Eating Quality and In Vitro Digestibility of Brown Rice Improved by Ascorbic Acid Treatments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Brown Rice Treatments
2.3. Rice Cooking and Texture Measurement
2.4. Sensory Evaluation of Cooked Rice
2.5. In Vitro Digestion of Cooked Rice
2.6. Cooking Quality of Rice
2.7. Relative Crystallinity of Rice
2.8. Water Droplet Contact Angle of Rice
2.9. Normal Temperature Water Uptake of Rice
2.10. Microscopic Morphology Observation
2.11. Statistical Analysis
3. Results and Discussion
3.1. Effects of Ascorbic Acid Treatments on Texture of Cooked Brown Rice
3.2. Effects of Ascorbic Acid Treatments on Sensory Scores of Cooked Brown Rice
3.3. Effects of Ascorbic Acid Treatments on In Vitro Digestibility of Cooked Brown Rice
3.4. Effects of Ascorbic Acid Treatments on Cooking Quality of Brown Rice
3.5. Effects of Ascorbic Acid Treatments on Relative Crystallinity of Brown Rice
3.6. Effects of Ascorbic Acid Treatments on Water Droplet Contact Angle of Brown Rice
3.7. Effects of Ascorbic Acid Treatments on Normal Temperature Water Uptake of Brown Rice
3.8. Effects of Ascorbic Acid Treatments on Microscopic Morphologies Inside Cooked Brown Rice
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mir, S.A.; Shah, M.A.; Bosco, S.J.D.; Sunooj, K.V.; Farooq, S. A review on nutritional properties, shelf life, health aspects, and consumption of brown rice in comparison with white rice. Cereal Chem. 2020, 97, 895–903. [Google Scholar] [CrossRef]
- Beaulieu, J.C.; Boue, S.M.; Goufo, P. Health-promoting germinated rice and value-added foods: A comprehensive and systematic review of germination effects on brown rice. Crit. Rev. Food Sci. Nutr. 2022, 62, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Yang, N.; Touré, A.; Jin, Z.; Xu, X. Germinated brown rice and its role in human health. Crit. Rev. Food Sci. Nutr. 2013, 53, 451–463. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, L.; Cheng, M.; Wang, R.; Luo, X.; Li, Y.; Chen, Z. Influence of ultrasonic enzyme treatment on the cooking and eating quality of brown rice. J. Cereal Sci. 2015, 63, 140–146. [Google Scholar] [CrossRef]
- Du, Y.; Zhu, S.; Ramaswamy, H.S.; Wang, H.; Wu, J.; Yu, Y. Comparison of germination–parboiling, freeze–thaw cycle, and high pressure processing on the cooking quality of brown rice. J. Food Process Eng. 2019, 42, e13135. [Google Scholar] [CrossRef]
- Tamura, M.; Singh, J.; Kaur, L.; Ogawa, Y. Impact of the degree of cooking on starch digestibility of rice—An in vitro study. Food Chem. 2016, 191, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Kaur, L.; Sodhi, N.S.; Sekhon, K.S. Physicochemical, cooking and textural properties of milled rice from different Indian rice cultivars. Food Chem. 2005, 89, 253–259. [Google Scholar] [CrossRef]
- Bello, M.; Tolaba, M.P.; Suarez, C. Factors affecting water uptake of rice grain during soaking. LWT—Food Sci. Technol. 2004, 37, 811–816. [Google Scholar] [CrossRef]
- Han, J.A.; Lim, S.T. Effect of presoaking on textural, thermal, and digestive properties of cooked brown rice. Cereal Chem. 2009, 86, 100–105. [Google Scholar] [CrossRef]
- Chung, H.-J.; Cho, D.-W.; Park, J.-D.; Kweon, D.-K.; Lim, S.-T. In vitro starch digestibility and pasting properties of germinated brown rice after hydrothermal treatments. J. Cereal Sci. 2012, 56, 451–456. [Google Scholar] [CrossRef]
