Testing the Feasibility and Dietary Impact of Macaroni Fortified with Green Tea and Turmeric Curcumin Extract in Diabetic Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Preparation of Macaroni Products
2.2.1. Green Tea Extract-Fortified Macaroni
2.2.2. Turmeric Curcumin Extract-Fortified Macaroni
2.2.3. Turmeric Curcumin and Green Tea Extract-Fortified Macaroni
2.3. Determination of Total Phenolic Content
2.4. HPLC Analysis of Catechins
2.5. HPLC-Based Analysis of Curcuminoid Content
2.6. Determination of Antioxidant Activity
2.7. Determination of Nutritional Facts
2.8. Determination of Physical Properties
2.9. Satisfactory Test
2.10. Assessment of Blood Glucose and Serum Lipid Levels in Rats
2.10.1. Animal Care
2.10.2. Intervention of Streptozotocin-Induced Diabetic Rats
2.10.3. Laboratory Investigation
2.11. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition of Macaroni Products
3.2. Effects of Consumption of Macaroni on Diabetic STZ-Induced Rats
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graham, H.N. Green tea composition, consumption, and polyphenol chemistry. Prev. Med. 1992, 21, 334–350. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, C.; Gimenez, R.; Lopez, M.C. Determination of tea components with antioxidant activity. J. Agric. Food Chem. 2003, 51, 4427–4435. [Google Scholar] [CrossRef] [Green Version]
- Dulloo, A.G.; Seydoux, J.; Girardier, L.; Chantre, P.; Vandermander, J. Green tea and thermogenesis: Interactions between catechin-polyphenols, caffeine and sympathetic activity. Int. J. Obes. Relat. Metab. Disord. 2000, 24, 252–258. [Google Scholar] [CrossRef] [Green Version]
- Park, H.J.; DiNatale, D.A.; Chung, M.Y.; Park, Y.K.; Lee, J.Y.; Koo, S.I.; O’Connor, M.; Manautou, J.E.; Bruno, R.S. Green tea extract attenuates hepatic steatosis by decreasing adipose lipogenesis and enhancing hepatic antioxidant defenses in ob/ob mice. J. Nutr. Biochem. 2011, 22, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Xu, N.; Zhao, W.; Su, J.; Liang, M.; Xie, Z.; Wu, X.; Li, Q. (-)-Epicatechin regulates blood lipids and attenuates hepatic steatosis in rats fed high-fat diet. Mol. Nutr. Food Res. 2017, 61, 1700303. [Google Scholar] [CrossRef]
- Suzuki, T.; Kumazoe, M.; Kim, Y.; Yamashita, S.; Nakahara, K.; Tsukamoto, S.; Sasaki, M.; Hagihara, T.; Tsurudome, Y.; Huang, Y.; et al. Green tea extract containing a highly absorbent catechin prevents diet-induced lipid metabolism disorder. Sci. Rep. 2013, 3, 2749. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez-Salmean, G.; Meaney, E.; Lanaspa, M.A.; Cicerchi, C.; Johnson, R.J.; Dugar, S.; Taub, P.; Ramirez-Sanchez, I.; Villarreal, F.; Schreiner, G.; et al. A randomized, placebo-controlled, double-blind study on the effects of (-)-epicatechin on the triglyceride/HDLc ratio and cardiometabolic profile of subjects with hypertriglyceridemia: Unique in vitro effects. Int. J. Cardiol. 2016, 223, 500–506. [Google Scholar] [CrossRef]
- Collins, Q.F.; Liu, H.Y.; Pi, J.; Liu, Z.; Quon, M.J.; Cao, W. Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, suppresses hepatic gluconeogenesis through 5’-AMP-activated protein kinase. J. Biol. Chem. 2007, 282, 30143–30149. [Google Scholar] [CrossRef] [Green Version]
- Haidari, F.; Omidian, K.; Rafiei, H.; Zarei, M.; Mohamad Shahi, M. Green tea (Camellia sinensis) supplementation to diabetic rats improves serum and hepatic oxidative stress markers. Iran. J. Pharm. Res. 2013, 12, 109–114. Available online: https://www.ncbi.nlm.nih.gov/pubmed/24250578 (accessed on 3 December 2022).
