Advances in Postharvest Storage and Preservation Strategies for Pleurotus eryngii
Abstract
:1. Introduction
2. Deterioration of the Quality of Pl. eryngii
2.1. Loss of Water and Weight
2.2. Altered Textural Properties
2.3. Change in Color Characteristics
2.4. Loss of Nutrition
3. Factors That Affect the Storage Quality of Pl. eryngii
3.1. Moisture
3.2. Respiratory Rate
3.3. Microbial Infection
3.4. Temperature and Relative Humidity
4. Methods for Storing and Preserving Pl. eryngii
4.1. Physical Methods and Mechanism
4.1.1. Modified Atmosphere Packaging (MAP)
4.1.2. Special Packaging
4.1.3. Low-Temperature Storage
4.1.4. Irradiation
4.1.5. Drying
4.2. Chemical Methods and Mechanism
4.2.1. Essential Oil Treatment
4.2.2. Coating
4.3. Others
4.3.1. Different Freeze–Thaw Treatments
4.3.2. Fermentation
4.3.3. Polysaccharide Nanoparticle Preservation
5. Challenges and Future Trends
- (1)
- To further investigate the mechanisms of quality fission during storage and preservation, such as browning, softening and lignification, and to use multi-omics techniques to study the potential molecular mechanisms of gene regulation in different preservation methods. This approach should help to address the problem of postharvest quality deterioration of king oyster mushroom strains at the molecular level.
- (2)
- Research on the mechanisms of nutrient retention and flavor transfer during storage and the effects of different preservation methods on the biological activity and quality characteristics of king oyster mushrooms should be strengthened to improve the quality characteristics of king oyster mushrooms after preservation while extending its shelf life and greatly enhancing its commercial value.
- (3)
- Among the methods of preserving Pl. eryngii, relatively little research has been conducted on the use of radiation, ozone and film coatings to preserve these mushrooms. There is still a need to explore the effects of these traditional methods of preserving edible mushrooms on Pl. eryngii and the mechanism of preservation, as well as the development of new green preservatives, based on natural types of bioactive substances.
- (4)
- In the future, a combination of new and traditional technologies can be used to improve the postharvest quality of Pl. eryngii, such as combining radiation treatment with 1-MCP in concert with nanopackaging treatment, developing cold sterilization equipment, creating safe and efficient sterilization processes, such as irradiation, microwave, low-pressure electrostatic field and low-temperature plasma sterilization equipment and processes, and decreasing the deterioration of the quality of Pl. eryngii during storage and distribution.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, B.; Li, Y.; Zhang, F.; Linhardt, R.J.; Zeng, G.; Zhang, A. Extraction, structure and bioactivities of the polysaccharides from Pleurotus eryngii: A review. Int. J. Biol. Macromol. 2020, 150, 1342–1347. [Google Scholar] [CrossRef]
- Choi, U.-K.; Bajpai, V.K.; Lee, N.-H. Influence of calcinated starfish powder on growth, yield, spawn run and primordial germination of king oyster mushroom (Pleurotus eryngii). Food Chem. Toxicol. 2009, 47, 2830–2833. [Google Scholar] [CrossRef]
- Akram, K.; Ahn, J.-J.; Yoon, S.-R.; Kim, G.-R.; Kwon, J.-H. Quality attributes of Pleurotus eryngii following gamma irradiation. Postharvest Biol. Technol. 2012, 66, 42–47. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, X.; Gong, P.; Li, Z.; Wu, Y.; Zhang, J.; Wang, J.; Yao, W.; Yang, W.; Chen, F. Advances in the mechanisms of polysaccharides in alleviating depression and its complications. Phytomedicine 2023, 109, 154566–154574. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, X.; Gong, P. Classification, structure and mechanism of antiviral polysaccharides derived from edible and medicinal fungus. Int. J. Biol. Macromol. 2021, 183, 1753–1773. [Google Scholar] [CrossRef]
