Influence of Dehydration Temperature on Obtaining Chia and Okra Powder Mucilage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials and Processing
2.2. Extraction of Mucilage and Obtaining the Powders
2.2.1. Chia Mucilage
2.2.2. Okra Mucilage
2.2.3. Obtaining Powdered Mucilages
2.3. Chemical and Physicochemical Characterization
2.3.1. Yield
2.3.2. Water Content, Total Titratable Acidity, Total Soluble Solids, Ash, and Total Proteins
2.3.3. Water Activity
2.3.4. pH
2.3.5. Sugars
2.3.6. Starch
2.3.7. Pectin
2.4. Bioactive Compounds
2.4.1. Total Phenolic Compounds
2.4.2. Tannins
2.4.3. Total Anthocyanins and Flavonoids
2.4.4. Antioxidant Activity
2.5. Physical Characterization
2.5.1. Hygroscopicity
2.5.2. Solubility
2.5.3. Wettability
2.5.4. Apparent and Compacted Density
2.5.5. Carr Index and Hausner Factor
2.6. Statistical Data Analysis
3. Results and Discussion
3.1. Chemical and Physicochemical Characterization of Powdered Mucilages
3.2. Powdered Mucilage Bioactive Compounds
3.3. Physical Characterization of Powdered Mucilages
4. Conclusions
5. Patents
- − Chia mucilage (Salvia hispanica) powder–BR 10 2020 007595 0;
- − Powdered mucilage of okra (Abelmoschus esculentus (L.) Moench)–BR 10 2020 008444 5.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Capitani, M.I.; Corzo-Rios, L.J.; Chel-Guerrero, L.A.; Betancur-Ancona, D.A.; Nolasco, S.M.; Tomás, M.C. Rheological properties of aqueous dispersions of Chia (Salvia hispanica L.) mucilage. J. Food Eng. 2015, 149, 70–77. [Google Scholar] [CrossRef]
- Nie, X.; Li, H.; Du, G.; Lin, S.; Hu, R.; Li, H.Y.; Zhao, L.; Wu, D.; Qin, W. Structural characteristics, rheological properties, and biological activities of polysaccharides from different cultivars of okra (Abelmoschus esculentus) collected in China. Int. J. Biol. Macromol. 2019, 139, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Falco, B.; Fiore, A.; Rossi, R.; Amato, M.; Lanzotti, V. Metabolomics driven analysis by UAEGC-MS and antioxidant activity of Chia (Salvia hispanica L.) commercial and mutant seeds. Food Chem. 2018, 254, 137–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enes, B.N.; Moreira, L.P.D.; Renata, C.L.T.; Moraes, É.A.; Moreira, M.E.C.; Hermsdor, H.H.M.; Noratto, G.; Mertens-Talcott, S.U.; Talcott, S.; Martino, H.S.D. Effect of different fractions of chia (Salvia hispanica L.) on glucose metabolism, in vivo and in vitro. J. Funct. Foods 2020, 71, 104–115. [Google Scholar] [CrossRef]
- Camargo, S.C.; Avila, P.E.A.; Huezo, M.E.R.; Guerrero, A.R.; Guerreroe, V.V.; Alonso, C.P. Effect of chia mucilage addition on oxidation and release kinetics of lemon essential oil microencapsulated using mesquite gum—Chia mucilage mixture. Int. Food Res. J. 2019, 116, 1010–1019. [Google Scholar] [CrossRef]
- Campo, C.; Pereira, S.P.; Hass-Costa, T.M.; Paese, K.; Stanisçuaski-Guterres, S.; Oliveira-Rios, A.; Hickmann-Flôres, S. Nanoencapsulation of chia seed oil with chia mucilage (Salvia hispanica L.) as wall material: Characterization and stability evaluation. Food Chem. 2017, 234, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Vega, I.M.S.; Owen, P.Q.; Campos, M.R.S. Physicochemical, thermal, mechanical, optical, and barrier characterization of chia (Salvia hispanica L.) mucilage-protein concentrate biodegradable films. J. Food Sci. 2020, 85, 892–902. [Google Scholar] [CrossRef] [PubMed]
