Investigating the Effect of Various Sous-Vide Cooking Conditions on Protein Structure and Texture Characteristics of Tilapia Fillet Using Synchrotron Radiation-Based FTIR
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Physicochemical Properties of SV-Cooked Tilapia Fillet
2.2.1. Cooking Loss/Water-Holding Capacity (WHC)
2.2.2. Shear Force and Texture Profile Analysis (TPA)
2.3. Protein Structure/Degradation of Various SV-Cooked Tilapia Fillets
2.3.1. Water- and Salt-Soluble Protein Content
2.3.2. Total and Insoluble Collagen Content
2.3.3. Scanning Electron Microscopy (SEM)
2.3.4. Synchrotron-Based Fourier-Transform Infrared Spectroscopy (SR-FTIR)
2.4. Texture-Liking Score
2.5. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Properties of SV-Cooked Tilapia Fillet
3.1.1. WHC/Cooking Loss
3.1.2. Shear Force and Texture Profile Analysis (TPA)
3.2. Protein Structure/Degradation of Various SV-Cooked Tilapia Fillets
3.2.1. Water- and Salt-Soluble Protein Content
3.2.2. Total and Insoluble Collagen Content
3.2.3. Microstructure
3.2.4. SR-FTIR Characteristics
3.3. Texture-Liking Score
3.4. Principal Component Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lyford, C.; Thompson, J.M.; Polkinghorne, R.; Miller, M.; Nishimura, T.; Neath, K.; Allen, P.; Belasco, E. Is willingness to pay (WTP) for beef quality grades affected by consumer demographics and meat consumption habits? Aust. Agribus. Rev. 2010, 18, 1–17. [Google Scholar]
- Aaslyng, M.D.; Bejerholm, C.; Ertbjerg, P.; Bertram, H.C.; Andersen, H.J. Cooking loss and juiciness of pork in relation to raw meat quality and cooking procedure. Food Qual. Prefer. 2003, 14, 277–288. [Google Scholar] [CrossRef]
- Warner, R.D.; Greenwood, P.L.; Pethick, D.W.; Ferguson, D.M. Genetic and environmental effects on meat quality. Meat Sci. 2010, 86, 171–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hedayati, S.; Baeghbali, V.; Jafari, S. Cooking equipment for the food industry. In High-Temperature Processing of Food Products; Woodhead Publishing: Oxford, UK, 2023; pp. 59–76. [Google Scholar]
- Baldwin, D.E. Sous vide cooking: A review. Int. J. Gastron. Food Sci. 2012, 1, 15–30. [Google Scholar] [CrossRef] [Green Version]
- Humaid, S.; Nayyar, D.; Bolton, J.; Skonberg, D.I. Physicochemical properties and consumer acceptance of high-pressure processed, sous vide-cooked lobster tails. J. Food Sci. 2019, 84, 3454–3462. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Fandos, E.; Villarino-Rodríguez, A.; García-Linares, M.C. Microbiological safety and sensory characteristics of salmon slices processed by sous vide method. Food Control 2005, 16, 75–85. [Google Scholar] [CrossRef]
- Llave, Y.; Shibata-Ishiwatari, N.; Watanabe, M.; Fukuoka, M.; Sato, H.N.; Sakai, N. Analysis of the effects of thermal protein denaturation on the quality attributes of sous-vide cooked tuna. J. Food Process Preserv. 2018, 42, e13347. [Google Scholar] [CrossRef]
- Gonzalez-Fandos, E.; Garcia-Linares, M.C.; Rodrigez, A.V.; Garcia-Arias, M.T.; Garcia-Fernandes, M.C. Evaluation of themicrobiological safety and sensory quality of rainbow trout (Oncorhynchus mykiss) processed by the sous-vide method. Food Microbiol. 2004, 21, 193–201. [Google Scholar] [CrossRef]
- Shakila, R.J.; Jeyasekaran, G.; Vijayakumar, A.; Sukumar, D. Microbiological quality of sous-vide cook chill fish cakes during chilled storage (3℃). Int. J. Food Sci. Technol. 2009, 44, 2021–2026. [Google Scholar] [CrossRef]