- Mesgari, M.; Aalami, A.H.; Sathyapalan, T.; Sahebkar, A. A comprehensive review of the development of carbohydrate macromolecules and copper oxide nanocomposite films in food nanopackaging. Bioinorg. Chem. Appl. 2022, 2022, 2565320–2565328. [Google Scholar] [CrossRef]
- Al-Dairi, M.; Pathare, P.B.; Al-Yahyai, R.; Opara, U.L. Mechanical damage of fresh produce in postharvest transportation: Current status and future prospects. Trends Food Sci. Technol. 2022, 124, 195–207. [Google Scholar] [CrossRef]
- Li, D.; Qin, X.; Tian, P.; Wang, J. Toughening and its association with the postharvest quality of king oyster mushroom (Pleurotus eryngii) stored at low temperature. Food Chem. 2016, 196, 1092–1100. [Google Scholar] [CrossRef]
- Zhang, L.; Gao, J.; Hu, H.; Li, P. The activity and molecular characterization of a serine proteinase in Pleurotus eryngii during high carbon dioxide and low oxygen storage. Postharvest Biol. Technol. 2015, 105, 1–7. [Google Scholar] [CrossRef]
- Li, P.; Zhang, X.; Hu, H.; Sun, Y.; Wang, Y.; Zhao, Y. High carbon dioxide and low oxygen storage effects on reactive oxygen species metabolism in Pleurotus eryngii. Postharvest Biol. Technol. 2013, 85, 141–146. [Google Scholar] [CrossRef]
- Xu, F.; Liu, Y.; Shan, X.; Wang, S. Evaluation of 1-methylcyclopropene (1-MCP) treatment combined with nano-packaging on quality of pleurotus eryngii. J. Food Sci. Technol. 2018, 55, 4424–4431. [Google Scholar] [CrossRef]
- Liu, J.; Meng, C.-G.; Wang, X.-C.; Chen, Y.; Kan, J.; Jin, C.-H. Effect of Protocatechuic Acid-Grafted-Chitosan Coating on the Postharvest Quality of Pleurotus eryngii. J. Agric. Food Chem. 2016, 64, 7225–7233. [Google Scholar] [CrossRef]
- Wan-Mohtar, W.A.A.Q.I.; Klaus, A.; Cheng, A.; Salis, S.A.; Halim-Lim, S.A. Total quality index of commercial oyster mushroom Pleurotus sapidus in modified atmosphere packaging. Br. Food J. 2019, 121, 1871–1883. [Google Scholar] [CrossRef]
- Li, D.; Wang, D.; Fang, Y.; Belwal, T.; Li, L.; Lin, X.; Xu, Y.; Chen, H.; Zhu, M.; Luo, Z. Involvement of energy metabolism and amino acid metabolism in quality attributes of postharvest Pleurotus eryngii treated with a novel phase change material. Postharvest Biol. Technol. 2021, 173, 111427. [Google Scholar] [CrossRef]
- Su, D.; Lv, W.; Wang, Y.; Wang, L.; Li, D. Influence of microwave hot-air flow rolling dry-blanching on microstructure, water migration and quality of pleurotus eryngii during hot-air drying. Food Control. 2020, 114, 107228–207236. [Google Scholar] [CrossRef]
- Zheng, H.-G.; Chen, J.-C.; Ahmad, I. Preservation of King Oyster Mushroom by the use of different fermentation processes. J. Food Process. Preserv. 2018, 42, e13396. [Google Scholar] [CrossRef]
- Li, T.; Lee, J.-W.; Luo, L.; Kim, J.; Moon, B. Evaluation of the effects of different freezing and thawing methods on the quality preservation of Pleurotus eryngii. Appl. Biol. Chem. 2018, 61, 257–265. [Google Scholar] [CrossRef] [Green Version]
- Bernaś, E.; Jaworska, G. Effect of preservation method on amino acid content in selected species of edible mushroom. LWT 2012, 48, 242–247. [Google Scholar] [CrossRef]
- Cai, M.; Zhang, G.; Li, C.; Chen, X.; Cui, H.; Lin, L. Pleurotus eryngii polysaccharide nanofiber containing pomegranate peel polyphenol/chitosan nanoparticles for control of E. coli O157:H7. Int. J. Biol. Macromol. 2021, 192, 939–949. [Google Scholar] [CrossRef]
- Lagnika, C.; Zhang, M.; Mothibe, K.J. Effects of ultrasound and high pressure argon on physico-chemical properties of white mushrooms (Agaricus bisporus) during postharvest storage. Postharvest Biol. Technol. 2013, 82, 87–94. [Google Scholar] [CrossRef]
- Li, R.; Zheng, Q.; Lu, J.; Zou, Y.; Lin, J.; Guo, L.; Ye, S.; Xing, Z. Chemical composition and deterioration mechanism of Pleurotus tuoliensis during postharvest storage. Food Chem. 2021, 338, 127731–127740. [Google Scholar] [CrossRef]
- Zhang, K.; Pu, Y.-Y.; Sun, D.-W. Recent advances in quality preservation of postharvest mushrooms (Agaricus bisporus): A review. Trends Food Sci. Technol. 2018, 78, 72–82. [Google Scholar] [CrossRef]