- Capitani, M.I.; Nolasco, S.M.; Tomás, M.C. Stability of oil-in-water (O/W) emulsions with chia (Salvia hispanica L.) mucilage. Food Hydrocoll. 2016, 61, 537–546. [Google Scholar] [CrossRef]
- Kpodo, F.M.; Agbenorhevi, J.K.; Alba, K.; Bingham, R.J.; Oduro, I.N.; Morris, G.A.; Kontogiorgos, V. Pectin isolation and characterization from six okra genotypes. Food Hydrocoll. 2017, 72, 323–330. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Li, M.; Wen, X.; Chen, X.; He, Z.; Ni, Y. Optimization of ultrasound-assisted extraction of okra (Abelmoschus esculentus (L.) Moench) polysaccharides based on response surface methodology and antioxidant activity. Int. J. Biol. Macromol. 2018, 217, 43–49. [Google Scholar] [CrossRef]
- Ghori, M.U.; Mohammad, M.A.; Rudrangi, S.R.S.; Fleming, L.T.; Merchant, H.A.; Smith, A.M.; Conway, B.R. Impact of purification on okra-defined, surface and attributed properties biopolymer. Food Hydrocoll. 2017, 71, 311–320. [Google Scholar] [CrossRef]
- Zhang, W.; Xiang, Q.; Zhao, J.; Mao, G.; Feng, W.; Chen, Y.; Li, Q.; Wu, X.; Yang, L.; Zhao, T. Purification, structural elucidation and physicochemical properties of a polysaccharide from Abelmoschus esculentus L. (okra) flowers. Int. J. Biol. Macromol. 2020, 155, 740–750. [Google Scholar] [CrossRef]
- Nunes, L.P.; Ferrari, C.C.; Ito, D.; Souza, E.C.G.; Germer, S.P.M. Drum drying process of jabuticaba pulp using corn starch as an additive. Braz. J. Food Technol. 2020, 23, 19–26. [Google Scholar] [CrossRef]
- Felisberto, M.H.F.; Wahanik, A.L.; Gomes-Ruffi, C.R.; Clerici, M.T.P.S.; Chang, Y.K.; Steel, C.J. Use of chia (Salvia hispanica L.) mucilage gel to reduce fat in pound cakes. LWT Food Sci. Technol. 2015, 63, 1049–1055. [Google Scholar] [CrossRef] [Green Version]
- Antigo, J.L.D.; Stafussa, A.P.; Bergamasco, R.C.; Madrona, G.S. Chia seed mucilage as a potential encapsulating agent of a natural food dye. J. Food Eng. 2020, 285, 110–119. [Google Scholar] [CrossRef]
- Gemede, H.F.; Haki, G.D.; Beyene, F.; Rakshit, S.K.; Woldegior, A.Z. Indigenous Ethiopian okra (Abelmoschus esculentus) mucilage: A novel ingredient with functional and antioxidant properties. Food Sci. Nutr. 2018, 6, 563–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araújo, S.S.F.P.; Silva, L.M.A.; Feitosa, B.F.; Silva, A.L.; Cavalcanti, M.T. Okra mucilage Abelmoschus esculentus (L.) Moench as a natural additive in tomato sauce. Res. Soc. Dev. 2020, 9, 1–17. [Google Scholar] [CrossRef]
- Muñoz, L.A.; Cobos, A.; Diaz, O.; Aguilera, J.M. Chia seeds: Microstructure, mucilage extraction and hydration. J. Food Eng. 2012, 108, 216–224. [Google Scholar] [CrossRef]
- De Medeiros, M.D.F.; de Alsina, O.L.; Rocha, S.C.; Jerônimo, C.E.D.M.; Mata, A.L.; de Medeiros, U.K.; Furtunato, A.A. Flowability of inert particle beds with tropical fruit pulps: Effects on spouted bed drying. R. Bras. Eng. Agríc. Environ. 2001, 5, 475–480. [Google Scholar] [CrossRef] [Green Version]
- Association of Official Analytical Chemists. Official Methods of Analysis, 20th ed.; AOAC: Rockville, MA, USA, 2016; 3100p. [Google Scholar]
