritional value of wheat bread. J. Food Qual. 2017, 7, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Lim, H.S.; Park, S.H.; Ghafoor, K.; Hwang, S.Y.; Park, J. Quality and antioxidant properties of bread containing turmeric (Curcuma longa L.) cultivated in South Korea. Food Chem. 2011, 124, 1577–1582. [Google Scholar] [CrossRef]
- Chinma, C.E.; Avu, J.O.; Abubakar, Y.A. Effect of tigernut (Cyperus esculentus) flour ddition on the quality of wheat-based cake. Int. J. Food Sci. Technol. 2010, 45, 1746–1752. [Google Scholar] [CrossRef]
- Ezeocha, C.V.; Onwuneme, N.A. Evaluation of suitability of substituting wheat flour with sweet potato and tiger nut flours in bread making. Open Agric. 2016, 1, 173–178. [Google Scholar] [CrossRef]
- Jitngarmkusol, S.; Hongsuwankul, J.; Tananuwong, K. Chemical compositions, functional properties, and microstructure of defatted macadamia flours. Food Chem. 2008, 110, 23–30. [Google Scholar] [CrossRef]
- Aprodu, I.; Şerban, L.; Banu, I. Influence of ginger powder on dough rheological properties and bread quality. AgroLife Sci. J. 2019, 8, 9–15. [Google Scholar]
- Balestra, F.; Cocci, E.; Pinnavaia, G.; Romani, S. Evaluation of antioxidant, rheological and sensorial properties of wheat flour dough and bread containing ginger powder. (Special Issue: Innovative baking technologies: New starches, functional bread and cereal products.). LWT-Food Sci. Technol. 2011, 44, 700–705. [Google Scholar] [CrossRef]
- Tomsone, L.; Galoburda, R.; Kruma, Z.; Majore, K. Physicochemical properties of biscuits enriched with Horseradish (Armoracia rusticana L.) products and bioaccessibility of phenolics after simulated human digestion. Pol. J. Food Nutr. Sci. 2020, 70, 419–428. [Google Scholar] [CrossRef]
- Yoon, S.H. Physical and chemical characteristics of chufa (Cyperus esculentus L.) oils extracted from chufa tuber grown in the mid-portion of Korea. Food Sci. Biotechnol. 2015, 24, 2027–2029. [Google Scholar] [CrossRef]
Sample | Moisture Content (%) | L | a | b |
---|---|---|---|---|
Control | 21.01 ± 2.54 *a | 76.71 ± 1.85a | −0.49 ± 0.19d | 20.45 ± 0.58d |
10% | 19.92 ± 0.01c ** | 66.69 ± 1.86b | 3.26 ± 0.03c | 23.70 ± 0.03a |
20% | 15.61 ± 1.57d | 56.76 ± 0.28d | 5.93 ± 0.37a | 22.68 ± 0.26c |
40% | 20.64 ± 1.57b | 58.39 ± 0.66c | 5.22 ± 0.43b | 23.26 ± 0.35b |
Sample | Oil content (%) | Total phenolic content (mg/100 g) | Total flavonoid content (mg/100 g) | Antioxidant activity (mmol/kg) |
Control | 0.13 ± 0.07d | 37.42 ± 6.77d | 61.19 ± 0.67d | 0.20 ± 0.01d |
10% | 1.48 ± 0.02c | 57.98 ± 3.18c | 99.29 ± 3.09c | 1.20 ± 0.02c |
20% | 2.47 ± 0.00b | 99.64 ± 6.49a | 120.71 ± 3.09a | 3.24 ± 0.04a |
40% | 4.90 ± 0.10a | 92.42 ± 1.99b | 114.05 ± 4.42b | 3.15 ± 0.03b |