- Meng, D.-M.; Zhang, Y.-X.; Yang, R.; Wang, J.; Zhang, X.-H.; Sheng, J.-P.; Wang, J.-P.; Fan, Z.-C. Arginase participates in the methyl jasmonate-regulated quality maintenance of postharvest Agaricus bisporus fruit bodies. Postharvest Biol. Technol. 2017, 132, 7–14. [Google Scholar] [CrossRef]
- Villaescusa, R.; Gil, M. Quality improvement of Pleurotus mushrooms by modified atmosphere packaging and moisture absorbers. Postharvest Biol. Technol. 2003, 28, 169–179. [Google Scholar] [CrossRef]
- Brennan, M.; Le Port, G.; Gormley, R. Post-harvest Treatment with Citric Acid or Hydrogen Peroxide to Extend the Shelf Life of Fresh Sliced Mushrooms. LWT 2000, 33, 285–289. [Google Scholar] [CrossRef]
- Fernandes, Â; Antonio, A.L.; Oliveira, M.B.P.; Martins, A.; Ferreira, I.C. Effect of gamma and electron beam irradiation on the physico-chemical and nutritional properties of mushrooms: A review. Food Chem. 2012, 135, 641–650. [Google Scholar] [CrossRef]
- Singh, P.; Langowski, H.-C.; Wani, A.A.; Sängerlaub, S. Recent advances in extending the shelf life of fresh Agaricus mushrooms: A review. J. Sci. Food Agric. 2010, 90, 1393–1402. [Google Scholar] [CrossRef]
- Ares, G.; Parentelli, C.; Gámbaro, A.; Lareo, C.; Lema, P. Sensory shelf life of shiitake mushrooms stored under passive modified atmosphere. Postharvest Biol. Technol. 2006, 41, 191–197. [Google Scholar] [CrossRef]
- Wang, H.; Qian, Z.; Ma, S.; Zhou, Y.; Patrick, J.W.; Duan, X.; Jiang, Y.; Qu, H. Energy status of ripening and postharvest senescent fruit of litchi (Litchi chinensis Sonn.). BMC Plant Biol. 2013, 13, 55. [Google Scholar] [CrossRef] [Green Version]
- Azevedo, S.; Cunha, L.M.; Caldas-Fonseca, S. Modelling the influence of time and temperature on the respiration rate of fresh oyster mushrooms. Food Sci. Technol. Int. 2015, 21, 593–603. [Google Scholar] [CrossRef]
- Marçal, S.; Sousa, A.S.; Taofiq, O.; Antunes, F.; Morais, A.M.; Freitas, A.C.; Barros, L.; Ferreira, I.C.; Pintado, M. Impact of postharvest preservation methods on nutritional value and bioactive properties of mushrooms. Trends Food Sci. Technol. 2021, 110, 418–431. [Google Scholar] [CrossRef]
- Prasad, S.B.; Rosangkima, G.; Kharbangar, A. Structural and biochemical changes in mitochondria after cisplatin treatment of Dalton’s lymphoma-bearing mice. Mitochondrion 2010, 10, 38–45. [Google Scholar] [CrossRef]
- Choksi, K.B.; Nuss, J.E.; Boylston, W.H.; Rabek, J.P.; Papaconstantinou, J. Age-related increases in oxidatively damaged proteins of mouse kidney mitochondrial electron transport chain complexes. Free. Radic. Biol. Med. 2007, 43, 1423–1438. [Google Scholar] [CrossRef] [Green Version]
- Sedlák, E.; Fabian, M.; Robinson, N.C.; Musatov, A. Ferricytochrome c protects mitochondrial cytochrome c oxidase against hydrogen peroxide-induced oxidative damage. Free. Radic. Biol. Med. 2010, 49, 1574–1581. [Google Scholar] [CrossRef] [Green Version]
- Aghdam, M.S.; Jannatizadeh, A.; Luo, Z.; Paliyath, G. Ensuring sufficient intracellular ATP supplying and friendly extracellular ATP signaling attenuates stresses, delays senescence and maintains quality in horticultural crops during postharvest life. Trends Food Sci. Technol. 2018, 76, 67–81. [Google Scholar] [CrossRef]
- Li, L.; Sun, H.; Kitazawa, H.; Wang, X. Effects of a high O2 dynamic-controlled atmosphere technology on the browning of postharvest white mushroom (Agaricus bisporus) in relation to energy metabolism. Food Sci. Technol. Int. 2017, 23, 385–395. [Google Scholar] [CrossRef]
- Wu, Y.; Hu, Q.; Li, Z.; Pei, F.; Mariga, A.M.; Yang, W. Effect of nanocomposite-based packaging on microstructure and energy metabolism of Agaricus bisporus. Food Chem. 2019, 276, 790–796. [Google Scholar] [CrossRef]
- González, A.J.; González-Varela, G.; Gea, F.J. Brown Blotch Caused by Pseudomonas tolaasii on Cultivated Pleurotus eryngii in Spain. Plant Dis. 2009, 93, 667. [Google Scholar] [CrossRef]
