The Effect of Cyclosporin A on Aspergillus niger and the Possible Mechanisms Involved
Abstract
:1. Introduction
2. Materials and Methods
2.1. Producing Fungus and Fermentation
2.2. Preparation of CsA–C
2.3. Fruit Material and Fungal Culture
2.4. Antifungal Activities of CsA–C In Vitro
2.5. Effect of CsA on the Disease Development in Postharvest Grapes Inoculated with A. niger
2.6. Scanning Electron Microscopy (SEM) Observation
2.7. RNA Extraction and Real-Time Quantitative PCR (RT-qPCR) Analysis
2.8. RNA-Seq Analysis
2.9. Statistical Analysis
3. Results and Discussion
3.1. Antifungal Activities of CsA–C against A. niger In Vitro
3.2. Inhibition Effects of CsA on Disease Development in Artificially Inoculated Grapes
3.3. Morphology and Ultrastructural Alterations of A. niger
3.4. Transcriptomic Analysis of A. niger in Response to CsA
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taskesenlioglu, M.Y.; Ercisli, S.; Kupe, M.; Ercisli, N. History of grape in anatolia and historical sustainable grape production in Erzincan agroecological conditions in Turkey. Sustainability 2022, 14, 1496. [Google Scholar] [CrossRef]
- Asci, S.D.; Tangolar, S.; Kazan, K.; Ozmen, C.Y.; Oktem, M.; Kibar, U.; Muitaba, M.; Tangolar, S.; Ergul, A. Evaluation of powdery mildew resistance of a diverse set of grape cultivars and testing the association between powdery mildew resistance and PR gene expression. Turk. J. Agric. For. 2021, 45, 273–284. [Google Scholar] [CrossRef]
- De Sousa, L.L.; De Andrade, S.C.A.; Athayde, A.; De Oliveira, C.E.V.; De Sales, C.V.; Madruga, M.S.; De Souza, E.L. Efficacy of Origanum vulgare L. and Rosmarinus officinalis L. essential oils in combination to control postharvest pathogenic Aspergilli and autochthonous mycoflora in Vitis labrusca L. (table grapes). Int. J. Food Microbiol. 2013, 165, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.H.; Li, B.Q.; Liu, J.; Tian, S.P. Physiological responses and quality attributes of table grape fruit to chitosan preharvest spray and postharvest coating during storage. Food Chem. 2008, 106, 501–508. [Google Scholar] [CrossRef]
- Lasram, S.; Oueslati, S.; Mliki, A.; Ghorbel, A.; Silar, P.; Chebil, S. Ochratoxin A and ochratoxigenic black Aspergillus species in Tunisian grapes cultivated in different geographic areas. Food Control 2012, 25, 75–80. [Google Scholar] [CrossRef]
- Gándara-Ledezma, A.; Corrales-Maldonado, C.; Rivera-Domínguez, M.; Martínez-Téllez, M.Á.; Vargas-Arispuro, I. Postharvest control of gray mold in table grapes using volatile sulfur compounds from Allium sativum. J. Sci. Food Agric. 2015, 95, 497–503. [Google Scholar] [CrossRef]
- Parafati, L.; Vitale, A.; Restuccia, C.; Cirvilleri, G. Biocontrol ability and action mechanism of food-isolated yeast strains against Botrytis cinerea causing postharvest bunch rot of table grape. Food Microbiol. 2015, 47, 85–92. [Google Scholar] [CrossRef]
- Romanazzi, G.; Smilanick, J.L.; Feliziani, E.; Droby, S. Integrated management of postharvest gray mold on fruit crops. Posharvest Biol. Technol. 2016, 113, 69–76. [Google Scholar] [CrossRef]
- Raja, H.A.; Miller, A.N.; Pearce, C.J.; Oberlies, N.H. Fungal identification using molecular tools: A primer for the natural products research community. J. Nat. Prod. 2017, 80, 756–770. [Google Scholar] [CrossRef]