- Sabu, M.C.; Smitha, K.; Kuttan, R. Anti-diabetic activity of green tea polyphenols and their role in reducing oxidative stress in experimental diabetes. J. Ethnopharmacol. 2002, 83, 109–116. [Google Scholar] [CrossRef]
- Tenore, G.C.; Stiuso, P.; Campiglia, P.; Novellino, E. In vitro hypoglycaemic and hypolipidemic potential of white tea polyphenols. Food Chem. 2013, 141, 2379–2384. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Tamaru, S.; Nishizono, S.; Miyata, Y.; Tamaya, K.; Matsui, T.; Tanaka, T.; Echizen, Y.; Ikeda, I. Hypotriacylglycerolemic and antiobesity properties of a new fermented tea product obtained by tea-rolling processing of third-crop green tea (Camellia sinensis) leaves and loquat (Eriobotrya japonica) leaves. Biosci. Biotechnol. Biochem. 2010, 74, 1606–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naidu, M.M.; Shyamala, B.N.; Manjunatha, J.R.; Sulochanamma, G.; Srinivas, P. Simple HPLC method for resolution of curcuminoids with antioxidant potential. J. Food Sci. 2009, 74, C312–C318. [Google Scholar] [CrossRef] [PubMed]
- Hirun, S.; Utama-Ang, N.; Roach, P.D. Turmeric (Curcuma longa L.) drying: An optimization approach using microwave-vacuum drying. J. Food Sci. Technol. 2014, 51, 2127–2133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, T.P.; Chiam, P.C.; Lee, T.; Chua, H.C.; Lim, L.; Kua, E.H. Curry consumption and cognitive function in the elderly. Am. J. Epidemiol. 2006, 164, 898–906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghiamati Yazdi, F.; Soleimanian-Zad, S.; van den Worm, E.; Folkerts, G. Turmeric extract: Potential use as a prebiotic and anti-Inflammatory compound? Plant Foods Hum. Nutr. 2019, 74, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Hadi, A.; Pourmasoumi, M.; Ghaedi, E.; Sahebkar, A. The effect of curcumin/turmeric on blood pressure modulation: A systematic review and meta-analysis. Pharmacol. Res. 2019, 150, 104505. [Google Scholar] [CrossRef]
- Ng, T.P.; Nyunt, M.S.Z.; Gao, Q.; Gwee, X.; Chua, D.Q.L.; Yap, K.B. Curcumin-rich curry consumption and neurocognitive function from 4.5-year follow-up of community-dwelling older adults (Singapore longitudinal ageing study). Nutrients 2022, 14, 1189. [Google Scholar] [CrossRef]
- Srichairatanakool, S.; Thephinlap, C.; Phisalaphong, C.; Porter, J.B.; Fucharoen, S. Curcumin contributes to in vitro removal of non-transferrin bound iron by deferiprone and desferrioxamine in thalassemic plasma. Med. Chem. 2007, 3, 469–474. [Google Scholar] [CrossRef]
- Kalpravidh, R.W.; Siritanaratkul, N.; Insain, P.; Charoensakdi, R.; Panichkul, N.; Hatairaktham, S.; Srichairatanakool, S.; Phisalaphong, C.; Rachmilewitz, E.; Fucharoen, S. Improvement in oxidative stress and antioxidant parameters in beta-thalassemia/Hb E patients treated with curcuminoids. Clin. Biochem. 2010, 43, 424–429. [Google Scholar] [CrossRef] [PubMed]