- Yemm, E.W.; Willis, A.J. The estimation of carbohydrates in plant extracts by anthrone. Biochem J. 1954, 57, 508–515. [Google Scholar] [CrossRef]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Stevens, F.J.; Chapman, R.A. The determination of starch in meat products with the anthrone reagent. J. Assoc. Off. Anal. Chem. 1955, 38, 202–210. [Google Scholar]
- Pearson, D. The Chemical Analysis of Foods, 6th ed.; J. & A. Churchill: London, UK, 1970; p. 370. [Google Scholar]
- Waterhouse, A. Folin-ciocalteau micro method for total phenol in wine. Am. J. Enol. Vitic. 2006, 53, 3–5. [Google Scholar]
- Goldstein, J.L.; Swain, T. Changes in tannis in ripening fruits. Phytochemistry 1963, 2, 371–383. [Google Scholar] [CrossRef]
- Francis, F.J. Analysis of anthocyanins. In Anthocyanins as Food Colors; Markakis, P., Ed.; Academic Press: New York, NY, USA, 1982; p. 207. [Google Scholar]
- Rufino, M.S.M.; Alves, R.E.; Brito, E.S.; Jiménez, J.P.; Calixto, F.S. Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chem. 2010, 121, 996–1002. [Google Scholar] [CrossRef] [Green Version]
- Morales, F.J.; Jiménez-Pérez, S. Free radical scavenging capacity of Maillard reaction products as related to color and fluorescence. Food Chem. 2001, 72, 119–125. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.Z.; Corke, H. Production and properties of spray-dried Amaranthus betacyanin pigments. J. Food Sci. 2000, 65, 1248–1252. [Google Scholar] [CrossRef]
- Cano-Chauca, M.; Stringheta, P.C.; Ramos, A.M.; Cal-Vidal, J. Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innov. Food Sci. Emerg. Technol. 2005, 6, 420–428. [Google Scholar] [CrossRef]
- Schubert, H. Food particle technology. Part I: Properties of particles and particles food systems. J. Food Eng. 1993, 6, 1–30. [Google Scholar] [CrossRef]
- Tonon, R.V.; Brabet, C.; Pallet, D.; Brat, P.; Hubinger, M.D. Physicochemical and morphological characterisation of açai (Euterpe oleraceae Mart.) powder produced with different carrier agents. Int. J. Food Sci. 2009, 44, 1950–1958. [Google Scholar] [CrossRef]
- Santhalakshmy, S.; Bosco, S.J.D.; Francis, S.; Sabeena, M. Effect of inlet temperature on physicochemical properties of spray-dried jamun fruit juice powder. Powder Tech. 2015, 274, 37–43. [Google Scholar] [CrossRef]
- Silva, F.A.S.; Azevedo, C.A.V. The Assistat Software Version 7.7 and its use in the analysis of experimental data. Afr. J. Agric. Res. 2016, 11, 3733–3740. [Google Scholar] [CrossRef]
- Timilsena, Y.P.; Adhikari, R.; Kasapis, S.; Adhikari, B. Molecular and functional characteristics of 1 purified gum from Australian chia seeds. Carbohydr. Polym. 2016, 20, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Pontes, D.F.; Oliveira, M.N.; Herculano, L.F.L.; Costa, C.S.; Medeiros, S.R.A.M.; Valero-Cases, E.; Perez, J.J.P.; Fernández, M.J.F. Influence of mucilages from seeds of chia (Salvia hispanica L.) and brown linseed (Linum usitatissimum L.) on the technological quality of bread. Res. Soc. Dev. 2020, 9, 1–25. [Google Scholar] [CrossRef]
- Resende, O.; Oliveira, D.E.C.; Costa, L.M.; Ferreira Júnior, W.N. Thermodynamic properties of bare fruits (Dipteryx alata Vogel). Eng. Agríc. 2017, 37, 739–749. [Google Scholar] [CrossRef] [Green Version]
- Carragenas. Tipos e aplicação nos alimentos. Fabricacion de Pan; Acribia: Zaragoza, Spain, 2002; p. 419.