- Okorley, B.A.; Sossah, F.L.; Dai, D.; Xu, S.; Liu, Z.; Song, B.; Sheng, H.; Fu, Y.; Li, Y. Resistance Sources to Brown Blotch Disease (Pseudomonas tolaasii) in a Diverse Collection of Pleurotus Mushroom Strains. Pathogens 2019, 8, 227. [Google Scholar] [CrossRef] [Green Version]
- Sajben, E.; Manczinger, L.; Nagy, A.; Kredics, L.; Vágvölgyi, C. Characterization of pseudomonads isolated from decaying sporocarps of oyster mushroom. Microbiol. Res. 2011, 166, 255–267. [Google Scholar] [CrossRef]
- Yun, Y.-B.; Park, S.-W.; Cha, J.-S.; Kim, Y.-K. Biological characterization of various strains of Pseudomonas tolaasii that causes brown blotch disease. J. Korean Soc. Appl. Biol. Chem. 2013, 56, 41–45. [Google Scholar] [CrossRef]
- Chen, M.; Wu, Q.; Zhang, J.; Guo, W.; Wu, S.; Yang, X. Prevalence and Contamination Patterns of Listeria monocytogenes in Flammulina velutipes Plants. Foodborne Pathog. Dis. 2014, 11, 620–627. [Google Scholar] [CrossRef] [PubMed]
- Pennone, V.; Lehardy, A.; Coffey, A.; Mcauliffe, O.; Jordan, K. Diversity of Listeria monocytogenes strains isolated from Agaricus bisporus mushroom production. J. Appl. Microbiol. 2018, 125, 586–595. [Google Scholar] [CrossRef]
- Murugesan, L.; Kucerova, Z.; Knabel, S.J.; Laborde, L.F. Predominance and Distribution of a Persistent Listeria monocytogenes Clone in a Commercial Fresh Mushroom Processing Environment. J. Food Prot. 2015, 78, 1988–1998. [Google Scholar] [CrossRef] [PubMed]
- Loredana, L.; Francesca, M.; Florinda, F.; Filomena, N.; Paola, O.; Donatella, A. Effect of argon-enriched modified atmosphere on the over quality and bioactive compounds of ready-to-use broccoli rabe (Brassica rapa sylvestris L. var. esculenta) during the storage. Food Sci. Technol. Int. 2021; 29, 84–94. [Google Scholar] [CrossRef]
- Olveira-Bouzas, V.; Pita-Calvo, C.; Vázquez-Odériz, M.L.; Romero-Rodríguez, M. Evaluation of a modified atmosphere packaging system in pallets to extend the shelf-life of the stored tomato at cooling temperature. Food Chem. 2021, 364, 130309–130316. [Google Scholar] [CrossRef]
- Mortazavi, S.M.H.; Kaur, M.; Farahnaky, A.; Torley, P.J.; Osborn, A.M. The pathogenic and spoilage bacteria associated with red meat and application of different approaches of high CO2 packaging to extend product shelf-life. Crit. Rev. Food Sci. Nutr. 2021, 1, 1–22. [Google Scholar] [CrossRef]
- Fonseca, S.C.; Oliveira, F.A.; Brecht, J.K. Modelling respiration rate of fresh fruits and vegetables for modified atmosphere packages: A review. J. Food Eng. 2002, 52, 99–119. [Google Scholar] [CrossRef]
- Mohapatra, D.; Bira, Z.M.; Frias, J.M.; Kerry, J.P.; Rodrigues, F.A. Probabilistic shelf life assessment of white button mushrooms through sensorial properties analysis. LWT 2011, 44, 1443–1448. [Google Scholar] [CrossRef]
- Lopezbriones, G.; Varoquaux, P.; Bureau, G.; Pascat, B. Modified atmosphere packaging of common mushroom. Int. J. Food Sci. Technol. 1993, 28, 57–68. [Google Scholar] [CrossRef]
- Varoquaux, P.; Gouble, B.; Barron, C.; Yildiz, F. Respiratory parameters and sugar catabolism of mushroom (Agaricus bisporus Lange). Postharvest Biol. Technol. 1999, 16, 51–61. [Google Scholar] [CrossRef]
- Jafri, M.; Jha, A.; Bunkar, D.S.; Ram, R.C. Quality retention of oyster mushrooms (Pleurotus florida) by a combination of chemical treatments and modified atmosphere packaging. Postharvest Biol. Technol. 2013, 76, 112–118. [Google Scholar] [CrossRef]
- Kasaai, M.R. Bio-nano-composites containing at least two components, chitosan and zein, for food packaging applications: A review of the nano-composites in comparison with the conventional counterparts. Carbohydr. Polym. 2022, 280, 119027–119035. [Google Scholar] [CrossRef]
- Fernandes, B.C.N.; Paulo, B.B.; Guimarães, M.C.; Sarantopoulos, C.I.G.D.L.; Melo, N.R.; Prata, A.S. Prospection of the use of encapsulation in food packaging. Compr. Rev. Food Sci. Food Saf. 2022, 21, 2309–2334. [Google Scholar] [CrossRef] [PubMed]