- Pham-Huy, L.A.; He, H.; Pham-Huy, C. Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci. 2008, 4, 89–96. Available online: https://www.ncbi.nlm.nih.gov/pubmed/23675073 (accessed on 3 December 2022). [PubMed]
- Tain, Y.L.; Hsu, C.N. Metabolic Syndrome Programming and reprogramming: Mechanistic aspects of oxidative stress. Antioxidants 2022, 11, 2108. [Google Scholar] [CrossRef] [PubMed]
- Pignatelli, P.; Menichelli, D.; Pastori, D.; Violi, F. Oxidative stress and cardiovascular disease: New insights. Kardiol. Pol. 2018, 76, 713–722. [Google Scholar] [CrossRef] [Green Version]
- Halliwell, B.; Gutteridge, J.M. Free radicals and antioxidant protection: Mechanisms and significance in toxicology and disease. Hum. Toxicol. 1988, 7, 7–13. [Google Scholar] [CrossRef]
- Koonyosying, P.; Tantiworawit, A.; Hantrakool, S.; Utama-Ang, N.; Cresswell, M.; Fucharoen, S.; Porter, J.B.; Srichairatanakool, S. Consumption of a green tea extract-curcumin drink decreases blood urea nitrogen and redox iron in beta-thalassemia patients. Food Funct. 2020, 11, 932–943. [Google Scholar] [CrossRef]
- Elsebaie, E.M.; Asker, G.A.; Mousa, M.M.; Kassem, M.M.; Essa, R.Y. Technological and Sensory Aspects of Macaroni with Free or Encapsulated Azolla Fern Powder. Foods 2022, 11, 707. [Google Scholar] [CrossRef]
- Akhondi-Meybodi, M.; Aghaei, M.A.; Hashemian, Z. The role of diet in the management of non-ulcer dyspepsia. Middle East J. Dig. Dis. 2015, 7, 19–24. Available online: https://www.ncbi.nlm.nih.gov/pubmed/25628849 (accessed on 3 December 2022).
- Arguin, H.; Gagnon-Sweeney, M.; Pigeon, E.; Tremblay, A. Functional food and satiety. Impact of a satiating context effect on appetite control of non-obese men. Appetite 2012, 58, 354–363. [Google Scholar] [CrossRef] [PubMed]
- Carney, E.M.; Stein, W.M.; Reigh, N.A.; Gater, F.M.; Bakke, A.J.; Hayes, J.E.; Keller, K.L. Increasing flavor variety with herbs and spices improves relative vegetable intake in children who are propylthiouracil (PROP) tasters relative to nontasters. Physiol. Behav. 2018, 188, 48–57. [Google Scholar] [CrossRef]
- Olfat, Y.M.; Yaseen, A.A.; Aziza, I.A. Enrichment of macaroni with cellulose-derivative protein complex from whey and corn steep liquor. Nahrung 1993, 37, 544–552. [Google Scholar] [CrossRef] [PubMed]
- Utama-Ang, N.; Phawatwiangnak, K.; Naruenartwongsakul, S.; Samakradhamrongthai, R. Antioxidative effect of Assam Tea (Camellia sinesis Var. Assamica) extract on rice bran oil and its application in breakfast cereal. Food Chem. 2017, 221, 1733–1740. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Gao, J. The Chinese total diet study in 1990. Part II. Nutrients. J. AOAC Int. 1993, 76, 1206–1213. Available online: https://www.ncbi.nlm.nih.gov/pubmed/8286957 (accessed on 3 December 2022). [CrossRef] [PubMed]
- Lerttrakarnnon, P.; Kusirisin, W.; Koonyosying, P.; Flemming, B.; Utama-Ang, N.; Fucharoen, S.; Srichairatanakool, S. Consumption of Sinlek rice drink improved red cell indices in anemic elderly subjects. Molecules 2021, 26, 6285. [Google Scholar] [CrossRef]