- Melo, J.C.S.; Pereira, E.D.; Oliveira, K.P.; Costa, C.H.C.; Feitosa, R.M. Study smell pepper drying kinetics in different temperature. Rev. Verde De Agroecol. E Desenvolv. Sustentável 2015, 10, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Carmona, J.C.; Robert, P.; Sáenz, C. Effect of spray drying process on chemical and physical properties of mucilage extracted from cactus pear cladodes (Opuntia ficus-indica). Int. J. Nanomed. 2018, 1, 4–7. [Google Scholar]
- Pereira, G.A.; Silva, E.K.; Araujo, N.M.P.; Arruda, H.S.; Meireles, M.A.A.; Pastore, G.M. Mutamba seed mucilage as a novel emulsifier: Stabilization mechanisms, kinetic stability and volatile compounds retention. Food Hydrocoll. 2019, 97, 105–110. [Google Scholar] [CrossRef]
- Zim, A.F.M.I.U.; Khatun, J.; Khan, M.F.; Hossain, A.; Haque, M.M. Evaluation of in vitro antioxidant activity of okra mucilage and its antidiabetic and antihyperlipidemic effect in alloxan-induced diabetic mice. Food Sci. Nutr. 2021, 9, 6854–6865. [Google Scholar] [CrossRef]
- Damodaran, S.; Parkin, K.L.; Fennema, O.R. Fennema’s Food Chemistry, 4th ed.; CRC Press: Boca Raton, FL, USA, 2010; p. 900. [Google Scholar]
- Faccio, C.; Machado, R.A.; Souza, L.M.; Zoldan, S.R.; Quadri, M.G. Characterization of the mucilage extracted from Jaracatiá (Carica quercifolia (A. St. Hil.) Hieron). Carbohydr. Polym. 2015, 131, 370–376. [Google Scholar] [CrossRef]
- Santos, F.S.; Figueirêdo, R.M.F.; Queiroz, A.J.M.; Santos, D.C. Drying kinetics and physical and chemical characterization of white-fleshed ‘pitaya’ peels. Rev. Bras. Eng. Agríc. Ambient. 2017, 21, 872–877. [Google Scholar] [CrossRef]
- Taticchi, A.; Esposto, S.; Urbani, S.; Veneziani, G.; Selvaggini, R.; Sordini, B.; Servili, M. Effect of an olive phenolic extract added to the oily phase of a tomato sauce, on the preservation of phenols and carotenoids during domestic cooking. LWT Food Sci. Technol. 2017, 84, 572–578. [Google Scholar] [CrossRef]
- Jiang, N.; Zhang, Z.; Li, D.; Liu, C.; Zhang, M.; Liu, C.; Wang, D.; Niu, L. Evaluation of freeze drying combined with microwave vacuum drying for functional okra snacks: Antioxidant properties, sensory quality, and energy consumption. LWT Food Sci. Technol. 2017, 82, 216–226. [Google Scholar] [CrossRef]
- Alcântara, M.A.; Polari, I.L.B.; Meireles, B.R.L.A.; Lima, A.E.A.; Silva Junior, J.C.; de Andrade Vieira, É.; Santos, N.A.; Cordeiro, A.M.T.M. Effect of the solvent composition on the profile of phenolic compounds extracted from chia seeds. Food Chem. 2019, 275, 489–496. [Google Scholar] [CrossRef]
