Computer-Aided Prediction, Synthesis, and Characterization of Magnetic Molecularly Imprinted Polymers for the Extraction and Determination of Tolfenpyrad in Lettuce
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Instrumentation
2.3. Computational Simulation
2.4. Synthesis of Vinylized MNPs and MMIPs
2.5. Adsorption Isotherm and Kinetic Experiments
2.6. Selectivity and Reusability of MMIPs
2.7. Application of MMIPs in the Spiked Lettuce Samples
3. Results
3.1. Selection of Functional Monomers
3.2. Characterization of the Imprinted Polymers
3.3. Adsorption Assays
3.3.1. Static Adsorption
3.3.2. Dynamic Adsorption
3.4. Selectivity and Stability
3.5. Applicability of the Developed Method
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yamaguchi, K.; Hikiji, W.; Takino, M.; Saka, K.; Hayashida, M.; Fukunaga, T.; Ohno, Y. Analysis of tolfenpyrad and its metabolites in plasma in a tolfenpyrad poisoning case. J. Anal. Toxicol. 2012, 36, 529–537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.R.; Zhang, X.Z.; Wang, Z.H.; Zhou, L.; Luo, F.J.; Chen, Z. Dissipation behavior and risk assessment of tolfenpyrad from tea bushes to consuming. Sci. Total Environ. 2022, 806, 150771. [Google Scholar] [CrossRef]
- Dong, M.F.; Wen, G.Y.; Tang, H.X.; Wang, T.; Zhao, Z.H.; Song, W.G.; Wang, W.M.; Zhao, L. Dissipation and safety evaluation of novaluron, pyriproxyfen, thiacloprid and tolfenpyrad residues in the citrus-field ecosystem. Food Chem. 2018, 269, 136–141. [Google Scholar] [CrossRef]
- Wu, C.; He, M.Y.; Dong, F.S.; Xu, J.; Wu, X.H.; Cai, B.; Wang, C.B.; Sun, T.; Zheng, Y.Q.; Liu, X.G. The influence of tolfenpyrad on fitness, development, and reproduction in parents and offspring of Coccinella septempunctata. Ecotox. Environ. Saf. 2021, 210, 111875. [Google Scholar]
- Lan, T.T.; Yang, G.Q.; Li, J.M.; Chi, D.; Zhang, K.K. Residue, dissipation and dietary intake risk assessment of tolfenpyrad in four leafy green vegetables under greenhouse conditions. Food Chem. X 2022, 13, 100241. [Google Scholar] [CrossRef] [PubMed]
- Kmellár, B.; Fodor, P.; Pareja, L.; Ferrer, C.; Martínez-Uroz, M.A.; Valverde, A.; Fernandez-Alba, A.R. Validation and uncertainty study of a comprehensive list of 160 pesticide residues in multi-class vegetables by liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2008, 1215, 37–50. [Google Scholar] [CrossRef] [PubMed]
- Turiel, E.; Martín-Esteban, A. Molecularly imprinted polymers-based microextraction techniques. Trend. Anal. Chem. 2019, 118, 574–586. [Google Scholar] [CrossRef]
- Whitcombe, M.J.; Kirsch, N.; Nicholls, I.A. Molecular imprinting science and technology: A survey of the literature for the years 2004–2011. J. Mol. Recognit. 2014, 27, 297–401. [Google Scholar]
- Wulff, G.; Sarhan, A.; Sarhan, A.W.; Sarhan, H. The use of polymers with enzyme-analogous structures for resolution of racemates. Angew. Chem. Int. Edit. 1972, 11, 341. [Google Scholar]
- Yang, Y.; Ma, X.W.; Feng, F.; Dang, X.P.; Huang, J.L.; Chen, H.X. Magnetic solid-phase extraction of triclosan using core-shell Fe3O4@MIL-100 magnetic nanoparticles, and its determination by HPLC with UV detection. Microchim. Acta 2016, 183, 2467–2472. [Google Scholar] [CrossRef]