- Almasi, H.; Oskouie, M.J.; Saleh, A. A review on techniques utilized for design of controlled release food active packaging. Crit. Rev. Food Sci. Nutr. 2021, 61, 2601–2621. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Wang, S.; Xu, J.; Liu, S.; Li, G. Effects of combined aqueous chlorine dioxide and UV-C on shelf-life quality of blueberries. Postharvest Biol. Technol. 2016, 117, 125–131. [Google Scholar] [CrossRef]
- Donglu, F.; Wenjian, Y.; Kimatu, B.M.; Mariga, A.M.; Liyan, Z.; Xinxin, A.; Qiuhui, H. Effect of nanocomposite-based packaging on storage stability of mushrooms (Flammulina velutipes). Innov. Food Sci. Emerg. Technol. 2016, 33, 489–497. [Google Scholar] [CrossRef]
- Shi, C.; Wu, Y.; Fang, D.; Pei, F.; Mariga, A.M.; Yang, W.; Hu, Q. Effect of nanocomposite packaging on postharvest senescence of Flammulina velutipes. Food Chem. 2018, 246, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Donglu, F.; Wenjian, Y.; Kimatu, B.M.; Xinxin, A.; Qiuhui, H.; Liyan, Z. Effect of nanocomposite packaging on postharvest quality and reactive oxygen species metabolism of mushrooms (Flammulina velutipes). Postharvest Biol. Technol. 2016, 119, 49–57. [Google Scholar] [CrossRef]
- Fang, D.; Yang, W.; Deng, Z.; An, X.; Zhao, L.; Hu, Q. Proteomic Investigation of Metabolic Changes of Mushroom (Flammulina velutipes) Packaged with Nanocomposite Material during Cold Storage. J. Agric. Food Chem. 2017, 65, 10368–10381. [Google Scholar] [CrossRef]
- Veberic, R.; Stampar, F.; Schmitzer, V.; Cunja, V.; Zupan, A.; Koron, D.; Mikulic-Petkovsek, M. Changes in the Contents of Anthocyanins and Other Compounds in Blackberry Fruits Due to Freezing and Long-Term Frozen Storage. J. Agric. Food Chem. 2014, 62, 6926–6935. [Google Scholar] [CrossRef]
- Jiang, S.; Wang, S.; Sun, Y.; Ma, Y. Nutrients responses of Pleurotus ostreatus to slow frozen storage in the short term. RSC Adv. 2014, 4, 47200–47205. [Google Scholar] [CrossRef]
- Ji, J.; Allahdad, Z.; Sarmast, E.; Salmieri, S.; Lacroix, M. Combined effects of microencapsulated essential oils and irradiation from gamma and X-ray sources on microbiological and physicochemical properties of dry fermented sausages during storage. LWT 2022, 159, 113180–113189. [Google Scholar] [CrossRef]
- Cardoso, R.V.; Fernandes, Â.; Barreira, J.C.; Verde, S.C.; Antonio, A.; González-Paramás, A.M.; Barros, L.; Ferreira, I.C. Effectiveness of gamma and electron beam irradiation as preserving technologies of fresh Agaricus bisporus Portobello: A comparative study. Food Chem. 2019, 278, 760–766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, D.; Yin, C.; Fan, X.; Yao, F.; Qiao, Y.; Xue, S.; Lu, Q.; Feng, C.; Meng, J.; Gao, H. Effects of ultrasound and gamma irradiation on quality maintenance of fresh Lentinula edodes during cold storage. Food Chem. 2022, 373, 131478–131488. [Google Scholar] [CrossRef] [PubMed]
- Subramaniam, S.; Jiao, S.; Zhang, Z.; Jing, P. Impact of post-harvest processing or thermal dehydration on physiochemical, nutritional and sensory quality of shiitake mushrooms. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2560–2595. [Google Scholar] [CrossRef] [PubMed]
- Politowicz, J.; Lech, K.; Lipan, L.; Figiel, A.; Carbonell-Barrachina, Á.A. Volatile composition and sensory profile of shiitake mushrooms as affected by drying method. J. Sci. Food Agric. 2018, 98, 1511–1521. [Google Scholar] [CrossRef] [PubMed]
- Özünlü, O.; Ergezer, H. Possibilities of using dried oyster mushroom (Pleurotus ostreatus) in the production of beef salami. J. Food Process. Preserv. 2021, 45, e15117–e15125. [Google Scholar] [CrossRef]
- Nowacka, M.; Laghi, L.; Rybak, K.; Rosa, M.D.; Witrowa-Rajchert, D.; Tylewicz, U. Water state and sugars in cranberry fruits subjected to combined treatments: Cutting, blanching and sonication. Food Chem. 2019, 299, 125122–125131. [Google Scholar] [CrossRef]
- Xiao, H.-W.; Bai, J.-W.; Sun, D.-W.; Gao, Z.-J. The application of superheated steam impingement blanching (SSIB) in agricultural products processing—A review. J. Food Eng. 2014, 132, 39–47. [Google Scholar] [CrossRef]