- Costa, M.H.A.; Nunes, M.H.; Morais, I.T.S.; Sousa, L.F.L.; Gonçalves, J.N.A.; Vasconcelos, A.C.A.B.; Santos Filho, J.B.; Silva, A.R.; Pereira Junior, J.L.; Pires, Y.M.S.; et al. Pharmacognostic prospection and physical and chemical characterization of A. esculents fruits. Res. Soc. Dev. 2020, 9, e23963367. [Google Scholar] [CrossRef]
- Souza, V.B.; Thomazini, M.; Balieiro, J.C.C.; Fávaro-Trindade, C.S. Effect of spray drying on the physicochemical properties and color stability of the powdered pigment obtained from vinification byproducts of the Bordo grape (Vitis labrusca). Food Bioprod. Process. 2015, 93, 39–50. [Google Scholar] [CrossRef]
- Nampuak, C.; Tongkhao, K. Okra mucilage powder: A novel functional ingredient with antioxidant activity and antibacterial mode of action revealed by scanning and transmission electron microscopy. Int. J. Food Sci. 2020, 55, 569–577. [Google Scholar] [CrossRef]
- Beltrán-Orozco, M.C.; Olguin, A.M.; Ramirez, M.C.R. Changes in the nutritional composition and antioxidant capacity of chia seeds (Salvia hispanica L.) during germination process. Food Sci. Biotechnol. 2020, 29, 751–757. [Google Scholar] [CrossRef]
- Martín-Gómez, J.; Varo, M.A.; Mérida, J.; Serratosa, M.P. Influence of drying processes on anthocyanin profiles, total phenolic compounds and antioxidant activities of blueberry (Vaccinium corymbosum). LWT Food Sci. Technol. 2020, 120, e108931. [Google Scholar] [CrossRef]
- Gong, K.; Chen, L.; Li, X.; Sun, L.; Liu, K. Effects of germination combined with extrusion on the nutritional composition, functional properties and polyphenol profile and related in vitro hypoglycemic effect of whole grain corn. J. Cereal Sci. 2018, 83, 1–8. [Google Scholar] [CrossRef]
- Huang, X.; Cai, W.; Xu, B. Kinetic changes of nutrients and antioxidant capacities of germinated soybean (Glycine max L.) and mung bean (Vigna radiata L.) with germination time. Food Chem. 2014, 143, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Benevides, C.M.J.; Costa, A.S.G.; Pinto, D.; Alves, R.C.; Nunes, A.M.; Oliveira, M.B.P.P. Germination and Dehydration of Legumes: Effect on the nutritional composition, bioactive compounds and antioxidant activity of Andu and Mangalô Beans from Peru. Rev. Virtual Chem. 2019, 11, 1249–1264. [Google Scholar] [CrossRef]
- Limmongkon, A.; Janhom, P.; Amthong, A.; Muenfan, A.; Patcharaporn, N.; Jirarat, P.; Thapakorn, S.; Suwaree, S.; Damratsamon, S.; Metawee, S.; et al. Antioxidant activity, total phenolic, and resveratrol content in five cultivars of peanut sprouts. Asian Pac. J. Trop. Biomed. 2017, 7, 332–338. [Google Scholar] [CrossRef]