- Wu, A.M.; Zhao, X.L.; Wang, J.Y.; Tang, Z.; Zhao, T.H.; Niu, L.; Yu, W.Q.; Yang, C.Y.; Fang, M.Y.; Lv, H.Z.; et al. Application of solid-phase extraction based on magnetic nanoparticle adsorbents for the analysis of selected persistent organic pollutants in environmental water: A review of recent advances. Crit. Rev. Environ. Sci. Technol. 2020, 51, 44–112. [Google Scholar] [CrossRef]
- Peng, Y.Q.; Zhang, H.Y.; Ma, X.G. Magnetic graphene oxide based solid phase extraction for environmental pollutants analysis. IOP Conf. Ser. Earth Environ. Sci. 2021, 563, 012021. [Google Scholar] [CrossRef]
- Ali, N.; Riead, M.D.M.H.; Bilal, M.; Yang, Y.; Khan, A.; Ali, F.; Karim, S.; Zhou, C.; Ye, W.J.; Sher, F.; et al. Adsorptive remediation of environmental pollutants using magnetic hybrid materials as platform adsorbents. Chemosphere 2021, 284, 131279. [Google Scholar] [CrossRef]
- Saylan, Y.; Yilmaz, F.; Özgür, E.; Derazshamshir, A.; Yavuz, H.; Denizli, A. Molecular imprinting of macromolecules for sensor applications. Sensors 2017, 17, 898. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.N.; Yao, R.; Shen, S.R. Development of a novel assay of molecularly imprinted membrane by design-based gaussian pattern for vancomycin determination. J. Pharmaceut. Biomed. 2019, 175, 112789. [Google Scholar] [CrossRef]
- Wang, L.L.; Yang, F.J.; Zhao, X.H.; Li, Y.Z. Screening of functional monomers and solvents for the molecular imprinting of paclitaxel separation: A theoretical study. J. Mol. Model. 2020, 26, 26. [Google Scholar] [CrossRef]
- Qin, L.; Liu, W.F.; Yang, Y.Z.; Liu, X.G. Functional monomer screening and preparation of dibenzothiophene-imprinted polymers on the surface of carbon microsphere. Monatsh. Chem. 2015, 146, 449–458. [Google Scholar] [CrossRef]
- Khajehzadeh, M.; Moghadam, M. Molecular structure, FTIR, NMR, UV, NBO and HOMO–LUMO of 1-(3-(dimethylamino)propyl)-1-(4-fluorophenyl)-1, 3-dihydroisobenzofuran-5-carbonitrile by DFT/B3LYP and PBEPBE methods with LanL2DZ and 6-311++G(d,2p) basis sets. Spectrochim. Acta A 2017, 180, 51–66. [Google Scholar] [CrossRef] [PubMed]
- Prasad, B.B.; Rai, G. Study on monomer suitability toward the template in molecularly imprinted polymer: An ab initio approach. Spectrochim. Acta A 2012, 88, 82–89. [Google Scholar] [CrossRef]
- Kong, X.; Gao, R.X.; He, X.W.; Chen, L.X.; Zhang, Y.K. Synthesis and characterization of the core–shell magnetic molecularly imprinted polymers (Fe3O4@ MIPs) adsorbents for effective extraction and determination of sulfonamides in the poultry feed. J. Chromatogr. A 2012, 1245, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Shao, H.K.; Cherif, S.D.; Wang, J.C.; Wang, Q.Q.; Jiang, Z.J. Synthesis and application of zwitterionic magnetic molecularly imprinted polymer for selective removal of fluoroquinolones from aqueous solution. Curr Anal. Chem. 2021, 17, 408–417. [Google Scholar] [CrossRef]
- Xu, X.Y.; Liu, R.L.; Guo, P.Q.; Luo, Z.M.; Cai, X.; Shu, H.; Ge, Y.H.; Chang, C.; Fu, Q. Fabrication of a novel magnetic mesoporous molecularly imprinted polymer based on pericarpium granati-derived carrier for selective absorption of bromelain. Food Chem. 2018, 256, 91–97. [Google Scholar] [CrossRef]