- Pongsetkul, J.; Yongsawatdigul, J.; Boonanuntanasarn, S.; Benjakul, S. Development of flavor and taste components of sous-vide cooked Nile tilapia (Oreochromis niloticus) fillet as affected by various conditions. Foods 2022, 11, 3681. [Google Scholar] [CrossRef]
- Yu, P.; Mckinnon, J.J.; Christensen, C.R.; Christensen, D.A. Using synchrotron-based FTIR microspectroscopy to reveal chemical features of feather protein secondary structure: Comparison with other feed protein sources. J. Agric. Food Chem. 2004, 52, 7353–7361. [Google Scholar] [CrossRef] [PubMed]
- Digre, H.; Erikson, U.; Skaret, J.; Lea, P.; Gallart-Jornet, L.; Misimi, E. Biochemical, physical and sensory quality of ice-stored Atlantic cod (Gadus morhua) as affected by pre-slaughter stress, percussion stunning and AQUI-STM anaesthesia. Eur. Food Res. Technol. 2011, 233, 447–456. [Google Scholar] [CrossRef] [Green Version]
- Wattanachant, S.; Benjakul, S.; Ledward, D.A. Composition, color, and texture of Thai indigenous and broiler chicken muscles. Poultry Sci. 2004, 83, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Hultmann, L.; Rustad, T. Textural changes during iced storage of salmon (Salmo salar) and cod (Gadus morhua). J. Aquat. Food Prod. Technol. 2002, 11, 105–123. [Google Scholar] [CrossRef]
- Kolar, K. Colorimetric determination of hydroxyproline as measure of collagen content in meat and meat products: NMKL collaborative study. J. Assoc. Off. Anal. Chem. 1990, 73, 54–57. [Google Scholar] [CrossRef]
- Wan, J.; Cao, A.; Cai, L. Effects of vacuum or sous-vide cooking methods on the quality of largemouth bass (Micropterus salmoides). Int. J. Gastron. Food Sci. 2019, 18, 100181. [Google Scholar] [CrossRef]
- Oz, F.; Seyyar, E. Formation of heterocyclic aromatic amines and migration level of bisphenol-A in sous-vide cooked trout fillets at different cooking temperatures and cooking levels. J. Agric. Food Chem. 2016, 64, 3070–3082. [Google Scholar] [CrossRef]
- Vaudagna, S.R.; Sanchez, G.; Neira, M.S.; Insani, E.M.; Picallo, A.B.; Gallinger, M.M.; Lasta, J.A. Sous vide cooked beef muscles: Effects of low temperature-longtime (LT-LT) treatments on their quality characteristics and storage stability. Int. J. Food Sci. Technol. 2002, 37, 425–441. [Google Scholar] [CrossRef]
- Saint-Eve, A.; Panouille, M.; Capitaine, C.; Deleris, I.; Souchon, I. Dynamic aspects of texture perception during cheese consumption and relationship with bolus properties. Food Hydrocoll. 2015, 46, 144–152. [Google Scholar] [CrossRef]
- Chen, Y.P.; Feng, X.; Blank, I.; Liu, Y. Strategies to improve meat-like properties of meat analogs meeting consumers’ expectations. Biomaterials 2022, 287, 121648. [Google Scholar] [CrossRef]
- Pematilleke, N.; Kaur, M.; Adhikari, B.; Torley, P.J. Relationship between instrumental and sensory texture profile of beef semitendinosus muscles with different textures. J. Texture Stud. 2021, 53, 232–241. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.H. Research on the impact of cooking methods for the nutrition quality and characteristic in sea cucumber. Master’s Thesis, Yantai University, Yantai, China, 2013. [Google Scholar]
- Cropotovaa, J.; Mozuraityte, R.; Standal, I.B.; Rustad, T. The influence of cooking parameters and Chilled storage time on quality of sous-vide Atlantic mackerel (Scomber scombrus). J. Aquat. Food Prod. Technol. 2019, 28, 505–518. [Google Scholar] [CrossRef]