- Mujtaba, M.; Koc, B.; Salaberria, A.M.; Ilk, S.; Cansaran-Duman, D.; Akyuz, L.; Cakmak, Y.S.; Kaya, M.; Khawar, K.M.; Labidi, J.; et al. Production of novel chia-mucilage nanocomposite films with starch nanocrystals; An inclusive biological and physicochemical perspective. Int. J. Biol. Macromol. 2019, 133, 663–673. [Google Scholar] [CrossRef]
- Cuomo, F.; Iacovino, S.; Messia, M.C.; Sacco, P.; Lopez, F. Protective action of lemongrass essential oil on mucilage from chia (Salvia hispanica) seeds. Food Hydrocoll. 2020, 105, 860–867. [Google Scholar] [CrossRef]
- Laaman, T.R. Hydrocolloids in Food Processing, 1st ed.; Wiley Blackwell: Hoboken, NJ, USA, 2011; p. 344. [Google Scholar]
- Gea Niro Research Laboratory. Wettab Método Niro, GEA Niro Analytical Methods; GEA Niro: Søborg, Denmark, 2006. [Google Scholar]
- Jaya, S.; Das, H. Effect of maltodextrin, glycerol monostearate and tricalcium phosphate on vaccum dried mango powders properties. J. Food Eng. 2004, 63, 125–134. [Google Scholar] [CrossRef]
- Silva, T.A.A.; Alves, N.M.C.; Gale, N.B.C.; Silva, M.I.P. Study of the storage of wholemeal and partially defatted baru flour in bioriented polypropylene packing. Agrarian 2019, 12, 487–494. [Google Scholar] [CrossRef] [Green Version]
- Particle Analytical. Bulk and Tapped Density. In Usp30-Nf25. 2007. Available online: http://particle.dk/about-particle-analytical/ (accessed on 28 January 2022).
- Aulton, M.E. Design of Dosage Forms, 2nd ed.; Artmed: Porto Alegre, Brazil, 2005; p. 677. [Google Scholar]
- Toit, A.D.; Wit, M.; Fouche, H.J.; Taljaard, M.; Venter, S.L.; Hugo, A. Mucilage powder from cactus pears as functional ingredient: Influence of cultivar and harvest month on the physicochemical and technological properties. J. Food Sci. Technol. 2019, 56, 2404–2416. [Google Scholar] [CrossRef]
- Okunlola, A.; Odeniyi, M.A.; Arhewoh, M.I. Microsphere formulations of ambroxol hydrochloride: Influence of Okra (Abelmoschus esculentus) mucilage as a sustained release polymer. Prog. Biomat. 2020, 9, 65–80. [Google Scholar] [CrossRef]
- Husain, M.; Wadud, A.; Hamiduddin, G.S.; Perveen, S.; Hafeez, K. Physicochemical standardization of mucilage obtained from Althaea officinalis Linn—Root. Pharmacogn. Mag. 2019, 15, 155–161. [Google Scholar] [CrossRef]
Parameters | Temperature (°C) | Powdered Mucilages | |
---|---|---|---|
CM | OM | ||
Yield (%) | 50 | 21.04 ± 0.68 aA | 13.40 ± 0.28 aB |