- Muhammad, A.I.; Chen, W.; Liao, X.; Xiang, Q.; Liu, D.; Ye, X.; Ding, T. Effects of Plasma-Activated Water and Blanching on Microbial and Physicochemical Properties of Tiger Nuts. Food Bioprocess Technol. 2019, 12, 1721–1732. [Google Scholar] [CrossRef]
- Xu, Y.; Xiao, Y.; Lagnika, C.; Li, D.; Liu, C.; Jiang, N.; Song, J.; Zhang, M. A comparative evaluation of nutritional properties, antioxidant capacity and physical characteristics of cabbage (Brassica oleracea var. Capitate var L.) subjected to different drying methods. Food Chem. 2020, 309, 124935–124943. [Google Scholar] [CrossRef]
- Ucar, T.M.; Karadag, A. The effects of vacuum and freeze-drying on the physicochemical properties and in vitro digestibility of phenolics in oyster mushroom (Pleurotus ostreatus). J. Food Meas. Charact. 2019, 13, 2298–2309. [Google Scholar] [CrossRef]
- Souza, E.L.; Lundgren, G.A.; Oliveira, K.R.; Berger, L.R.R.; Magnani, M. An Analysis of the Published Literature on the Effects of Edible Coatings Formed by Polysaccharides and Essential Oils on Postharvest Microbial Control and Overall Quality of Fruit. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1947–1967. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Jiang, H.; Rhim, J.-W.; Cao, J.; Jiang, W. Effective strategies of sustained release and retention enhancement of essential oils in active food packaging films/coatings. Food Chem. 2022, 367, 130671–130679. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, J.; Sureda, A.; Tenore, G.C.; Daglia, M.; Sharifi-Rad, M.; Valussi, M.; Tundis, R.; Sharifi-Rad, M.; Loizzo, M.R.; Ademiluyi, A.O.; et al. Biological Activities of Essential Oils: From Plant Chemoecology to Traditional Healing Systems. Molecules 2017, 22, 70. [Google Scholar] [CrossRef] [PubMed]
- Anon, M.; Chandra, R. Effect of Different Essential Oils on Enzymatic Activity of Oyster Mushroom (Pleurotus florida). Curr. Sci. 2021, 121, 1357–1360. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, X.; Gong, P.; Wang, R.; Han, A.; Deng, Z.; Qi, Z.; Long, H.; Wang, J.; Yao, W.; et al. Advances in the role and mechanisms of essential oils and plant extracts as natural preservatives to extend the postharvest shelf life of edible mushrooms. Foods 2023, 12, 801. [Google Scholar] [CrossRef]
- Kerch, G. Chitosan films and coatings prevent losses of fresh fruit nutritional quality: A review. Trends Food Sci. Technol. 2015, 46, 159–166. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, X.; Gong, P.; Guo, J.; Deng, D.; He, G.; Ji, C.; Wang, R.; Long, H.; Wang, J.; et al. Effect of shiitake mushrooms polysaccharide and chitosan coating on softening and browning of shiitake mushrooms (Lentinus edodes) during postharvest storage. Int. J. Biol. Macromol. 2022, 218, 816–827. [Google Scholar] [CrossRef]
- Hassoun, A.; Shumilina, E.; Di Donato, F.; Foschi, M.; Simal-Gandara, J.; Biancolillo, A. Emerging Techniques for Differentiation of Fresh and Frozen–Thawed Seafoods: Highlighting the Potential of Spectroscopic Techniques. Molecules 2020, 25, 4472. [Google Scholar] [CrossRef]
- Tabaszewska, M.; Gabor, A.; Jaworska, G.; Drożdż, I. Effect of fermentation and storage on the nutritional value and contents of biologically-active compounds in lacto-fermented white asparagus (Asparagus officinalis L.). LWT 2018, 92, 67–72. [Google Scholar] [CrossRef]
- Muhialdin, B.J.; Zawawi, N.; Razis, A.F.A.; Bakar, J.; Zarei, M. Antiviral activity of fermented foods and their probiotics bacteria towards respiratory and alimentary tracts viruses. Food Control. 2021, 127, 108140. [Google Scholar] [CrossRef] [PubMed]
- Bagheripoor-Fallah, N.; Mortazavian, A.; Hosseini, H.; Khoshgozaran-Abras, S.; Rad, A.H.; Hosseyni, H. Comparison of Molecular Techniques with other Methods for Identification and Enumeration of Probiotics in Fermented Milk Products. Crit. Rev. Food Sci. Nutr. 2015, 55, 396–413. [Google Scholar] [CrossRef] [PubMed]