- Naveena, B.M.; Khansole, P.S.; Kumar, S.M.; Krishnaiah, N.; Kulkarni, V.V.; Deepak, S. Effect of sous-vide processing on physicochemical, ultrastructural, microbial and sensory changes in vacuum packaged chicken sausages. Food Sci. Technol. Int. 2017, 23, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, Y.N.; Tsuneishi, E.; Kamiya, M.; Yamada, A. Histological contribution of collagen architecture to beef toughness. J. Food Sci. 2010, 75, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Jaturasitha, S.; Srikanchai, T.; Kreuzer, M.; Wicke, M. Differences in carcass and meat characteristics between chicken indigenous to northern Thailand (Black-Boned and Thai native) and imported extensive breeds (Bresse and Rhode Island Red). Poultry Sci. 2008, 87, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.Y.; Morton, J.D.; Clerens, S.; Dyer, J.M. Cooking-induced protein modifications in meat. Compr. Rev. Food Sci. Food Saf. 2017, 16, 141–159. [Google Scholar] [CrossRef] [Green Version]
- Christensen, L.; Ertbjerg, P.; Løje, H.; Risbo, J.; van den Berg, F.W.; Christensen, M. Relationship between meat toughness and properties of connective tissue from cows and young bulls heat treated at low-temperatures for prolonged times. Meat Sci. 2013, 93, 787–795. [Google Scholar] [CrossRef]
- Florek, M.; Domaradzki, P.; Skalecki, P.; Ryszkowska-Siwko, M.; Ziomek, M.; Tajchman, K.; Gondek, M.; Pyz-Łukasik, R. Content and solubility of collagen and their relation to proximate composition and shear force of meat from different anatomical location in carcass of European beaver (Castor fiber). Foods 2022, 11, 1288. [Google Scholar] [CrossRef]
- Benjakul, S.; Visessanguan, W.; Kijroongrojana, K.; Sriket, P. Effect of heating on physical properties and microstructure of black tiger shrimp (Penaeus monodon) and white shrimp (Penaeus vannamei) meats. Int. J. Food Sci. Technol. 2008, 43, 1066–1072. [Google Scholar] [CrossRef]
- Roldan, M.; Antequera, T.; Martín, A.; Mayoral, A.I.; Ruiz, J. Effect of different temperature-time combinations on physicochemical, microbiological, textural and structural features of sous-vide cooked lamb loins. Meat Sci. 2013, 93, 572–578. [Google Scholar] [CrossRef]
- Beattie, J.R.; Bell, S.E.J.; Farmer, L.J.; Moss, B.W.; Patterson, D. Preliminary investigation of the application of Raman spectroscopy to the prediction of the sensory quality of beef silverside. Meat Sci. 2004, 66, 903–913. [Google Scholar] [CrossRef] [PubMed]
- Candogan, K.; Altuntas, E.G.; Igci, N. Authentication and quality assessment of meat products by fourier-transform infrared (FTIR) spectroscopy. Food Eng. Rev. 2021, 13, 66–91. [Google Scholar] [CrossRef]
- Nian, L.; Cao, A.; Cai, L.; Ji, H.; Liu, S. Effect of vacuum impregnation of red sea bream (Pagrosomus major) with herring AFP combined with CS@Fe3O4 nanoparticles during freeze-thaw cycles. Food Chem. 2019, 291, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Everitt, M. Consumer-targeted sensory quality. In Global Issues in Food Science and Technology; Barbosa-Canovas, G.V., Mortimer, A., Lineback, D., Spiess, W., Buckle, K., Colonna, P., Eds.; Academic Press: Cambridge, MA, USA, 2009; pp. 117–128. [Google Scholar]
Parameters | 5–30 | 5–45 | 5–60 | 6–30 | 6–45 | 6–60 |
---|---|---|---|---|---|---|
WHC (%) | 82.75 ± 1.53 a | 79.24 ± 0.94 b | 79.32 ± 1.38 b | 77.93 ± 2.08 b | 74.54 ± 1.62 c | 70.32 ± 2.42 d |
Cooking loss (%) | 7.33 ± 0.25 d | 7.93 ± 0.19 c | 8.68 ± 0.26 b | 8.06 ± 0.17 c | 8.81 ± 0.20 b | 9.31 ± 0.19 a |
Shear force (N) | 9.25 ± 0.23 a | 9.08 ± 0.14 a | 8.52 ± 0.18 b | 8.08 ± 0.30 c | 7.85 ± 0.28 c | 7.98 ± 0.26 c |