- Mongeau, R.; Brassard, R. Enzymatic-gravimetric determination in foods of dietary fiber as sum of insoluble and soluble fiber fractions: Summary of collaborative study. J. AOAC Int. 1993, 76, 923–925. Available online: https://www.ncbi.nlm.nih.gov/pubmed/8397025 (accessed on 3 December 2022). [CrossRef]
- Hirun, S.; Utama-Ang, N.; Vuong, Q.V.; Scarlett, C.J. Investigating the commercial microwave vacuum drying conditions on physicochemical properties and radical scavenging ability of Thai green tea. Drying Technol. 2014, 32, 47–54. [Google Scholar] [CrossRef]
- Koonyosying, P.; Flemming, B.; Kusirisin, W.; Lerttrakarnnon, P.; Utama-ang, N.; Fucharoen, S.; Srichairatanakool, S. Production, iron analysis and consumer perception of functional Thai Sinlek iron rice (Oryza sativa) drink. Int. J. Food Sci. Technol. 2021, 56, 1972–1986. [Google Scholar] [CrossRef]
- Gomes, A.; Vedasiromoni, J.R.; Das, M.; Sharma, R.M.; Ganguly, D.K. Anti-hyperglycemic effect of black tea (Camellia sinensis) in rat. J. Ethnopharmacol. 1995, 45, 223–226. [Google Scholar] [CrossRef]
- Vinson, J.A.; Zhang, J. Black and green teas equally inhibit diabetic cataracts in a streptozotocin-induced rat model of diabetes. J. Agric. Food Chem. 2005, 53, 3710–3713. [Google Scholar] [CrossRef]
- Srichairatanakool, S.; Ounjaijean, S.; Thephinlap, C.; Khansuwan, U.; Phisalpong, C.; Fucharoen, S. Iron-chelating and free-radical scavenging activities of microwave-processed green tea in iron overload. Hemoglobin 2006, 30, 311–327. [Google Scholar] [CrossRef]
- Thephinlap, C.; Ounjaijean, S.; Khansuwan, U.; Fucharoen, S.; Porter, J.B.; Srichairatanakool, S. Epigallocatechin-3-gallate and epicatechin-3-gallate from green tea decrease plasma non-transferrin bound iron and erythrocyte oxidative stress. Med. Chem. 2007, 3, 289–296. Available online: https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17504202 (accessed on 3 December 2022). [CrossRef] [PubMed]
- Koonyosying, P.; Kongkarnka, S.; Uthaipibull, C.; Svasti, S.; Fucharoen, S.; Srichairatanakool, S. Green tea extract modulates oxidative tissue injury in beta-thalassemic mice by chelation of redox iron and inhibition of lipid peroxidation. Biomed. Pharmacother. 2018, 108, 1694–1702. [Google Scholar] [CrossRef] [PubMed]
- Koonyosying, P.; Uthaipibull, C.; Fucharoen, S.; Koumoutsea, E.V.; Porter, J.B.; Srichairatanakool, S. Decrement in cellular iron and reactive oxygen species, and improvement of insulin secretion in a pancreatic cell line using green tea extract. Pancreas 2019, 48, 636–643. [Google Scholar] [CrossRef] [Green Version]
- Thephinlap, C.; Phisalaphong, C.; Fucharoen, S.; Porter, J.B.; Srichairatanakool, S. Efficacy of curcuminoids in alleviation of iron overload and lipid peroxidation in thalassemic mice. Med. Chem. 2009, 5, 474–482. [Google Scholar] [CrossRef] [PubMed]