60 | 20.14 ± 0.39 aA | 11.12 ± 0.99 bB | |
70 | 17.06 ± 0.62 bA | 9.73 ± 0.25 cB | |
Water content (% db) | 50 | 6.05 ± 0.58 aB | 8.90 ± 0.27 aA |
60 | 4.41 ± 0.09 bB | 8.01 ± 0.41 bA | |
70 | 2.55 ± 0.46 cB | 6.68 ± 0.14 cA | |
Water activity (aw) | 50 | 0.234 ± 0.002 aB | 0.304 ± 0.005 aA |
60 | 0.179 ± 0.000 bB | 0.259 ± 0.004 bA | |
70 | 0.117 ± 0.003 cB | 0.178 ± 0.001 cA | |
Ash (% db) | 50 | 5.56 ± 0.06 aA | 4.60 ± 0.07 aB |
60 | 5.47 ± 0.18 aA | 4.83 ± 0.01 aB | |
70 | 5.75 ± 0.34 aA | 4.84 ± 0.23 aB | |
Total titratable acidity (% citric acid db) | 50 | 1.37 ± 0.07 aA | 0.89 ± 0.07 aB |
60 | 1.36 ± 0.08 aA | 0.85 ± 0.08 bB | |
70 | 1.31 ± 0.08 aA | 0.84 ± 0.07 bB | |
pH | 50 | 6.50 ± 0.02 cA | 6.17 ± 0.01 bB |
60 | 6.94 ± 0.04 bA | 6.19 ± 0.01 bB | |
70 | 7.07 ± 0.02 aA | 6.21 ± 0.01 aA | |
Proteins (% db) | 50 | 18.83 ± 0.44 aB | 24.27 ± 0.33 aA |
60 | 18.64 ± 0.13 aB | 20.58 ± 0.47 bA | |
70 | 18.83 ± 0.34 aA | 17.99 ± 0.49 cB | |
Pectin (% db) | 50 | 8.90 ± 0.19 bA | 7.63 ± 0.70 bB |
60 | 9.01 ± 0.88 bA | 8.09 ± 0.62 bB | |
70 | 12.73 ± 0.74 aA | 8.86 ± 0.43 aB | |
Starch (% db) | 50 | 7.60 ± 0.05 cA | 1.61 ± 0.02 cB |
60 | 8.19 ± 0.08 bA | 2.10 ± 0.01 bB | |
70 | 8.27 ± 0.06 aA | 2.48 ± 0.02 aB | |
Total soluble solids (°Brix db) | 50 | 18.56 ± 0.00 aA | 16.33 ± 0.00 aB |
60 | 18.27 ± 0.00 aA | 16.20 ± 0.00 aB | |
70 | 18.46 ± 0.01 aA | 16.02 ± 0.02 bB | |
Total sugars (g/100 g db) | 50 | 10.56 ± 0.03 aB | 23.31 ± 0.07 aA |
60 | 10.10 ± 0.08 bB | 17.98 ± 0.02 bA | |
70 | 9.45 ± 0.13 cB | 15.03 ± 0.03 cA | |
Reducing sugars (g/100 g db) | 50 | 4.33 ± 0.01 aB | 6.29 ± 0.03 aA |
60 | 3.19 ± 0.01 bB | 5.93 ± 0.02 bA | |
70 | 2.77 ± 0.02 cB | 4.34 ± 0.14 cA |
Parameters | Temperature (°C) | Powdered Mucilages | |
---|---|---|---|
CM | OM | ||
Total phenolic compounds (mg EAG*/100 g db) | 50 | 804.31 ± 2.45 cB | 1522.55 ± 5.21 cA |
60 | 821.86 ± 3.82 bB | 1636.21 ± 6.11 bA | |
70 | 845.91 ± 2.41 aB | 1677.67 ± 3.27 aA | |
Tannins (mg EAT**/100 g db) | 50 | 536.93 ± 3.37 bB | 1019.10 ± 5.79 cA |
60 | 574.50 ± 13.04 aB | 1088.91 ± 3.54 bA | |
70 | 574.87 ± 2.19 aB | 1165.98 ± 4.90 aA | |
Anthocyanins (mg/100 g db) | 50 | 33.85 ± 0.09 bB | 39.64 ± 0.14 cA |
60 | 35.13 ± 0.14 aB | 44.06 ± 0.12 bA | |
70 | 35.78 ± 0.97 aB | 52.89 ± 0.32 aA | |
Flavonoids (mg/100 g db) | 50 | 33.24 ± 0.73 bB | 49.85 ± 0.21 bA |
60 | 35.94 ± 0.24 aB | 48.42 ± 0.25 cA | |
70 | 36.26 ± 0.98 aB | 66.73 ± 0.06 aA |
Parameters | Temperature (°C) | Powdered Mucilages | |
---|---|---|---|
CM | OM | ||