- Alzagtat, A.A.; Alli, I. Protein-lipid interactions in food systems: A review. Int. J. Food Sci. Nutr. 2002, 53, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Chao, C.; Cai, J.; Niu, B.; Copeland, L.; Wang, S. Starch–lipid and starch–lipid–protein complexes: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1056–1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Jiang, W.; Jiang, Z.; Chen, X.; Cao, J.; Dong, W.; Dai, B. Changes in physicochemical, structural, and sensory properties of irradiated brown japonica rice during storage. J. Agric. Food Chem. 2015, 63, 4361–4369. [Google Scholar] [CrossRef] [PubMed]
- Gujral, H.S.; Sharma, P.; Gill, B.S.; Kaur, S. Effect of incorporating hydrothermal, kilned and defatted oats on antioxidant and chapatti making properties of wheat flour. Food Chem. 2013, 138, 1400–1406. [Google Scholar] [CrossRef]
- Sikora, M.; Świeca, M. Effect of ascorbic acid postharvest treatment on enzymatic browning, phenolics and antioxidant capacity of stored mung bean sprouts. Food Chem. 2018, 239, 1160–1166. [Google Scholar] [CrossRef]
- Magri, A.; Cice, D.; Capriolo, G.; Petriccione, M. Effects of Ascorbic Acid and Melatonin Treatments on Antioxidant System in Fresh-Cut Avocado Fruits During Cold Storage. Food Bioproc. Tech. 2022, 15, 2468–2482. [Google Scholar] [CrossRef]
- Liguori, G.; Gaglio, R.; Settanni, L.; Inglese, P.; D’Anna, F.; Miceli, A. Effect of Opuntia ficus-indica Mucilage Edible Coating in Combination with Ascorbic Acid, on Strawberry Fruit Quality during Cold Storage. J. Food Qual. 2021, 2021, 9976052. [Google Scholar] [CrossRef]
- Lo’ay, A.; El-Boray, M. Improving fruit cluster quality attributes of ‘Flame Seedless’ grapes using preharvest application of ascorbic and salicylic acid. Sci. Hortic. 2018, 233, 339–348. [Google Scholar] [CrossRef]
- Guo, Y.; Tu, K.; Pan, L.; Zhang, W.; Zhang, Y. Effects of three reducing agents on pasting properties of stored rice. Starch-Stärke 2012, 64, 198–206. [Google Scholar] [CrossRef]
- Ohno, T.; Ohisa, N. Studies on textural and chemical changes in aged rice grains. Food Sci. Technol. Res. 2005, 11, 385–389. [Google Scholar] [CrossRef] [Green Version]
- Diao, M.; Guo, Y.; Tian, W.; Tu, K.; Guan, L.; Wei, M. Restoring fresh texture in cooked aged rice with reducing agents. Food Res. Int. 2019, 121, 84–90. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Q.; Zhu, J.; Hu, G. Comparison of high-pressure, freeze-thaw cycles and germination-parboiling treatments on lipids digestibility and rancidity of brown rice. Sci. Rep. 2022, 12, 15667. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.; Guo, Y.; Zhu, X.; Tu, K.; Dong, P. Revealing the reasons for the pasting property changes of rice during aging from the perspective of starch granule disaggregation. J. Sci. Food Agric. 2022; in press. [Google Scholar] [CrossRef]
- Wei, Q.; Guo, Y.; Liu, X.; Wang, S.; Xu, Z.; Chen, S. Improving the eating quality of brown rice by defatting combined with hydrothermal treatment. Food Res. Int. 2022, 162, 112020. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Hong, Y.; Gu, Z.; Cheng, L.; Li, Z.; Li, C. Effect of high pressure steam on the eating quality of cooked rice. LWT—Food Sci. Technol. 2019, 104, 100–108. [Google Scholar] [CrossRef]
- Ni, C.; Zhang, S.; Zhang, G.; Cheng, J.; Zheng, H. Evaluation of Edible Quality of Sorghum Based on Principal Component Analysis. J. Chem. 2019, 2019, 2013109. [Google Scholar] [CrossRef]
- Tian, J.; Cai, Y.; Qin, W.; Matsushita, Y.; Ye, X.; Ogawa, Y. Parboiling reduced the crystallinity and in vitro digestibility of non-waxy short grain rice. Food Chem. 2018, 257, 23–28. [Google Scholar] [CrossRef]