- Thephinlap, C.; Phisalaphong, C.; Lailerd, N.; Chattipakorn, N.; Winichagoon, P.; Vadolas, J.; Fucharoen, S.; Porter, J.B.; Srichairatanakool, S. Reversal of cardiac iron loading and dysfunction in thalassemic mice by curcuminoids. Med. Chem. 2011, 7, 62–69. [Google Scholar] [CrossRef]
- Gulati, A.; Rawat, R.; Singh, B.; Ravindranath, S.D. Application of microwave energy in the manufacture of enhanced-quality green tea. J. Agric. Food Chem. 2003, 51, 4764–4768. [Google Scholar] [CrossRef]
- Wang, R.; Zhou, W. Stability of tea catechins in the breadmaking process. J. Agric. Food Chem. 2004, 52, 8224–8229. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; Zhou, H.M.; Zhu, K.X.; Guo, X.N.; Peng, W. Increasing the physicochemical stability of stored green tea noodles: Analysis of the quality and chemical components. Food Chem. 2019, 278, 333–341. [Google Scholar] [CrossRef]
- Junior, M.M.; de Oliveira, T.P.; Goncalves, O.H.; Leimann, F.V.; Medeiros Marques, L.L.; Fuchs, R.H.B.; Cardoso, F.A.R.; Droval, A.A. Substitution of synthetic antioxidant by curcumin microcrystals in mortadella formulations. Food Chem. 2019, 300, 125231. [Google Scholar] [CrossRef]
- Wolever, T.M.; Jenkins, D.J.; Kalmusky, J.; Giordano, C.; Giudici, S.; Jenkins, A.L.; Thompson, L.U.; Wong, G.S.; Josse, R.G. Glycemic response to pasta: Effect of surface area, degree of cooking, and protein enrichment. Diabetes Care 1986, 9, 401–404. Available online: https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=3743316 (accessed on 3 December 2022). [CrossRef]
- Kurbanov, S.K.; Khasaev, A.; Gapparov, M.M. Effects of various food products on blood sugar level in patients with diabetes mellitus and obesity. Vopr. Pitan. 1991, 1, 35–38. Available online: https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2042318 (accessed on 3 December 2022).
- Donduran, S.; Hamulu, F.; Cetinkalp, S.; Colak, B.; Horozoglu, N.; Tuzun, M. Glycaemic index of different kinds of carbohydrates in type 2 diabetes. Eat Weight Disord. 1999, 4, 203–206. Available online: https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10728183 (accessed on 3 December 2022). [CrossRef] [PubMed]
- Kalpana, C.; Rajasekharan, K.N.; Menon, V.P. Modulatory effects of curcumin and curcumin analog on circulatory lipid profiles during nicotine-induced toxicity in Wistar rats. J. Med. Food 2005, 8, 246–250. [Google Scholar] [CrossRef] [PubMed]
- Kalpana, C.; Sudheer, A.R.; Rajasekharan, K.N.; Menon, V.P. Comparative effects of curcumin and its synthetic analogue on tissue lipid peroxidation and antioxidant status during nicotine-induced toxicity. Singapore Med. J. 2007, 48, 124–130. Available online: https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17304391 (accessed on 15 January 2023). [PubMed]
Analysis | Macaroni Products | ||
---|---|---|---|
GTE-M | TCE-M | GTE/TCE-M | |
Antioxidant activity (mg TEAC/g) | 7.07 ± 0.29 a | 1.61 ± 0.09 | 12.52 ± 0.92 a,b |