Solubility (% db) | 50 | 50.43 ± 0.83 bA | 26.32 ± 0.51 bB |
60 | 50.78 ± 1.41 bA | 27.93 ± 2.30 abB | |
70 | 54.69 ± 1.03 aA | 30.86 ± 1.77 aB | |
Higroscopicity (% db) | 50 | 15.11 ± 0.08 aB | 19.92 ± 1.10 aA |
60 | 14.79 ± 0.71 aB | 19.73 ± 0.45 aA | |
70 | 13.85 ± 0.81 bB | 17.79 ± 0.51 bA | |
Wettability rate (g/min) | 50 | 1.03 ± 0.05 cB | 1.42 ± 0.06 cA |
60 | 1.27 ± 0.01 bB | 1.60 ± 0.11 bA | |
70 | 1.90 ± 0.08 aA | 1.95 ± 0.07 aA | |
Apparent density (g/cm3) | 50 | 0.567 ± 0.052 aA | 0.576 ± 0.008 bA |
60 | 0.492 ± 0.011 bB | 0.623 ± 0.017 aA | |
70 | 0.472 ± 0.003 bB | 0.627 ± 0.011 aA | |
Compacted density (g/cm3) | 50 | 0.656 ± 0.059 aA | 0.643 ± 0.009 bA |
60 | 0.590 ± 0.003 bB | 0.761 ± 0.019 aA | |
70 | 0.588 ± 0.004 bB | 0.779 ± 0.014 aA | |
Carr index (%) | 50 | 12.00 ± 0.00 cA | 12.00 ± 0.00 cA |
60 | 15.33 ± 2.31 bB | 17.67 ± 0.56 bA | |
70 | 19.67 ± 0.58 aA | 20.00 ± 0.00 aA | |
Hausner factor | 50 | 1.14 ± 0.00 cA | 1.14 ± 0.00 cA |
60 | 1.20 ± 0.03 bA | 1.21 ± 0.08 bA | |
70 | 1.24 ± 0.01 aA | 1.25 ± 0.00 aA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, F.S.d.; Figueirêdo, R.M.F.d.; Queiroz, A.J.d.M.; Paiva, Y.F.; Moura, H.V.; Silva, E.T.d.V.; Ferreira, J.P.d.L.; Melo, B.A.d.; Carvalho, A.J.d.B.A.; Lima, M.d.S.; et al. Influence of Dehydration Temperature on Obtaining Chia and Okra Powder Mucilage. Foods 2023, 12, 569. https://doi.org/10.3390/foods12030569
Santos FSd, Figueirêdo RMFd, Queiroz AJdM, Paiva YF, Moura HV, Silva ETdV, Ferreira JPdL, Melo BAd, Carvalho AJdBA, Lima MdS, et al. Influence of Dehydration Temperature on Obtaining Chia and Okra Powder Mucilage. Foods. 2023; 12(3):569. https://doi.org/10.3390/foods12030569
Chicago/Turabian StyleSantos, Francislaine Suelia dos, Rossana Maria Feitosa de Figueirêdo, Alexandre José de Melo Queiroz, Yaroslávia Ferreira Paiva, Henrique Valentim Moura, Eugênia Telis de Vilela Silva, João Paulo de Lima Ferreira, Bruno Adelino de Melo, Ana Júlia de Brito Araújo Carvalho, Marcos dos Santos Lima, and et al. 2023. "Influence of Dehydration Temperature on Obtaining Chia and Okra Powder Mucilage" Foods 12, no. 3: 569. https://doi.org/10.3390/foods12030569
APA StyleSantos, F. S. d., Figueirêdo, R. M. F. d., Queiroz, A. J. d. M., Paiva, Y. F., Moura, H. V., Silva, E. T. d. V., Ferreira, J. P. d. L., Melo, B. A. d., Carvalho, A. J. d. B. A., Lima, M. d. S., Costa, C. C., Silva, W. P. d., & Gomes, J. P. (2023). Influence of Dehydration Temperature on Obtaining Chia and Okra Powder Mucilage. Foods, 12(3), 569. https://doi.org/10.3390/foods12030569