- Goñi, I.; Garcia-Alonso, A.; Saura-Calixto, F. A starch hydrolysis procedure to estimate glycemic index. Nutr. Res. 1997, 17, 427–437. [Google Scholar] [CrossRef]
- Mohapatra, D.; Bal, S. Cooking quality and instrumental textural attributes of cooked rice for different milling fractions. J. Food Eng. 2006, 73, 253–259. [Google Scholar] [CrossRef]
- Wang, Y.; Chao, C.; Huang, H.; Wang, S.; Wang, S.; Wang, S.; Copeland, L. Revisiting Mechanisms Underlying Digestion of Starches. J. Agric. Food Chem. 2019, 67, 8212–8226. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, R.; Li, X.; Zhu, J.; Xu, Y.; Liu, J. Sorption equilibrium moisture and isosteric heat of cold plasma treated milled rice. Innov. Food Sci. Emerg. Technol. 2019, 55, 35–47. [Google Scholar] [CrossRef]
- Yu, Y.; Ge, L.; Zhu, S.; Zhan, Y.; Zhang, Q. Effect of presoaking high hydrostatic pressure on the cooking properties of brown rice. J. Food Sci. Technol. 2015, 52, 7904–7913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Y.; Pan, F.; Ramaswamy, H.; Zhu, S.; Yu, L.; Zhang, Q. Effect of soaking and single/two cycle high pressure treatment on water absorption, color, morphology and cooked texture of brown rice. J. Food Sci. Technol. 2017, 54, 1655–1664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, M.; Li, X.; Hu, L.; Xiao, Z.; Chen, J.; Cao, F. Comparing texture and digestion properties between white and brown rice of indica cultivars preferred by Chinese consumers. Sci. Rep. 2021, 11, 19054. [Google Scholar] [CrossRef]
- Monks, J.L.F.; Vanier, N.L.; Casaril, J.; Berto, R.M.; de Oliveira, M.; Gomes, C.B.; de Carvalho, M.P.; Dias, A.R.G.; Elias, M.C. Effects of milling on proximate composition, folic acid, fatty acids and technological properties of rice. J. Food Compost. Anal. 2013, 30, 73–79. [Google Scholar] [CrossRef]
- Bojarczuk, A.; Skąpska, S.; Mousavi Khaneghah, A.; Marszałek, K. Health benefits of resistant starch: A review of the literature. J. Funct. Foods 2022, 93, 105094. [Google Scholar] [CrossRef]
- Pletsch, E.A.; Hamaker, B.R. Brown rice compared to white rice slows gastric emptying in humans. Eur. J. Clin. Nutr. 2018, 72, 367–373. [Google Scholar] [CrossRef]
- Wang, Z.; Ichikawa, S.; Kozu, H.; Neves, M.A.; Nakajima, M.; Uemura, K.; Kobayashi, I. Direct observation and evaluation of cooked white and brown rice digestion by gastric digestion simulator provided with peristaltic function. Food Res. Int. 2015, 71, 16–22. [Google Scholar] [CrossRef]
- Punia Bangar, S.; Nehra, M.; Siroha, A.K.; Petrů, M.; Ilyas, R.A.; Devi, U.; Devi, P. Development and Characterization of Physical Modified Pearl Millet Starch-Based Films. Foods 2021, 10, 1609. [Google Scholar] [CrossRef]
- Paiva, F.F.; Vanier, N.L.; Berrios Jde, J.; Pinto, V.Z.; Wood, D.; Williams, T.; Pan, J.; Elias, M.C. Polishing and parboiling effect on the nutritional and technological properties of pigmented rice. Food Chem. 2016, 191, 105–112. [Google Scholar] [CrossRef]
- Park, D.-J.; Han, J.-A. Quality controlling of brown rice by ultrasound treatment and its effect on isolated starch. Carbohydr. Polym. 2016, 137, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Pan, T.; Zhao, L.; Lin, L.; Wang, J.; Liu, Q.; Wei, C. Changes in kernel morphology and starch properties of high-amylose brown rice during the cooking process. Food Hydrocoll. 2017, 66, 227–236. [Google Scholar] [CrossRef]