- Dreyfuss, M.; Harri, E.; Hofmann, H.; Kobel, H.; Pache, W.; Tscherter, H. Cyclosporin A and C: New metabolites from Trichoderma polysproum (Link ex Pers) Rifai. Eur. J. Appl. Microbiol. 1976, 3, 125–133. [Google Scholar] [CrossRef]
- Moussaif, M.; Jac ques, P.; Schaarwachter, P.; Budzikiewicz, H.; Thonart, P. Cyclosporin C is the main antifungal compound produced by Acremonium luzulae. Appl. Environ. Microbiol. 1997, 63, 1739–1743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwarz, P.; Dannaoui, E. In vitro interaction between isavuconazole and tacrolimus, cyclosporin A, or sirolimus against Aspergillus species. J. Fungi 2020, 6, 103. [Google Scholar] [CrossRef] [PubMed]
- Sazykin, I.O.; Telsnina, G.N.; Zaslavskaia, P.L.; Lasova, T.V.; Ivanov, V.P.; Elkina, E.S.; Navashin, S.M. Cyclosporin A and the permeability of the cytoplasmic membrane in Aspergillus niger. Antibiot. Chemother. 1995, 40, 19–24. [Google Scholar]
- Sazykin, I.O.; Telesnina, G.N.; Zaslavskaia, P.L.; Krakhmaleva, I.N.; Bibikova, M.V.; Rybakova, A.M.; Ivanitskaia, L.P.; Navashin, S.M. Effect of cyclosporin on various metabolic processes in fungi. Antibiot. Chemother. 1994, 39, 3–9. [Google Scholar]
- Xu, L.; Wu, P.; Xue, J.; Molnar, I.; Wei, X. Antifungal and cytotoxic β-resorcylic acid lactones from a Paecilomyces species. J. Nat. Prod. 2017, 80, 2215–2223. [Google Scholar] [CrossRef]
- Rodriguez, M.A.; Cabrera, G.; Godeas, A. Cyclosporine A from a nonpathogenic Fusarium oxysporum suppressing Sclerotinia sclerotiorum. J. Appl. Microbiol. 2006, 100, 575–586. [Google Scholar] [CrossRef] [PubMed]
- Traber, R.; Kuhn, M.; Loosli, H.; Pache, W.; Wartbutr, A.V. New cyclopeptides from Trichoderma polysporum (Link ex Pers.) Rifai: Cyclosporins B, D and E. Helv. Chim. Acta. 1977, 60, 1568–1578. [Google Scholar] [CrossRef]
- Sawai, K.; Okuno, T.; Terada, Y.; Harada, Y.; Sawamura, K.; Sasaki, H.; Takao, S. Isolation and properties of two antifungal substances from Fusarium solani. Agric. Biol. Chem. 1981, 45, 1223–1228. [Google Scholar] [CrossRef]
- Qian, S.Q.; Lu, H.D.; Sun, J.; Zhang, C.; Zhao, H.Z.; Lu, F.X.; Bie, X.M.; Lu, Z.X. Antifungal activity mode of Aspergillus ochraceus by bacillomycin D and its inhibition of ochratoxin A (OTA) production in food samples. Food Control 2016, 60, 281–288. [Google Scholar] [CrossRef]
- Duan, X.W.; Liu, T.; Zhang, D.D.; Su, X.G.; Lin, H.T.; Jiang, Y.M. Effect of pure oxygen atmosphere on antioxidant enzyme and antioxidant activity of harvested litchi fruit during storage. Food Res. Int. 2011, 44, 1905–1911. [Google Scholar] [CrossRef]
- Kim, J.D.; Kang, J.E.; Kim, B.S. Postharvest disease control efficacy of the polyene macrolide lucensomycin produced by Streptomyces plumbeus strain CA5 against gray mold on grapes. Postharvest Biol. Tec. 2020, 162, 1–8. [Google Scholar] [CrossRef]
- Feng, L.Y.; Wu, F.W.; Li, J.; Jiang, Y.M.; Duan, X.W. Antifungal activities of polyhexamethylene biguanide and polyhexamethylene guanide against the citrus sour rot pathogen Geotrichum citri-aurantii in vitro and in vivo. Postharvest Biol. Tec. 2011, 61, 160–164. [Google Scholar] [CrossRef]
- Li, T.T.; Gong, L.; Wang, Y.; Chen, F.; Gupta, V.K.; Jian, Q.J.; Duan, X.W.; Jiang, Y.M. Proteomics analysis of Fusarium proliferatum under varous initial pH during fumonisin production. J. Proteomics 2017, 164, 59–72. [Google Scholar] [CrossRef] [PubMed]