- Huang, Y.F.; Li, Y.Y.; Luo, Q.; Huang, X.J. One-pot strategy as a green and rapid method to fabricate magnetic molecularly imprinted nanoparticles for selective capture of sulfonylurea herbicides. ACS Appl. Mater. Interfaces 2021, 13, 37280–37288. [Google Scholar] [CrossRef]
- Wang, S.S.; Yang, B.W.; Zhu, Q.J. Configurational simulations and theoretical calculations of molecularly imprinted polymers of histamine and 2-(trifluoromethyl) acrylic acid based on computational chemistry. J. Chin. Chem. Soc-Taip. 2017, 64, 434–439. [Google Scholar] [CrossRef]
- Lin, Z.Z.; Zhang, H.Y.; Peng, A.H.; Lin, Y.D.; Li, L.; Huang, Z.Y. Determination of malachite green in aquatic products based on magnetic molecularly imprinted polymers. Food Chem. 2016, 200, 32–37. [Google Scholar] [CrossRef]
- Zhong, M.; Wang, Y.H.; Wang, L.; Long, R.Q.; Chen, C.L. Preparation and application of magnetic molecularly imprinted polymers for the isolation of chelerythrine from Macleaya cordata. J. Sep. Sci. 2018, 41, 3318–3327. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.L.; Zhang, Z.H.; Liu, Y.N.; Yang, X.; Luo, L.J.; Chen, J.T.; Yao, S.Z. Preparation of core-shell magnetic ion-imprinted polymer for selective extraction of PB(II) from environmental samples. Chem. Eng. J. 2011, 178, 443–450. [Google Scholar] [CrossRef]
- Farooq, S.; Nie, J.Y.; Cheng, Y.; Yan, Z.; Bacha, S.A.S.; Zhang, J.Y.; Nahiyoon, R.A.; Hussain, Q. Synthesis of core-shell magnetic molecularly imprinted polymer for the selective determination of imidacloprid in apple samples. J. Sep. Sci. 2019, 42, 2455–2465. [Google Scholar] [CrossRef]
- Khasraghi, S.S.; Shojaei, A.; Sundararaj, U. Highly biocompatible multifunctional hybrid nanoparticles based on Fe3O4 decorated nanodiamond with superior superparamagnetic behaviors and photoluminescent properties. Mater. Sci. Eng. C Mater. 2020, 114, 110993. [Google Scholar] [CrossRef]
- Meseguer-Lloret, S.; Torres-Cartas, S.; Gómez-Benito, C.; Herrero-Martínez, J.M. Magnetic molecularly imprinted polymer for the simultaneous selective extraction of phenoxy acid herbicides from environmental water samples. Talanta 2022, 239, 123082. [Google Scholar] [CrossRef]
- Chen, F.F.; Xie, X.Y.; Shi, Y.P. Preparation of magnetic molecularly imprinted polymer for selective recognition of resveratrol in wine. J. Chromatogr. A 2013, 1300, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.X.; He, H.; Liu, Z. New promises of advanced molecular recognition: Bioassays, single cell analysis, cancer therapy, and beyond. Chin. J. Chem. 2022, 40, 635–650. [Google Scholar] [CrossRef]
- Pang, J.L.; Li, P.F.; He, H.; Xu, S.X.; Liu, Z. Molecular imprinted polymers outperform lectin counterparts and enable more precise cancer diagnosis. Chem. Sci. 2022, 13, 4589–4597. [Google Scholar] [CrossRef]
- Li, P.F.; Pang, J.L.; Xu, S.X.; He, H.; Ma, Y.Y.; Liu, Z. A glycoform-resolved dualpmodal ratiometric immunoassay improves the diagnostic precision for hepatocellular carcinoma. Angew. Chem. Int. Ed. 2022, 61, e202113528. [Google Scholar]
- Takahashi, F.; Matsuda, K.; Nakazawa, T.; Mori, S.; Yoshida, M.; Shimizu, R.; Tatsumi, H.; Jin, J.Y. Synthesis and characterization of molecularly imprinted polymers for detection of the local anesthetic lidocaine in urine. Sep. Sci. Plus 2023, 6, 2200081. [Google Scholar] [CrossRef]