Phenolic Compounds (mg/100 g) | Control | 10% | 20% | 40% |
---|---|---|---|---|
Gallic acid | 13.98 ± 0.48 *a | 10.95 ± 0.64d | 12.18 ± 0.56b | 11.96 ± 0.04c |
3,4-Dihydroxybenzoic acid | 18.16 ± 0.97d ** | 19.36 ± 3.00c | 27.05 ± 3.60a | 20.91 ± 0.57b |
Catechin | 38.54 ± 2.23d | 47.99 ± 0.75c | 65.58 ± 4.17a | 51.45 ± 0.69b |
Caffeic acid | 2.01 ± 0.19d | 3.55 ± 0.61c | 11.06 ± 0.00a | 10.21 ± 1.09b |
Syringic acid | 2.05 ± 0.37d | 4.39 ± 0.66c | 5.94 ± 0.18a | 5.81 ± 0.56b |
Rutin | 8.20 ± 1.43d | 22.86 ± 5.38b | 22.67 ± 2.03c | 23.97 ± 1.69a |
p-Coumaric acid | 0.40 ± 0.17d | 1.12 ± 0.36c | 4.23 ± 1.40a | 2.31 ± 0.59b |
Ferulic acid | 0.61 ± 0.13d | 2.15 ± 0.88a | 1.61 ± 0.30b | 0.90 ± 0.33c |
Resveratrol | 0.48 ± 0.16c | 0.73 ± 0.27b | 1.15 ± 0.49a | 0.22 ± 0.01d |
Quercetin | 1.60 ± 0.33b | 1.22 ± 0.12c | 3.79 ± 1.35a | 0.55 ± 0.10d |
Cinnamic acid | 1.00 ± 0.17c | 1.00 ± 0.19c | 1.88 ± 0.38a | 1.74 ± 0.23ab |
Kaempferol | 1.54 ± 0.11d | 2.23 ± 0.51c | 7.11 ± 1.78a | 2.58 ± 0.24b |
Fatty Acids (%) | Control | 10% | 20% | 40% |
---|---|---|---|---|
Myristic | 0.28 ± 0.00a * | 0.05 ± 0.00c | ND ** | 0.06 ± 0.00b |
Palmitic | 14.97 ± 0.05c | 14.54 ± 0.06d | 14.90 ± 0.13b | 15.00 ± 0.14a |
Stearic | 3.76 ± 0.03a | 2.55 ± 0.00b | 2.46 ± 0.03c | 2.35 ± 0.01d |
Oleic | 61.88 ± 0.04d | 66.41 ± 0.05b | 65.26 ± 0.08c | 66.64 ± 0.15a |
Linoleic | 17.55 ± 0.02a | 15.13 ± 0.01c | 16.10 ± 0.01b | 14.84 ± 0.00d |
Arachidic | 0.65 ± 0.01a | 0.57 ± 0.00b | 0.51 ± 0.03c | 0.49 ± 0.00d |
Linolenic | 0.63 ± 0.01a | 0.58 ± 0.01b | 0.63 ± 0.00a | 0.53 ± 0.00c |
Behenic | 0.29 ± 0.01a | 0.17 ± 0.00b | 0.13 ± 0.01c | 0.13 ± 0.00c |
Sample | Flavour | Smell | Color | Texture | General View |
---|---|---|---|---|---|
Control | 4.00 ± 0.58c * | 4.00 ± 0.58d | 4.00 ± 0.58c | 3.83 ± 0.69d | 3.80 ± 0.40 |
10% | 4.33 ± 0.47b | 4.33 ± 0.75c | 4.67 ± 0.47a | 4.50 ± 0.76c | 4.40 ± 0.49 |
20% | 5.00 ± 0.00a | 4.67 ± 0.47b | 4.50 ± 0.50b | 4.67 ± 0.47b | 4.80 ± 0.40 |
40% | 5.00 ± 0.00a | 4.83 ± 0.37a | 4.67 ± 0.47a | 4.83 ± 0.37a | 5.00 ± 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Özcan, M.M. Quality Evaluation of Bread Prepared from Wheat–Chufa Tuber Composite Flour. Foods 2023, 12, 444. https://doi.org/10.3390/foods12030444
Özcan MM. Quality Evaluation of Bread Prepared from Wheat–Chufa Tuber Composite Flour. Foods. 2023; 12(3):444. https://doi.org/10.3390/foods12030444
Chicago/Turabian StyleÖzcan, Mehmet Musa. 2023. "Quality Evaluation of Bread Prepared from Wheat–Chufa Tuber Composite Flour" Foods 12, no. 3: 444. https://doi.org/10.3390/foods12030444
APA StyleÖzcan, M. M. (2023). Quality Evaluation of Bread Prepared from Wheat–Chufa Tuber Composite Flour. Foods, 12(3), 444. https://doi.org/10.3390/foods12030444