- Li, J.J.; Chen, Q.G.; Bao, B.; Liv, M.; Bao, M.T.; Liu, J.Z.; Mu, J. RNA-seq analysis reveals the significant effects of different light conditions on oil degradation by marine Chlorella vulgaris. Mar. Pollut. Bull. 2018, 137, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Zahavi, T.; Cohen, L.; Weiss, B.; Schena, L.; Daus, A.; Kaplunov, T.; Zutkhi, J.; Ben-Arie, R.; Droby, S. Technology, biological control of botrytis, Aspergillus and Rhizopus rots on table and wine grapes in Israel. Postharvest Biol. Tec. 2000, 20, 115–124. [Google Scholar] [CrossRef]
- Steel, C.C.; Blackman, J.W.; Schmidtke, L.M. Grapevine bunch rots: Impacts on wine composition, quality, and potential procedures for the removal of wine faults. J. Arg. Food Chem. 2013, 61, 5189–5206. [Google Scholar]
- Zhu, J.M.; Zhang, L.Y.; Ma, D.C.; Gao, Y.Y.; Mu, W.; Liu, F. A bioactivity and biochemical analysis of iminoctadine tris (albesilate) as a fro fungicide against Corynespora cassiicola. Pestic. Biochem. Physiol. 2019, 158, 121–127. [Google Scholar] [CrossRef]
- Siegel, M.R.; Kerkenaar, A.; Sijpesteijn, A.K. Antifungal activity of the systemic fungicide imazalil. Neth. J. Pl. Path. 1977, 83, 121–133. [Google Scholar] [CrossRef]
- Altieri, G.; Renzo, G.C.D.; Genovese, F.; Calandra, M.; Strano, M.C. A new method for the postharvest application of imazalil fungicide to citrus fruit. Biosyst. Eng. 2013, 115, 434–443. [Google Scholar] [CrossRef]
- Fedorova, N.D.; Khaldi, N.; Joardar, V.S.; Maiti, R.; Amedeo, P.; Anderson, M.J.; Crabtree, J.; Silva, J.C.; Badger, J.H.; Albarraq, A.; et al. Genomic islands in the pathogenic filamentous fungus Aspergillus fumigatus. PLoS Genet. 2008, 4, 1–13. [Google Scholar] [CrossRef]
- Pel, H.J.; de Winde, J.H.; Archer, D.B.; Dyer, P.S.; Hofmann, G.; Schaap, P.J.; Turner, G.; de Vries, R.P.; Albang, R.; Albermann, K.; et al. Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat. Biotechnol. 2007, 25, 221–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yue, J.X.; Li, J.; Aigrain, L.; Hallin, J.; Persson, K.; Oliver, K.; Bergstrom, A.; Coupland, P.; Warringer, J.; Lagomarsino, M.C.; et al. Contrasting evolutionary genome dynamics between domesticated and wild yeasts. Nat. Genet. 2017, 49, 913–924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuanyok, A.; Kim, H.S.; Nierman, W.C.; Yu, Y.; Dunbar, J.; Moore, R.A.; Baker, P.; Tom, M.; Ling, J.M.L.; Woods, D.E. Genome-wide expression analysis of iron regulation in Burkholderia pseudomallei and Burkholderia mallei using DNA microarrays. Fems Microbiol. Lett 2005, 252, 327–335. [Google Scholar] [CrossRef]
- Kjrblling, I.; Vesth, T.; Frisvad, J.C.; Nybo, J.L.; Theobald, S.; Kildgaard, S.; Petersen, T.I.; Kuo, A.; Sato, A.; Lyhne, E.K.; et al. A comparative genomics study of 23 Aspergillus species from section Flavi. Nat. Commun. 2020, 11, 1–12. [Google Scholar]
- Saveanu, C.; Bienvenu, D.; Namane, A.; Gleizes, P.E.; Gas, N.; Jacquier, A.; Fromont-Racine, M. Nog2p, a putative GTPase associated with pre-60S subunits and required for late 60S maturation steps. Embo J. 2001, 20, 6475–6484. [Google Scholar] [CrossRef]
- Park, M.W.; Lee, H.S.; Kim, E.Y.; Lee, K.A. RNA polymerase II inhibitor, α-amanitin, affects gene expression for gap junctions and metabolic capabilities of cumulus cells, but not oocyte, during in vitro mouse oocyte maturation. Dev. Reprod. 2013, 17, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Abdelwahab, H.; Del Campo, J.S.M.; Dai, Y.M.; Adly, C.; El-Sohaimy, S.; Sobrado, P. Mechanism of rifampicin inactivation in Nocardia farcinica. PLoS ONE 2016, 11, 1–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hopke, A.; Brown, A.J.P.; Hall, R.A.; Wheeler, R.T. Dynamic Fungal Cell Wall Architecture in Stress Adaptation and Immune Evasion. Trends Microbiol. 2018, 26, 284–295. [Google Scholar]