- Beganović, J.; Kos, B.; Pavunc, A.L.; Uroić, K.; Jokić, M.; Šušković, J. Traditionally produced sauerkraut as source of autochthonous functional starter cultures. Microbiol. Res. 2014, 169, 623–632. [Google Scholar] [CrossRef]
- Hashad, R.A.; Ishak, R.A.; Fahmy, S.; Mansour, S.; Geneidi, A.S. Chitosan-tripolyphosphate nanoparticles: Optimization of formulation parameters for improving process yield at a novel pH using artificial neural networks. Int. J. Biol. Macromol. 2016, 86, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Bai, M.; Rashed, M.M.; Lin, L. The antibacterial activity of clove oil/chitosan nanoparticles embedded gelatin nanofibers against Escherichia coli O157:H7 biofilms on cucumber. Int. J. Food Microbiol. 2018, 266, 69–78. [Google Scholar] [CrossRef] [PubMed]
Treatments | Process Parameters | Storage Days | Preservation Effect | Ref. |
---|---|---|---|---|
Modified atmosphere packaging | Storage temperature: 4 °C Storage relative humidity: 95% Grouping processing: -high carbon dioxide packaging (HCP: 20% CO2 + 15% O2) -low carbon dioxide packaging (LCP: 30% O2 + 2% CO2) -high nitrogen packaging (HNP: 85% N2, 15% O2) | 10 d | Optimal processing: HCP: 20% CO2 + 15% O2 -High total phenolic content -Darkening delaying effect | [13] |
High carbon dioxide and low oxygen storage | Storage temperature: 4 °C Storage relative humidity: 95% Grouping processing: -2% O2 + 30% CO2 -Air | 5 d | Optimal processing: 2% O2 + 30% CO2 -Inhibition of serine protease activity | [9] |
Storage temperature:4 °C Storage relative humidity:95% Grouping processing: -2% O2 -2% O2 + 10% CO2 -2% O2 + 30% CO2 -1% O2 + 50% CO2 -Air | 5 d | Optimal processing: 2% O2 + 30% CO2 -O2− production rate: 50.7% -Improve enzyme activity (SOD) | [10] | |
1-MCP treatment combined with nano-packaging | Storage temperature:4 ± 1 °C Storage relative humidity: 90–95% Grouping processing: -Untreated -1-MCP (0.3 μL L–1, 24 h) -Nano-packaging -1-MCP (0.3 μL L–1, 24 h) + nano-packaging. | 12 d | Optimal processing: 1-MCP + nanopackaging -Texture enhancement -Delay respiration rate -Soluble protein improved -Avoid the accumulation of activated oxygen and enhance antioxidant activity (PPO, SOD and CAT) | [11] |
A novel phase change material | Storage temperature: 22 °C ± 2 °C Preparation of PCM: 0.01% nano-TiO2, 2.09% K2SO4, 1.72% maltitol, and 0.50% superabsorbent polymer Grouping processing: -Novel PCM (−2 °C) -Ice (−2 °C) -Equal mass of water | 5 d | Optimal processing: the novel PCM (−2 °C) -Total flavonoid contents: 37.31% higher than control -Free amino acids: the contents of Glu, Phe and Pro were 1.95-fold, 1.34-fold and 2.07-fold higher than those in control, respectively; electrolyte leakage: 17.94% lower than that in control -Antioxidant activity enhancement (GDH, POD, SOD and CCO) | [14] |
Gamma irradiation | Storage temperature: 5 ± 1 °C Group: 0, 1, 2, 3 kGy | 28 d | Optimal processing: 1 kGy -Uniform color with no fungus spoilage and blemishes -Scanning electron microscopy: comparable micro-structure to that of the control | [3] |
MARDB (microwave hot-air flow rolling dry-blanching) | Storage temperature: 4 °C MARDB pretreatment: constant microwave power: 3 W/g, the speed of the rolling bed: 5 rpm Hot-air drying treatment: speed of rolling bed: 5 rpm, drying temperature of the material: 60 °C Group processing: -After pretreatment, cooled to 60 °C in the air and dried. -After pretreatment, packed in plastic bags, sealed and placed in the refrigerator of 4 °C | 12 d | Optimal processing: microwave hot-air flow rolling dry-blanching for 9 min -Maintaining quality parameters -Maintain moisture ratio -Reducing water holding capacity and water binding capacity | [15] |
Temperature-controlled cold rooms | Relative humidity: 87 ± 5% Packing material: PE Group: 2 °C low temperature 4 °C low temperature 8 °C low temperature | 18 d | Optimal processing: 2 °C low temperature -High total phenolic content -Darkening delaying effect -Membrane lipid peroxidation is low | [8] |