- Dobrin, D.; Magureanu, M.; Mandache, N.B.; Ionita, M.-D. The effect of non-thermal plasma treatment on wheat germination and early growth. Innov. Food Sci. Emerg. Technol. 2015, 29, 255–260. [Google Scholar] [CrossRef]
- Andrade, C.T.; Simão, R.A.; Thiré, R.M.S.M.; Achete, C.A. Surface modification of maize starch films by low-pressure glow 1-butene plasma. Carbohydr. Polym. 2005, 61, 407–413. [Google Scholar] [CrossRef]
Sample | Hardness (N) | Stickiness (N) | S/H Ratio | Chewiness (N) |
---|---|---|---|---|
BR | 21.135 ± 1.803 a | 0.282 ± 0.077 e | 0.013 ± 0.003 e | 10.071 ± 1.571 a |
BR-A | 16.803 ± 1.345 b | 0.530 ± 0.089 d | 0.032 ± 0.006 d | 8.281 ± 0.985 b |
BR-DA | 16.730 ± 1.094 b | 0.630 ± 0.095 c | 0.038 ± 0.005 c | 8.084 ± 1.120 bc |
BR-AH | 15.613 ± 1.222 c | 0.664 ± 0.098 c | 0.043 ± 0.008 c | 7.477 ± 1.337 c |
BR-DAH | 14.421 ± 1.369 d | 0.848 ± 0.114 b | 0.060 ± 0.011 b | 6.461 ± 1.071 d |
PR | 14.251 ± 1.428 d | 1.302 ± 0.233 a | 0.092 ± 0.016 a | 6.413 ± 1.015 d |
Sample | Odor (20%) | Appearance and Structure (20%) | Palatability (30%) | Flavor (25%) | Cold Texture (5%) | Sensory Score (100) | |||
---|---|---|---|---|---|---|---|---|---|
Color and Luster (10%) | Grain Integrity (10%) | Stickiness (10%) | Springiness (10%) | Softness and Hardness (10%) | |||||
BR | 14.3 ± 0.7 d | 8.0 ± 0.8 a | 6.5 ± 0.7 c | 6.1 ± 0.6 d | 7.3 ± 0.7 b | 6.3 ± 0.7 d | 17.1 ± 0.7 d | 2.6 ± 0.5 c | 68.2 ± 1.2 e |
BR-A | 14.5 ± 0.5 d | 8.3 ± 0.8 a | 7.3 ± 0.8 b | 7.4 ± 0.8 c | 7.7 ± 0.8 b | 7.0 ± 0.7 c | 17.7 ± 0.7 cd | 3.0 ± 0.7 bc | 72.9 ± 1.7 d |
BR-DA | 14.8 ± 0.6 d | 8.2 ± 0.8 a | 7.0 ± 0.8 bc | 7.6 ± 0.5 bc | 7.4 ± 0.8 b | 7.4 ± 0.5 bc | 18.2 ± 0.6 c | 2.8 ± 0.4 c | 73.4 ± 1.1 d |
BR-AH | 16.0 ± 0.9 c | 8.3 ± 0.7 a | 8.4 ± 0.5 a | 7.9 ± 0.6 b | 7.5 ± 0.7 b | 7.7 ± 0.5 b | 19.6 ± 0.5 b | 2.6 ± 0.5 c | 78.0 ± 1.6 c |
BR-DAH | 17.1 ± 0.6 b | 8.4 ± 0.7 a | 8.6 ± 0.5 a | 8.1 ± 0.7 a | 8.0 ± 0.8 ab | 8.6 ± 0.5 a | 21.5 ± 0.8 a | 3.4 ± 0.5 ab | 83.7 ± 1.6 b |
PR | 18.0 ± 0.9 a | 8.7 ± 0.5 a | 8.6 ± 0.7 a | 8.2 ± 0.6 a | 8.4 ± 0.5 a | 8.7 ± 0.5 a | 22.1 ± 0.9 a | 3.6 ± 0.5 a | 86.3 ± 2.3 a |
Sample | C∞ (%) | k × 10−2 (min−1) | HI (%) | GI |
---|---|---|---|---|
BR | 61.37 ± 0.06 f | 2.04 ± 0.01 f | 60.10 ± 0.06 f | 72.70 ± 0.03 f |
BR-A | 68.86 ± 0.02 e | 2.13 ± 0.01 e | 68.15 ± 0.10 e | 77.12 ± 0.05 e |
BR-DA | 72.09 ± 0.12 d | 2.39 ± 0.01 d | 73.17 ± 0.12 d | 79.88 ± 0.07 d |
BR-AH | 76.71 ± 0.18 c | 2.88 ± 0.06 c | 80.60 ± 0.36 c | 83.96 ± 0.20 c |
BR-DAH | 79.53 ± 0.79 b | 3.79 ± 0.03 b | 86.93 ± 0.94 b | 87.44 ± 0.52 b |
PR | 86.30 ± 0.42 a | 4.35 ± 0.04 a | 95.85 ± 0.53 a | 92.33 ± 0.29 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Q.; Guo, Y.; Tu, K.; Zhu, X.; Xie, D.; Liu, X. Eating Quality and In Vitro Digestibility of Brown Rice Improved by Ascorbic Acid Treatments. Foods 2023, 12, 1043. https://doi.org/10.3390/foods12051043
Wei Q, Guo Y, Tu K, Zhu X, Xie D, Liu X. Eating Quality and In Vitro Digestibility of Brown Rice Improved by Ascorbic Acid Treatments. Foods. 2023; 12(5):1043. https://doi.org/10.3390/foods12051043
Chicago/Turabian StyleWei, Qin, Yubao Guo, Kang Tu, Xiuling Zhu, Dan Xie, and Xinyu Liu. 2023. "Eating Quality and In Vitro Digestibility of Brown Rice Improved by Ascorbic Acid Treatments" Foods 12, no. 5: 1043. https://doi.org/10.3390/foods12051043
APA StyleWei, Q., Guo, Y., Tu, K., Zhu, X., Xie, D., & Liu, X. (2023). Eating Quality and In Vitro Digestibility of Brown Rice Improved by Ascorbic Acid Treatments. Foods, 12(5), 1043. https://doi.org/10.3390/foods12051043