- Kollar, R.; Reinhold, B.B.; Petrokova, E.; Yeh, H.J.C.; Ashwell, G.; Drgonova, J.; Kapteyn, J.C.; Klis, F.M.; Cabib, E. Architecture of the yeast cell wall, β (1→6)-glucans interconnects mannoproteins, β (1→3)-glucans, and chitin. J. Biol. Chem. 1997, 272, 1762–1775. [Google Scholar]
- Damveld, R.A.; vanKuyk, P.A.; Arentshorst, M.; Klis, F.M.; van den Hondel, C.A.M.J.J.; Ram, A.F.J. Expression of agsA, one of five 1,3-α-D-glucan synthase-encoding genes in Aspergillus niger, is induced in response to cell wall stress. Fungal Genet. Biol. 2005, 42, 165–177. [Google Scholar] [CrossRef]
- Kang, L.; Zhu, Y.; Bai, Y.; Yuan, S. Characteristics, Transcriptional Patterns and Possible Physiological Significance of Glycoside Hydrolase Family 16 Members in Coprinopsis cinerea. FEMS Microbiol. Lett. 2019, 366, 937. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Tamaki, H.; Akiba, S.; Yamamoto, K.; Kumagai, H. Cloning of a gene encoding a highly stable endo-β-1,4-glucanase from Aspergillus niger and its expression in yeast. J. Biosci. Bioeng. 2001, 92, 434–441. [Google Scholar] [CrossRef]
- Kramer, K.J.; Corpuz, L.; Choi, H.K.; Muthukrishnan, S. Sequence of a cDNA and expression of the gene encoding epidermal and gut chitinases of Manduca sexta. Insect. Biochem. Mol. Biol. 1993, 23, 691–701. [Google Scholar] [CrossRef] [PubMed]
- Laothanachareon, T.; Antonio Tamayo-Ramos, J.; Nijsse, B.; Schaap, P.J. Forward genetics by genome sequencing uncovers the central role of the Aspergillus niger goxB locus in hydrogen peroxide induced glucose oxidase expression. Front. Microbiol. 2018, 9, 1–14. [Google Scholar] [CrossRef] [PubMed]
Compound | CsA | CsB | CsC |
---|---|---|---|
A. niger | 8.0 ± 0.0 a | 7.0 ± 0.0 b | 4.2 ± 0.2 c |
Treatment | Concentration (mg/L) | Disease Incidence (%) † |
---|---|---|
control | 0 | 100.0 ± 0.0 a |
CsA | 50 | 26.7 ± 4.7 c |
100 | 23.3 ± 4.7 c | |
200 | 6.7 ± 4.7 d | |
Thiram | 50 | 36.7 ± 9.4 c |
100 | 43.3 ± 9.4 c | |
200 | 23.3 ± 4.7 c | |
Bellkute | 50 | 40.0 ± 8.2 c |
100 | 23.3 ± 4.7 c | |
200 | 0.0 ± 0.0 d | |
Imazalil | 50 | 70.0 ± 8.2 b |
100 | 26.7 ± 9.4 c | |
200 | 10.0 ± 0.0 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Lv, Z.; Zhong, Z.; Mao, L.; Chua, L.S.; Xu, L.; Huang, R. The Effect of Cyclosporin A on Aspergillus niger and the Possible Mechanisms Involved. Foods 2023, 12, 567. https://doi.org/10.3390/foods12030567
Li F, Lv Z, Zhong Z, Mao L, Chua LS, Xu L, Huang R. The Effect of Cyclosporin A on Aspergillus niger and the Possible Mechanisms Involved. Foods. 2023; 12(3):567. https://doi.org/10.3390/foods12030567
Chicago/Turabian StyleLi, Fengming, Zhencheng Lv, Zhijuan Zhong, Lutian Mao, Lee Suan Chua, Liangxiong Xu, and Riming Huang. 2023. "The Effect of Cyclosporin A on Aspergillus niger and the Possible Mechanisms Involved" Foods 12, no. 3: 567. https://doi.org/10.3390/foods12030567
APA StyleLi, F., Lv, Z., Zhong, Z., Mao, L., Chua, L. S., Xu, L., & Huang, R. (2023). The Effect of Cyclosporin A on Aspergillus niger and the Possible Mechanisms Involved. Foods, 12(3), 567. https://doi.org/10.3390/foods12030567