Distilled water coating, CS coating, PA-g-CS I (low grafting 125degree) coating, PA-g-CS II (medium grafting degree) coating, PA-g-CS III (high grafting degree) coating | Treatment Time: 30 s Storage temperature: 4 ± 1 °C Relative humidity: 95% Group: -Control (distilled water coating) group -CS coating group -PA-g-CS I (low grafting degree) coating group -PA-g-CS II (medium grafting degree) coating group -PA-g-CS III (high grafting degree) coating group | 15 d | Optimal processing: PA-g-CS III (high grafting rate) coating group -Maintain high quality -Lower membrane lipid peroxidation -Antioxidant activity enhancement (SOD, APX, GR, CAT) -Microstructure: PA-g-CS coating group has a less entangled fiber structure and smaller pores. | [12] |
Lactic acid fermentation | Group: -Storage temperature: 20 °C Sauerkraut process: 2% salt, 1% crystal sugar, and 0.1% Lactic Acid Bacteria Powder Starter -Storage temperature: 4 °C Kimchi process: 4% solar salt, 2% sugar and 0.1% Lactic Acid Bacteria Powder Starter -Storage temperature: 30 °C Pickle process: 50 mM acetic acid, 2.06 M NaCl and 2% sugar and 0.1% Lactic Acid Bacteria Powder Starter -Storage temperature: 20–25 °C Control heavy salting process: Saturated brine (450 mL, 25%, approximately) | 30 d | Optimal processing: Control heavy salting process -Microbial counts changes: no count of lactic acid bacteria and Enterobacterial was detected; yeasts and molds were able to survive at 30 days -Inhibit the action of microorganisms: pH and titratable acidity: nearly unchanged -Nitrite concentration: relatively low and stable | [16] |
Natural freezing (NF, −20 °C) or individually quick-frozen (IQF) (−62.5 °C and speed 8.23 m/s) methods | Storage temperature: −20 °C Group: -NF, thawed by NT at room temperature -NF, thawed by FT at 4 °C -NF, thawed by MT at 620 W. -IQF, thawed by NT at room temperature -IQF, thawed by FT at 4 °C -IQF, thawed by MT at 620 W | — | Optimal processing: IQF, thawed by NT at room temperature -Thawing curve: takes less time to reach 4 °C -Water holding capacity: significantly higher than that of NF; thawing loss: significantly lower than that of NF -Cutting force analysis: high hardness -Sensory evaluation of thawed mushroom: superior to NF samples in all aspects; IQF least affected the quality after thawing | [17] |
freezing or canning | Group: Storage temperature: −25 °C Freezing and Canning | — | Optimal processing: Boletus edulis, Freezing Preservation effect: -The coefficients for converting total nitrogen to protein: 4.18 | [18] |
PPP@chitosan nanoparticles | Storage temperature: 37 °C Group: -PPP 1.5 mg/mL -PPP 3 mg/mL -PPP 4.5 mg/mL -PPP 6 mg/mL | 5 d | Optimal processing: PPP 3 mg/mL -Inhibit the activity of E. coli O157:H7 on food surfaces. Antimicrobial activity: pork: The number of E. coli O157:H7 decreased by 99.02% and 99.11% cucumber: the number of E. coli O157:H7 decreased by 99.48% and 99.77% | [19] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Chen, X.; Gong, P.; Wang, R.; Qi, Z.; Deng, Z.; Han, A.; Long, H.; Wang, J.; Yao, W.; et al. Advances in Postharvest Storage and Preservation Strategies for Pleurotus eryngii. Foods 2023, 12, 1046. https://doi.org/10.3390/foods12051046
Guo Y, Chen X, Gong P, Wang R, Qi Z, Deng Z, Han A, Long H, Wang J, Yao W, et al. Advances in Postharvest Storage and Preservation Strategies for Pleurotus eryngii. Foods. 2023; 12(5):1046. https://doi.org/10.3390/foods12051046
Chicago/Turabian StyleGuo, Yuxi, Xuefeng Chen, Pin Gong, Ruotong Wang, Zhuoya Qi, Zhenfang Deng, Aoyang Han, Hui Long, Jiating Wang, Wenbo Yao, and et al. 2023. "Advances in Postharvest Storage and Preservation Strategies for Pleurotus eryngii" Foods 12, no. 5: 1046. https://doi.org/10.3390/foods12051046
APA StyleGuo, Y., Chen, X., Gong, P., Wang, R., Qi, Z., Deng, Z., Han, A., Long, H., Wang, J., Yao, W., Yang, W., Wang, J., & Li, N. (2023). Advances in Postharvest Storage and Preservation Strategies for Pleurotus eryngii. Foods, 12(5), 1046. https://doi.org/10.3390/foods12051046