TPA | ||||||
Hardness (N) | 618.96 ± 31.78 a | 632.81 ± 24.25 a | 526.96 ± 21.04 b | 444.64 ± 28.24 c | 437.43 ± 28.61 c | 372.79 ± 22.99 d |
Chewiness (N) | 164.25 ± 6.72 b | 181.03 ± 4.59 a | 133.01 ± 5.97 c | 117.60 ± 6.68 d | 87.00 ± 3.98 e | 89.21 ± 1.51 e |
Springiness (mm) | 0.71 ± 0.01 a | 0.70 ± 0.01 a | 0.71 ± 0.02 a | 0.67 ± 0.02 b | 0.62 ± 0.04 c | 0.66 ± 0.03 b |
Cohesiveness | 0.38 ± 0.04 | 0.41 ± 0.07 | 0.36 ± 0.03 | 0.39 ± 0.04 | 0.33 ± 0.04 | 0.35 ± 0.05 |
Texture-liking score | 6.76 ± 0.35 b | 6.70 ± 0.41 b | 6.72 ± 0.34 b | 6.94 ± 0.24 b | 7.59 ± 0.15 a | 7.11 ± 0.29 b |
Interested Spectra (Wavenumber) | % Integral Area | |||||
---|---|---|---|---|---|---|
5–30 | 5–45 | 5–60 | 6–30 | 6–45 | 6–60 | |
Biomolecules (% integral area) | ||||||
Lipids (3000–2800 cm−1) | 13.00 ± 0.12 a | 12.68 ± 0.13 bc | 12.46 ± 0.15 c | 12.00 ± 0.02 d | 12.75 ± 0.25 ab | 12.75 ± 0.08 ab |
Ester lipids (1740 cm−1) | 0.23 ± 0.02 b | 0.15 ± 0.00 d | 0.17 ± 0.01 c | 0.25 ± 0.01 a | 0.14 ± 0.01 d | 0.07 ± 0.00 e |
Amide I (1700–1600 cm−1) | 48.50 ± 0.26 ab | 48.06 ± 0.77 b | 48.36 ± 0.49 ab | 49.07 ± 0.36 a | 48.36 ± 0.31 ab | 48.50 ± 0.56 ab |
Amide II (1600–1500 cm−1) | 27.26 ± 0.10 b | 26.31 ± 0.53 c | 28.19 ± 0.44 a | 27.11 ± 0.18 b | 27.44 ± 0.41 b | 27.00 ± 0.33 b |
Amide III (1338 cm−1) | 6.38 ± 0.14 a | 6.42 ± 0.26 a | 4.99 ± 0.20 c | 5.83 ± 0.19 b | 5.63 ± 0.80 b | 5.84 ± 0.24 b |
Carbohydrates (1250–900 cm−1) | 4.62 ± 0.29 b | 5.66 ± 0.23 a | 5.83 ± 0.09 a | 5.73 ± 0.15 a | 5.67 ± 0.18 a | 5.84 ± 0.04 a |
Secondary protein structure (% curve fitting) | ||||||
α-helix (1640–1670 cm−1) | 50.42 ± 1.79 a | 49.27 ± 1.26 a | 49.66 ± 0.50 a | 46.63 ± 1.06 b | 45.77 ± 1.94 b | 45.10 ± 1.43 b |
β-sheet (1620–1640 cm−1) | 22.66 ± 1.06 b | 22.87 ± 1.21 b | 22.43 ± 0.40 b | 24.36 ± 1.03 a | 25.82 ± 1.36 a | 25.71 ± 1.69 a |
β-turn (1672, 1614 cm−1) | 15.54 ± 0.41 | 15.76 ± 0.43 | 15.61 ± 0.40 | 16.02 ± 0.67 | 15.68 ± 0.76 | 16.85 ± 1.57 |
Antiparallel (1680–1695 cm−1) | 11.38 ± 0.26 b | 12.10 ± 0.31 a | 12.30 ± 0.45 a | 12.99 ± 0.38 a | 12.73 ± 0.45 a | 12.35 ± 0.48 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pongsetkul, J.; Siriwong, S.; Thumanu, K.; Boonanuntanasarn, S.; Yongsawatdigul, J. Investigating the Effect of Various Sous-Vide Cooking Conditions on Protein Structure and Texture Characteristics of Tilapia Fillet Using Synchrotron Radiation-Based FTIR. Foods 2023, 12, 568. https://doi.org/10.3390/foods12030568
Pongsetkul J, Siriwong S, Thumanu K, Boonanuntanasarn S, Yongsawatdigul J. Investigating the Effect of Various Sous-Vide Cooking Conditions on Protein Structure and Texture Characteristics of Tilapia Fillet Using Synchrotron Radiation-Based FTIR. Foods. 2023; 12(3):568. https://doi.org/10.3390/foods12030568
Chicago/Turabian StylePongsetkul, Jaksuma, Supatcharee Siriwong, Kanjana Thumanu, Surintorn Boonanuntanasarn, and Jirawat Yongsawatdigul. 2023. "Investigating the Effect of Various Sous-Vide Cooking Conditions on Protein Structure and Texture Characteristics of Tilapia Fillet Using Synchrotron Radiation-Based FTIR" Foods 12, no. 3: 568. https://doi.org/10.3390/foods12030568
APA StylePongsetkul, J., Siriwong, S., Thumanu, K., Boonanuntanasarn, S., & Yongsawatdigul, J. (2023). Investigating the Effect of Various Sous-Vide Cooking Conditions on Protein Structure and Texture Characteristics of Tilapia Fillet Using Synchrotron Radiation-Based FTIR. Foods, 12(3), 568. https://doi.org/10.3390/foods12030568