TPC (mg GAE/g) | 10.32 ± 0.09 a | 4.53 ± 0.16 c | 6.82 ± 0.03 b |
EGCG (mg/g) | 2.74 | ND | 1.37 |
EC (mg/g) | 2.47 | ND | 1.24 |
ECG (mg/g) | 0.17 | ND | 0.09 |
Curcuminoids (mg/g) | ND | 0.96 | 0.48 |
Analytes | Macaroni Products | ||
---|---|---|---|
GTE-M | TCE-M | GTE/TCE-M | |
Total energy (kcal/g) | 3.29 ± 0.13 b | 3.15 ± 0.02 b | 3.59 ± 0.04 a |
Carbohydrate (%) | 78.33 ± 0.13 | 79.02 ± 0.57 | 78.50 ± 0.01 |
Protein (%) | 10.73 ± 0.15 a | 9.41 ± 0.58 b | 9.50 ± 0.04 b |
Fats (%) | 1.00 ± 0.18 b | 1.79 ± 0.06 a | 1.99 ± 0.04 a |
Moisture (%) | 4.19 ± 0.16 a | 3.72 ± 0.06 b | 3.98 ± 0.21 a,b |
Crude fiber (%) | 3.63 ± 0.26 b | 4.16 ± 0.08 a | 4.12 ± 0.04 a,b |
Ash (%) | 2.14 ± 0.11 a | 1.91 ± 0.04 b | 1.92 ± 0.04 a,b |
Macaroni Product | L* | a* | b* |
---|---|---|---|
GTE-M | 49.91 ± 1.55 b | −1.43 ± 0.16 a | 13.87 ± 0.93 b |
TCE-M | 59.80 ± 1.12 a | −3.91 ± 0.33 b | 20.86 ± 0.88 a |
GTE/TCE-M | 56.09 ± 3.38 a | −3.90 ± 1.19 b | 17.06 ± 2.69 b |
Characteristics | Sensory Evaluation Score | ||
---|---|---|---|
GTE-M (n = 100) | TCE-M (n = 100) | GTE/TCE-M (n = 200) | |
Appearance | 4.9 ± 1.3 b | 6.7 ± 0.7 a,b | 7.7 ± 1.1 a |
Green colour | 4.7 ± 1.2 ns | ND | 6.7 ± 1.2 ns |
Yellow colour | ND | 6.7 ± 0.8 ns | 7.0 ± 1.2 ns |
Green tea aroma | 5.4 ± 1.6 ns | ND | 6.7 ± 1.2 ns |
Curcumin aroma | ND | 5.9 ± 0.9 ns | 6.8 ± 1.1 ns |
Total aroma | 5.4 ± 1.4 b | 6.1 ± 0.9 a,b | 7.1 ± 1.1 a |
Total taste | 5.3 ± 1.2 b | 6.2 ± 1.1 a,b | 7.2 ± 1.0 a |
Texture | 5.3 ± 1.0 b | 6.0 ± 1.1 a,b | 7.2 ± 0.9 a |
Overall preferences | 5.2 ± 0.8 b | 6.1 ± 0.9 a,b | 7.2 ± 1.0 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hutachok, N.; Koonyosying, P.; Paradee, N.; Samakradhamrongthai, R.S.; Utama-ang, N.; Srichairatanakool, S. Testing the Feasibility and Dietary Impact of Macaroni Fortified with Green Tea and Turmeric Curcumin Extract in Diabetic Rats. Foods 2023, 12, 534. https://doi.org/10.3390/foods12030534
Hutachok N, Koonyosying P, Paradee N, Samakradhamrongthai RS, Utama-ang N, Srichairatanakool S. Testing the Feasibility and Dietary Impact of Macaroni Fortified with Green Tea and Turmeric Curcumin Extract in Diabetic Rats. Foods. 2023; 12(3):534. https://doi.org/10.3390/foods12030534
Chicago/Turabian StyleHutachok, Nuntouchaporn, Pimpisid Koonyosying, Narisara Paradee, Rajnibhas Sukeaw Samakradhamrongthai, Niramon Utama-ang, and Somdet Srichairatanakool. 2023. "Testing the Feasibility and Dietary Impact of Macaroni Fortified with Green Tea and Turmeric Curcumin Extract in Diabetic Rats" Foods 12, no. 3: 534. https://doi.org/10.3390/foods12030534
APA StyleHutachok, N., Koonyosying, P., Paradee, N., Samakradhamrongthai, R. S., Utama-ang, N., & Srichairatanakool, S. (2023). Testing the Feasibility and Dietary Impact of Macaroni Fortified with Green Tea and Turmeric Curcumin Extract in Diabetic Rats. Foods, 12(3), 534. https://doi.org/10.3390/foods12030534