- Bai, A.J.; Chen, A.; Chen, W.Y.; Liu, S.W.; Luo, X.W.; Liu, Y.; Zhang, D.Y. Residue behavior, transfer and risk assessment of tolfenpyrad, dinotefuran and its metabolites during tea growing and tea brewing. J. Sci. Food Agric. 2021, 101, 5992–6000. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.H.; Do, J.A.; Park, S.M.; Yoon, J.H.; Shin, H.S.; Kim, J.Y.; Chung, H.W. Development of the analytical method for insecticide tolfenpyrad determination in agricultural commodities using LC-MS/MS. Korean J. Pestic Sci. 2018, 22, 143–152. [Google Scholar] [CrossRef]
- Xu, D.M.; Lu, S.Y.; Chen, D.J.; Lan, J.C.; Zhang, Z.G.; Yang, F.; Zhou, Y. Determination of ten pesticides of pyrazoles and pyrroles in tea by accelerated solvent extraction coupled with gas chromatography-tandem mass spectrometry. Chin. J. Chromatogr. 2013, 31, 218–222. [Google Scholar]
Monomer | ET (Hartree) | EM (Hartree) | EP (Hartree) | ΔE (Hartree) |
---|---|---|---|---|
MAA | −1586.586463 | −306.088042 | −1892.677249 | −0.002744 |
2-VP | −1586.586463 | −325.208242 | −1911.791631 | −0.003074 |
4-VA | −1586.586463 | −364.453837 | −1951.040403 | −0.000103 |
4-VB | −1586.586463 | −422.373806 | −2008.959218 | −0.001051 |
Imprinting Ratio | Binding Energy (Hartree) | Decrease in Binding Energy (Hartree) |
---|---|---|
1:1 | −1912.218213 | / |
1:2 | −2237.533439 | −325.315226 |
1:3 | −2562.844455 | −325.311016 |
1:4 | −2888.154253 | −325.309798 |
1:5 | −3213.470814 | −325.316561 |
1:6 | −3538.782370 | −325.311556 |
1:7 | −3864.099750 | −325.317380 |
1:8 | −4189.409129 | −325.309379 |
Analyte | Binding Capacity (mg/g) | |||
---|---|---|---|---|
MMIPs | MNIPs | IF | SC | |
Tolfenpyrad | 5.36 | 0.65 | 8.25 | 1 |
Penthiopyrad | 1.86 | 0.60 | 3.10 | 2.66 |
Mandipropamid | 1.26 | 0.58 | 2.17 | 3.80 |
Spiked Level (µg/kg) | Intra-Day Average Recovery, RSD (%, n = 5) | Inter-Day Recovery, RSD (%, n = 15) | ||
---|---|---|---|---|
Day 1 | Day 2 | Day 3 | ||
5 | 98.1, 4.4 | 98.8, 3.1 | 98.2, 5.2 | 98.3, 4.0 |
10 | 95.1, 3.7 | 97.8, 4.3 | 96.8, 4.5 | 96.6, 4.1 |
100 | 90.8, 1.9 | 90.5, 2.2 | 90.7, 1.4 | 90.6, 1.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chi, D.; Wang, W.; Mu, S.; Chen, S.; Zhang, K. Computer-Aided Prediction, Synthesis, and Characterization of Magnetic Molecularly Imprinted Polymers for the Extraction and Determination of Tolfenpyrad in Lettuce. Foods 2023, 12, 1045. https://doi.org/10.3390/foods12051045
Chi D, Wang W, Mu S, Chen S, Zhang K. Computer-Aided Prediction, Synthesis, and Characterization of Magnetic Molecularly Imprinted Polymers for the Extraction and Determination of Tolfenpyrad in Lettuce. Foods. 2023; 12(5):1045. https://doi.org/10.3390/foods12051045
Chicago/Turabian StyleChi, Du, Wei Wang, Shiyin Mu, Shilin Chen, and Kankan Zhang. 2023. "Computer-Aided Prediction, Synthesis, and Characterization of Magnetic Molecularly Imprinted Polymers for the Extraction and Determination of Tolfenpyrad in Lettuce" Foods 12, no. 5: 1045. https://doi.org/10.3390/foods12051045
APA StyleChi, D., Wang, W., Mu, S., Chen, S., & Zhang, K. (2023). Computer-Aided Prediction, Synthesis, and Characterization of Magnetic Molecularly Imprinted Polymers for the Extraction and Determination of Tolfenpyrad in Lettuce. Foods, 12(5), 1045. https://doi.org/10.3390/foods12051045